
Brain Connectivity Mapping

IJCNN Tutorial

August 4, 2013

Yoonsuck Choe, Ph.D.
Brain Networks Laboratory

Department of Computer Science and Engineering

Texas A&M University

Joint work with: L. C. Abbott, J. Keyser, B. McCormick, D. Han, J. Kwon, D. Mayerich, D, E.

Miller, J. R. Chung, C. Sung.

1/66

Introduction and Overview

2/66

Mapping Brain Connectivity

Organism Brain Connectivity
C57BL/6 mouse Mouse brain Brain circuits (Mouse cortex)

http://mouseatlas.org http://nervenet.org

• First step toward Understanding brain function: from

structure to function.

• Approach: Omics
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Age of the “Omics”
Biology has entered the age of “Omics”.

• “X-ome” means a complete collection of X

– Derived from -ωµα (-oma) in Greek.

– “X-omics” means the study of “X-ome”.

• Examples:

– genome, proteome, metabolome, physiome, etc.

• Why study “omics”?

– Can understand how the whole system works.
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Connectomics

Connectome: Collection of all connections between all neurons

in the brain (Sporns et al. 2005; Sporns 2012; Seung 2012).

Imaging: Diffusion Tensor Imaging (DTI) Light Microscopy Electron Microscopy

Scale: ∼ 10 cm cube ∼ 1 cm cube ∼ 100 µm cube

Whole Human brain Whole Mouse brain Hundreds of neurons

Resolution:∼ 1 mm cube ∼ 1 µm cube ∼ 10 nm cube

Time: hours weeks year

See e.g.Hagmann et al. (2007) Mayerich et al. (2008) Denk and Horstmann (2004)

DTI image source: http://en.wikipedia.org/wiki/File:DTI-sagittal-fibers.jpg 5/66

Why Connectomics?

• Brain evolution is mostly evolution of the architecture

(connectome), not the elements (neurons) (Swanson 2003)

• Current state of neuroscience is too specialized, local, and

fragmented.

• Huge accumulation of (local) experimental (anatomical,

physiological, genetic, behavioral) data.

• Need a framework to integrate the scattered data for a

system-level understanding of the brain.
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Current Status of Connectomics

• Nematode C. elegans: Only available connectome (White

et al. 1986).

• Mostly focused on data acquisition (microscopy and

imaging).

• Analysis framework leading behind.
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Overview

1. Staining and Labeling

2. Imaging

3. Data and Online Resources

4. Analysis

5. Wrap Up
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Part I

Staining and Labeling
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Staining and Labeling

http://commons.wikimedia.org/wiki/File:WholeCellPatchClamp.jpg

• Need: Very low contrast between neurons and non-neuronal

cells/tissue in the brain (see image above).

• Chemical stains and molecular labels are used to provide

contrast.
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Types of Stains/Labels

• Sparse (few neurons marked) vs. dense (all neurons

marked)

• Random (random population marked) vs. targetted

(specific cell types marked).

• For use with different imaging methods: light

microscopy, electron microscopy, fluorescence

microscopy, etc.
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Golgi

• Stains whole neurons (axons unreliably stained): Sparse (∼1%

stained), Random, Whole brains can be stained.

Ideal for light microscopy. 12/66



Osmium Tetroxide (OsO4)

From http://connectomes.org. See Mikula et al. (2012). wbPATCO stain (OsO4 variant)

• Stains lipid (all cell membranes): Dense,

Unselective, Whole brains can be stained.

Ideal for electron microscopy.
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Immunofluorescence Labeling

http://smithlab.stanford.edu/Smithlab/Array_Tomography.html

YFP expressed in whole neurons (false color added)

• Targets specific molecules (e.g. proteins): Sparse,

Targetted

• Use antibody (to attach to antigen in the target)

linked to fluorophore (directly or indirectly). 14/66

Tracer Injections

• Fills neurons near injection site (whole neurons):

Sparse (local to injection site), Unselective, Can

span long distances.

• Anterograde (soma toward axon terminal),

Retrograde (axon terminal toward soma)

• Viral: anterograde or retrograde. Can cross

synapses through infection to highlight higher-order

connections (e.g., Pseudorabies virus)
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Other Relevant Techniques

http://directorsblog.nih.gov/the-brain-now-you-see-it-soon-you-wont/

http://clarityresourcecenter.org/ (Chung and Diesseroth 2013)

• Making brain tissue transparent: remove lipid,

replacing with hydrogel for structural support.

• CLARITY: Allows imaging using multiple

immunostains over large volumes of brain tissue.

16/66



Part II

Imaging
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Knife-Edge Scanning Microscope

Mayerich et al. (2008); Chung et al. (2011)

• Physical sectioning, as opposed to optical sectioning (e.g. confocal).

• Light microscopy, bright-field imaging (fluorescence in the works).

• Stains: Golgi (neuron morphology), Nissl (soma), India ink (vasculature).

(Fluorescence imaging in the works.)

• 0.6 µm× 0.7 µm× 1 µm voxel resolution.

• Custom software for control, image capture (Kwon et al. 2008).

• Compare to MOST (based on KESM) (Li et al. 2010). 18/66

Imaging Principles of the KESM

• Image while cutting (line-scan at the tip of the knife).

• Transmission illumination through the diamond knife.

• Tissue thickness: 1 µm (or possibly less).
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Confocal Microscopy

http://en.wikipedia.org/wiki/File:Confocalprinciple_in_English.svg

• Optical, not physical sectioning: Imaging at a specific

focal depth. Scanning. Fluorescence imaging.

• Depth limit (max 1 mm) (Murray 2011).

• Also see two-photon (and multi-photon) imaging.
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Array Tomography

Micheva and Smith (2007)

• Ultrathin sections transferred on glass slide.

• Repeated washing and staining allows perfectly registered

volume data from multiple staining modalities.
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SBF-SEM (or SBEM)

Denk and Horstmann (2004)

• Microtome installed inside the vacuum chamber of an SEM.

• Commercially available from Gatan.
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All-Optical Histology

Tsai et al. (2003)

• Hybrid of physical sectioning and optical sectioning (cf. Serial Two-Photon

Tomography (Ragan et al. 2012)).

• Femtosecond laser pulses used to ablate∼ 150 µm sections, followed by

multiphoton imaging. 23/66

ATLUM

Hayworth et al. (2006)

• Continuous sectioning using a lathe.

• Sectioned tissue collected on adhesive tape.

• Post-staining and imaging of tape library with Transmission EM.
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Diffusion Tensor Imaging (DTI)

http://en.wikipedia.org/wiki/File:MRI-Philips.JPG

http://en.wikipedia.org/wiki/File:DTI-axial-ellipsoids.jpg

• Based on Magnetic Resonance Imaging (MRI). Low resolution

(∼100 µm).

• Detect anisotropic diffusion patterns of water molecules along

figer tracts.
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functional MRI (fMRI)

Haxby et al. (2001) (image cropped)

• Brain activity measured through BOLD (blood oxygen level

dependent signal).

• Region-to-region connectivity can be inferred based on activity

correlation or causality (dynamic causal model, Granger causal

model): (Friston 2009).
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Comparison

Table 1: Summary Comparison.
Method nm-scale µm-scale High-Volume High-Throughput

KESM (Mayerich et al. 2008) (cf. Li et al. 2010) – ◦ ◦ ◦
Confocal – ◦ – –

All-Optical Hist. (Tsai et al. 2003) – ◦ ◦ –

Serial Two-Photon Tomography (Ragan et al. 2012) – ◦ ◦ –

Array Tomography (Micheva and Smith 2007) ◦ ◦ – –

SBF-SEM (Denk and Horstmann 2004) ◦ – – –

ATLUM (Hayworth et al. 2006) ◦ – ◦ –

MRI/diffusion MRI (Jacobs et al. 1999; Hagmann et al. 2007) – – ◦ ◦
nm-scale:∼10 nm (thickness of cell membrane)

µm-scale:∼1 µm (diameter of dendrites, axons, capillaries, etc.)

High-Volume: > 1 cm3 (approximate volume of mouse brain and other organs)

High-Throughput: < 100 hours (for∼50 scanned organs per year)
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Part III

Data and Online Resources (with Demo)
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KESM Data

300 µm× 350 µm× 120 µm block

• Basically a huge 3D stack made up of 2D images.

• Details such as dendritic spines can be observed.
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KESM Data (Image Stack)

Cerebellum (Golgi) Cortex (Golgi)

• Flythrough of 3D stack: Looks like a movie in 2D.

• Each frame = 1 µm-thin section.
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KESM: Volume Visualization

Golgi (Cerebelum) Golgi (Cortex)

3D visualization of

• Purkinje cells and pyramidal cells.
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KESM: Local Circuits (Hippocampus)
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KESM Whole Brain: Neurons (Golgi)
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KESM Brain Atlas

API layers Tiling Scheme

• Multi-scale tiles.

• Semi-transparent images.

• Google Maps API (v2).

→ KESM Brain Atlas
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KESM Brain Atlas (KESMBA)

• http://kesm.org (Chung et al. 2011).

• Open to all! Even runs on smartphone browsers (can be slow).
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KESMBA: Single Overlay
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KESMBA: 20 Overlays

37/66

KESMBA: Zoomed Out
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KESMBA: Some Samples

A: Cerebellum, B: Inferior colliculus, C: Thalamus, D: Hippocampus
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OpenWorm Project

http://en.wikipedia.org/wiki/File:Caenorhabditis_elegans_hermaphrodite_adult-en.svg

http://www.openworm.org/

• C. elegans connectome, downloadable in XML

(NeuroML), for multicompartment models.

• Ultimate goal of constructing a detailed simulation of

the whole worm.
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Allen Brain Atlas: Mouse Connectivity

http://connectivity.brain-map.org

• Tracer injection-based (1010 injection sites).

• Fluorescence microscopy. 41/66

Mouse Connectome Project (UCLA)

http://www.mouseconnectome.org/ (Hintiryan et al. 2012)

• Tracer injection-based (245 injection sites).

• Fluorescence microscopy.
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Brain Architecture Project (CSHL)

http://brainarchitecture.org (Mitra 2012)

• Tracer injection-based (235 injection sites, mouse).

• Fluorescence microscopy. Other species also

available.
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Open Connectome Project

http://www.openconnectomeproject.org

• EM data from mouse visual cortex (Bock et al. 2011).
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Human Connectome Project

http://www.humanconnectomeproject.org

• DTI data from human (Van Essen et al. 2012).

• Also see (Hagmann et al. 2007).
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CoCoMac

http://cocomac.org http://scalablebrainatlas.incf.org

• Macaque brain connectivity (based on 2508 tracer injections,

39,748 connection details, collected from the literature).

• Second version under preparation:

http://cocomac.g-node.org/
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UCLA Multimodal Connectivity DB

http://umcd.humanconnectomeproject.org

• MRI-based connectivity database.
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Part IV

Analysis
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Geometric Reconstruction

Raw data or volume visualization is not enough:

• We need to reconstruct the geometric structure of

the objects in the data.

• Data can be huge (several TB): manual tracing is not

an option.

• We need automated algorithms.
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Reconstruction Approaches

• Segment-then-connect: the most common approach

• 3D convolutional network: Jain et al. (2010)

• Template-matching-based vector tracing: Al-Kofahi et al. (2002); Han et al.

(2009b,a); Han (2009); Luisi et al. (2011)

• Semi-automated reconstruction: Yang and Choe (2011b)

• Topology-constrained reconstruction: Yang and Choe (2011a); Jain et al.

(2007)

• Crowd sourcing: Eyewire.org (Seung and Burnes 2012).

50/66

Tracing Example: MIP-Based

Tracing

Han (2009)

• Maximum-Intensity Projection (MIP).

• MIP-based tracing: Trace on projected 2D images.
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MIP-Based Tracing Results

• KESM mouse vasculature data.
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MIP-Based Tracing Performance

• MIP-based approach about 3× faster than 3D

version.
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MIP-Based Tracing: Validation

Error

• Validation against small manual ground-truth (R1

and R2).

• φ = centerline deviation, ϕ = length difference.
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FARSight Toolkit (U Houston)

http://www.farsight-toolkit.org (Luisi et al. 2011)

• 2D and 3D image analysis toolkit.
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Other Reconstruction Tools

• KNOSSOS: 3D image data (mostly for EM) analysis tool (mostly

manual). http://www.knossostool.org/

• EyeWire: crowd-sourcing EM reconstruction portal.

http://eyewire.org/

• Reconstruct: EM reconstruction tool (manual).

http://synapses.clm.utexas.edu/tools/

reconstruct/reconstruct.stm

• Generic (yet powerful) tools:

– ImageJ: http://rsbweb.nih.gov/ij/

– ITK: http://www.itk.org/
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Connectivity Analysis

• Graph-theory based analysis (Sporns 2002, 2011)

– In-degree, out-degree, cluster index, power law

• Motif analysis (Milo et al. 2002).

– Statistics of small sub-graph patterns.

• Dynamics (Thiel et al. 2003; Sporns and Tononi 2002)

• Large-scale simulation based on DTI (Izhikevich and Edelman

2008)

• Time is a crucial factor in connectivity analysis (Choe 2004).
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Part V

Theoretical Insights
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Wrap Up

59/66

Thinking Beyond Connectomics

Connections alone not enough:

• Sign: excitatory/inhibitory

• Weight: synaptic strength

• Delay: both conduction delay and integration time

• Molecular dynamics and gene expression

• Plasticity
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Is the Brain Enough? – Will Need the

Body

• Brain is part of the body and a lot of function is performed by the spinal

cord and the peripheral nervous system.

• To fully understand brain function, it must be understood in the context of

the entire body.

• Imaging whole organisms may be necessary for a true understanding of

brain function.
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Risk of Doubling our Task?

• Without a proper theoretical framework for analysis, the resulting

simulation can be as complex and hard to understand as the real brain.

• Such blind simulation could double our task.

• However, it has distinct merits:

– Full read/write access and localized lesions.

– Can investigate subjective phenomena such as consciousness (have

the brain simulation study itself!).

– Systematic, programmatic investigation becomes possible (automated

science).
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Conceptual Breakthroughs Needed

I f
S

fI
S

Choe and Smith (2006); Choe et al. (2007)

• Posing the right questions (Choe and Mann 2012): Internal perspective,

problems faced by the brain itself.

• Sensorimotor perspective (Choe and Smith 2006; Choe et al. 2007).

• Developmental perspective.

• Evolutionary perspective (Chung and Choe 2011; Kwon and Choe 2008;

Choe et al. 2012).

• Temporal perspective (Choe 2004; Lim and Choe 2008).
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Inferring Function from a Brain

Network: A Cautionary Tale

in: 0

out :  2

hid:  3983

in:  1

out :  5

hid:  406

in: 0

out :  2

hid:  3983

in:  1

out :  5

hid:  406

Analyze this!
• hid = hidden neuron, out = output neuron, in = input unit, arrow = excitatory

connection, disc = inhibitory connection
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Conclusion

• Understanding brain function requires a system-level

investigation at a microscopic resolution.

• Innovative microscopy technologies are enabling a

data-driven investigation linking the microstructure to the

system level.

• A robust, accessible informatics platform is needed for

knowledge discovery.

• Deep theoretical insights are needed to guide our

investigation.
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