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Abstract
We look at distributed representation of structure with variable binding, that is natural
for neural nets and allows traditional symbolic representation and processing. The
representation supports learning from example. This is demonstrated by taking several
instances of the mother-of relation implying the parent-of relation, by encoding them
into a mapping vector, and by showing that the mapping vector maps new instances of
mother-of into parent-of.

1 Introduction
Distributed representation is used commonly with neural nets, as it is in ordinary computers, to
encode a large number of attributes or things with a much smaller number of variables or units. In
this paper we assume that the units are binary so that the encodings of things are bit patterns or bit
vectors (‘pattern’ and ‘vector’ will be used interchangeably in this paper). In normal symbolic
processing the bit patterns are arbitrary identifiers, and it matters only whether two patterns are
identical or different, whereas bit patterns in a neural net are somewhat like an error-correcting
code: similar patterns (highly correlated, small Hamming distance) mean the same or similar
things—hence the use of neural nets as classifiers and as low-level sensory processors.

Computer modeling of high-level mental functions, such as language, led to the development of
symbolic processing and has remained mostly in that domain. However, the systems that have
been built are rigid and brittle rather than lifelike. It is natural to look to neural nets for a remedy.
Their error-correcting properties should make the systems more forgiving. Consequently, there is
major research effort into combining symbolic and neural approaches. One research direction is
the hybrid approach: use both, and use each for what it does the best. Wermter (1997) reviews
such approaches for language processing. Another direction is distributed representation: encode
structure in a way that suits neural nets. The present paper explores this second direction.

Much has been written and debated about the encoding of structure for neural nets (see, e.g.,
Sharkey, 1991) without reaching a clear consensus. Hinton (1990) has discussed it in depth and
has introduced the idea ofreduced representation. This idea is realized in Plate’s (1994, 1997)
Holographic Reduced Representation (HRR) and in my binary Spatter Code (Kanerva, 1996). I
will use the latter here because it allows the simplest examples. The research on representation by
Shastri and Ajjanagadde (1993) and by Hummel and Holyoak (1997) demonstrate different
solutions to problems that we share.
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2 Binary Spatter-coding of Structure
The binary Spatter Code is a form of Holographic Reduced Representation. It is summarized
below in terms applicable to all HRRs, and in traditional symbolic terms using a two-place relation
r (x, y) as an example.

Space of Representations
 HRRs work with large random patterns, or very-high-dimensional random vectors. All

things—variables, values, composed structures, mappings between structures—are elements of a
common space: they are very-high-dimensional random vectors with independent, identically
distributed components. The dimensionality of the space, denoted byN, is usually between 1,000
and 10,000. The Spatter Code uses dense binary vectors (i.e., 0s and 1s are equally probable). The
vectors are written in boldface, so thatx is theN-dimensional vector (N-vector for short) that
represents the variable or rolex, anda is theN-vector that represents the value or fillera, for
example.

Item Memory or Clean-up Memory
Some operations produce approximate vectors that need to be cleaned up (i.e., identified with

their exact counterparts). It is done with an item memory that stores all valid vectors known to the
system, and retrieves the best-matching vector when cued with a noisy vector, or retrieves nothing
if the best match is no better than what results from random chance. The item memory performs a
function that, at least in principle, is performed by an autoassociative neural memory.

Binding
Binding is the first level of composition in which things that are very closely associated with

each other are brought together. A variable is bound to a value with a binding operator that
combines theN-vectors for the variable and the value into a singleN-vector for the bound pair.
The Spatter Code binds with coordinatewise (bitwise) Boolean Exclusive-OR (XOR,⊗), so that
the variablex having the valuea (i.e.,x = a) is encoded by theN-vectorx⊗a whosenth bit is the
bitwise XOR xn⊗an (xn and an are thenth bits ofx anda, respectively). An important property of
all HRRs is that binding of two random vectors produces a random vector that resemblesneither
of the two.

Unbinding
The inverse of the binding operator breaks a bound pair into its constituents: finds the filler if

the role is given, or the role if the filler is given. The XOR is its own inverse function, so that, for
example,x⊗(x⊗a) = a finds the vector to whichx is bound inx⊗a (i.e., what’s the value ofx?).

Merging
Merging is the second level of composition in which identifiers and bound pairs are combined

into a single item. It is also called ‘super(im)posing’, ‘bundling’, and ‘chunking’. It is done by a
normalizedsumvector, and the merging ofG andH is written as〈G + H〉, where〈…〉 stands for
normalization. The relationr (A, B) can be represented by merging the representations forr, ‘r1 =
A’, and ‘r2 = B’, wherer1 andr2 are the first and second roles of the relationr. It is encoded by

R = 〈r + r1⊗A + r2⊗B〉

The normalized sum of binary vectors is given by bitwise majority rule, with ties broken at
random. An important property of all HRRs is that merging of two or more random vectors
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produces a random vector that resembleseach of the merged vectors (i.e.,R is similar tor, r1⊗A,
andr2⊗B).

Distributivity
In all HRRs, the binding and unbinding operators distributes over the merging operator, so that,

for example,

x⊗〈G + H + I〉 = 〈x⊗G + x⊗H + x⊗I〉

Distributivity is a key to analyzing HRRs.

Probing
To find out, for example, whatr1 is bound to inR (i.e., what’s the value ofr1 in R?), we probe

R with r1 using the unbinding operator. For example, ifR represents the above relation, probing it
with r1 yields a vectorA′ that is recognizable asA (A′ will retrieveA from the item memory). The
analysis is as follows:

A′ = r1⊗R = r1⊗〈r + r1⊗A + r2⊗B〉

which, by distributivity, becomes

A′ = 〈r1⊗r + r1⊗(r1⊗A) + r1⊗(r2⊗B)〉

and simplifies to

A′ = 〈r1⊗r + A + r1⊗r2⊗B〉

ThusA′ is similar toA; it is also similar tor1⊗r and tor1⊗r2⊗B (seeMerging above), but they
are not stored in the item memory and thus act as random noise.

Holistic Mapping and Simple Analogical Retrieval
The functions described so far are sufficient for traditional symbol processing; for example, for

realizing a Lisp-like list-processing system. Holistic mapping is a parallel alternative to sequential
search and substitution of traditional symbolic processing.

Probing is the simplest form of holistic mapping: It approximately maps a composed pattern
into one of its bound constituents, as seen above. However, much more than that can be done in a
single mapping operation. For example, it is possible to do severalsubstitutions at once, by
constructing a mapping vector from individual substitutions (each substitution appears as a bound
pair, which than are merged; the kernel mapM* discussed at the end of the next section is an
example). I have demonstrated this kind of mapping between things that share structure (same
roles, different objects; Kanerva, 1998). In the next section we do the reverse: we map between
structures that share objects (same objects in two different relations). The mappings are
constructed from examples, so that this is a demonstration of analogical retrieval or inference.

3 Learning from Example
We will look at two relations, one of which implies the other: ‘Ifx is the mother ofy, thenx is the
parent ofy’, represented symbolically bym(x, y) → p(x, y). We take a specific examplem(A, B) of
the mother-of relation and compare it to the corresponding parent-of relationp(A, B), to get a
mappingM1 between the two. We then use this mapping on another pair (U, V) for which the
mother-of relation holds, to see whether and how wellM1 mapsm(U, V) into the corresponding
parent-of relationp(U, V).
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We will encode‘A is the mother ofB’, or m(A, B), with the randomN-vector mAB = 〈m +
m1⊗A + m2⊗B〉, wherem encodes (it names) the relation andm1 andm2 encode its two roles.
Similarly, we will encode‘A is the parent ofB’, or p(A, B), with pAB = 〈p + p1⊗A + p2⊗B〉.
Then

M1 = MAB = mAB⊗pAB

maps a specific instance of the mother-of relation into the corresponding instance of the parent-of
relation, becausemAB⊗MAB = mAB⊗(mAB⊗pAB) = pAB. The mappingMAB is based on one
example; is it possible to generalize based on only one example? When the mapping is applied to
another instancem(U, V) of the mother-of relation, which is encoded bymUV = 〈m + m1⊗U +
m2⊗V〉, we get the vectorW:

W = mUV⊗MAB

DoesW resemblepUV?
We will measure the similarity of vectors by their correlationρ (i.e., by normalized covariance;

−1 ≤ ρ ≤ 1). The correlations reported in this paper are exact (mathematical mean values or
expectations). They have been calculated by starting with a set of “primary” vectors made of all
possible bit combinations (i.e.,k primary vectors of 2k bits each).

If we start with randomly selected (primary) vectorsm, m1, m2, p, p1, p2, A, B, …, U, V that
are pairwise uncorrelated (ρ = 0), we observe first thatmAB andpAB are uncorrelated butmAB
andmUV are correlated because they both includem in their composition; in fact,ρ(mAB, mUV)
= 0.25 and, similarly,ρ(pAB, pUV) = 0.25. WhenW is compared topUV and to other vectors,
there is a tie for the best match:ρ(W, pUV) = ρ(W, pAB) = 0.25. All other correlations withW
are lower: with the related (reversed) parent-of relationspBA and pVU it is 0.125, with an
unrelated parent-of relationpXY it is 0.0625, and withA, B, …, U, V, mAB, andmUV it is 0. So
based on only one example,m(A, B) → p(A, B), it cannot be decided whetherm(U, V) should be
mapped to the original “answer”p(A, B) or should generalize top(U, V).

Let us now look at generalization based on three examples of mother implying parent: What is
m(U, V) mapped to byM3 that is based onm(A, B) → p(A, B), m(B, C) → p(B, C), andm(C, D) →
p(C, D)? This time we will use a mapping vectorM3 that is the sum of three binary vectors,

M3 = MAB + MBC + MCD

whereMAB is as above, andMBC andMCD are defined similarly. SinceM3 itself is not binary,
mapping mAB or mUV with M3 cannot be done with an XOR. However, we can use an
equivalent system in which binary vectors are bipolar, by replacing 0s by 1s, 1s by−1s, and
bitwise XOR (⊗) by coordinatewise multiplication (×), and then the mapping can be done with
multiplication, vectors can be compared with correlation, and the results obtained withM1 still
hold. Notice that nowMAB = mAB×pAB, for example.

Mapping withM3 gives the following results: To check that it works at all, considerWAB =
mAB×M3; it is most similar topAB (ρ = 0.71) as expected becauseM3 containsMAB. Its other
significant correlations are withmAB (0.41) and withpUV andpVU (0.18). Thus the mappingM3
strongly supportsm(A, B) → p(A, B). It also supports the generalizationm(U, V) → p(U, V)
unambiguously, as seen by comparingWUV = mUV×M3 with pUV. The correlation isρ(WUV,
pUV) = 0.35; the other significant correlations ofWUV are withpAB andpVU (0.18) and with
pBA (0.15) because they all include the vectorp (parent-of).



5

To track the trend further, we check generalization based on five examples,m(A, B) → p(A, B),
m(B, C) → p(B, C), …, m(E, F) → p(E, F), giving the mapping vector

M5 = MAB + MBC + MCD + MDE + MEF

When applied tomAB, we getρ(mAB×M5, pAB) = 0.63 (the other correlations are lower, as they
were forM3), and when applied tomUV, we getρ(mUV×M5, pUV) = 0.40 (again the other
correlations are lower).

When the individual mappingsMxy are analyzed, each is seen to contain the vectorsm×p,
m1×p1, andm2×p2, plus others that act as noise and average out as more and moreMxys are
added together. These three kernel vectors are responsible for the generalization, and from them
we can construct akernel mapping from mother-of to parent-of:

M* = m×p + m1×p1 + m2×p2

WhenmUV is mapped with it, we get a maximum correlation withpUV, as expected, namely,
ρ(mUV×M*, pUV) = 0.43; correlations with other parent-of relations areρ(mUV×M*, pXY) =
0.14, (X ≠ U, Y ≠ V) and 0 with everything else.

The results are summarized in Figure 1 that relates the amount of data to the strength of
inference and generalization. The data are examples or instances of mother-of implying parent-of,
m(x, y) → p(x, y), and the task is to map either an old (Fig. 1a) or a new (Fig. 1b) instance of
mother into parent. The data are taken into account by encoding it into the mapping vectorMn.

Figure 1a shows the effect of new data on old examples. Adding examples into the mapping
makes it less specific, and consequently the correlation for old inferences (pAB) decreases, but it
decreases also for all incorrect alternatives. Figure 1b shows the effect of new data on
generalization. When the mapping is based on only one example, generalization is inconclusive
(mUV×M1 is equally close topAB and pUV), but when it is based on three examples,
generalization is clear, asM3 mapsmUV much closer topUV than to any of the others. Finally,
the kernel mappingM* represents a very large number of examples, a limit asn approaches
infinity, and then the correct inference is the clear winner.

4 Discussion
We have used a simple form of Holographic Reduced Representation to demonstrate mapping
between different information structures, which is a task that has traditionally been in the domain
of symbolic processing. Similar demonstrations have been made by Chalmers (1990) and by
others (e.g., Bodén & Niklasson, 1995) using Pollack’s (1990) Recursive Auto-Associative
Memory (RAAM). The lesson from such demonstrations is that certain kinds of representations
and operations on them make it possible to do traditionally symbolic tasks with distributed
representations suitable for neural nets. Furthermore, when patterns are used as if they were
symbols (Gayler & Wales, 1998), we do not need to configure different neural nets for different
data structures. A general-purpose neural net that operates with such patterns is then a little like a
general-purpose computer that runs programs for a variety of tasks.

The examples above were encoded with the binary Spatter Code because of its simplicity. It
uses very simple mathematics and yet demonstrates the properties of Holographic Reduced
Representation. However, the thresholding of the vector sum, which is a part of the Spatter Code’s
merging operation, discards a lot of information. Therefore the sums themselves, rather than
thresholded sums, were used for the mappingsMn andM*. This put the mappings “outside the
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system” (they are not binary vectors; in HRRs, all things are elements of the same space), and the
results had to be measured by correlation rather than by Hamming distance. In fact, the system we
ended up with (binding and mapping with coordinatewise multiplication, merging with vector
addition) has been used by Ross Gayler (personal communication) to study distributed
representation of structure. Plate’s (1994) real-vector HRRs also use the vector sum for merging,
but they use circular convolution for binding, which involves more computation.

The correlations obtained with HRRs tend to be low. Even the highest correlation for
generalization is only 0.43 and it corresponds to the kernel map (Fig. 1b), and we usually have to
distinguish between two quite low correlations, such as 0.3 and 0.25. That would not be possible if
the vectors had only few elements, but when they have several thousands, even small correlations
and small differences in them are significant. This explains the need for very-high-dimensional
vectors (N > 1,000). The statistics show thatN = 10,000 allows very large systems to work reliably
and thatN = 100,000 will always be unnecessarily large.

The binary system has its peculiarities due to binding and mapping with XOR that is its own
inverse function and is also commutative. When we form the mapping from mother-of to parent-
of, which is a valid inference, it is the same mapping as from parent-of to mother-of, which is valid
evidence but not valid inference. The binary system with XOR obviously is not the final solution
to the distributed representation of structure, although it is a good introduction.

Our example of learning from example uses a traditional symbolic setting with roles and fillers,
an operation for binding the two, and another operation for combining bound pairs (and singular
identifiers) into new (higher level) compound entities such as relations. The same operations can
also be used to encode general mappings, such as the kernel map between two relations. Individual
instances, or examples, of the mapping were encoded with the binding operator—by binding
corresponding instances of the two relations—and such examples were combined by simple
averaging into an estimate of the general (kernel) map. That the averaging of vectors for structured
entities should be meaningful, is a consequence of the representation used and has no counterpart
in traditional symbolic representation. It suggests the possibility of structured representation based
on examples without explicitly encoding roles and fillers but that can be interpreted as consisting
of roles and fillers—representation from which the abstract notions of role and filler, and may
others, could be extracted. We would still use the same binding and merging operators, and
possibly one or two additional operators, but instead of binding the objects of a new instance to
abstract roles, as was done in the examples above, we would bind them to the objects of an old
instance: an old instance, rather than an abstract frame, would serve as the template. This would
correspond rather naturally to how people learn. Such possibilities point to the need for further
research on the subject.
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Figure 1. Leaning from example: The mappings Mn map the mother-of relation to the
parent-of relation. They are computed from n specific instances or examples of mXY
being mapped to pXY. Each map Mn includes the instance ‘mAB maps to pAB’ and
excludes the instance ‘mUV maps to pUV’. The mappings are tested by mapping an “old”
instance mAB (a) and a “new” instance mUV (b) of mother-of to the corresponding parent-
of. The graphs show the closeness of the mapped result (correlation) to different
alternatives for parent-of. The mapping M* is a kernel map that corresponds to an infinite
number of examples. Graph b shows good generalization (mUV is mapped closest to
pUV) and discrimination (it is mapped much further from, e.g., pAB) based on only three
examples (M3).


