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Abstract. Conventional Difference of Gaussian (DOG) filter is usually
used to model the early stage of visual processing. However, convolu-
tion operation used with DOG does not explicitly account for the effects
of disinhibition. Because of this, complex brightness-contrast (B-C) illu-
sions such as the White’s effect cannot be explained using DOG filters.
We discovered that a model based on lateral disinhibition in biological
retinas allows us to explain subtle B-C illusions. Further, we show that a
feedforward filter can be derived to achieve this operation in a single pass.
The results suggest that contextual effects can be processed through re-
current disinhibition, and that a similar analysis may be applicable to
higher brain functions. Another observation is that the feedback loop
of the recurrent network structure may improve the overall stability of
the system. Potential applications of the IDOG algorithm include new
design of video capturing or display system with increased robustness
and automatic detection and correction of perceived incoherences in lu-
minance in video display panels, where accurate perception of intensity
level is critical.

1 Introduction

Brightness-contrast (B-C) illusions allow us to understand the basic processes in
the early visual pathway. B-C illusions can become very complex, and a complete
explanation may have to be based on a multi-stage, multi-channel model, with
considerations of top-down influences [1–3]. In this paper, however, we will focus
on the very early stages of visual processing, and see how far we can exploit low-
level mechanisms observed in biological vision systems toward explaining B-C
illusions.

For example, the dark illusory spots at the intersections in the Hermann grid
(Figure 1A) are due to lateral inhibition in the retina and the lateral geniculate
nucleus (LGN) [4]. The visual signal in the eye is generated by the photoreceptor
cells, and then it is passed through bipolar, horizontal, and amacrine cells and
finally goes to LGN. Lateral inhibition is the effect observed in the receptive
field where the surrounding inhibits the center area. When the stimulus is given
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A B C

Fig. 1. The Hermann grid illusion A. The Hermann grid illusion. The intersections
look darker than the streets. B. The output using a conventional DOG filter. C. The
plot of brightness level prediction (from B). To measure the average response, we took
the column-wise sum of rows 27 to 29. Note that the illusory spots (at positions p1,
p2, and p3) have a brightness value much higher than the periphery. The conventional
operation cannot explain why we perceive the periphery to be brighter than the dark
illusory spots.

in the receptive field, the central receptors produce an excitatory signal, while
the cells in the surrounding area send inhibition through the bipolar cells to the
central area [5]. (Difference of Gaussian, or DOG, filter [6] is commonly used to
simulate such a process.) Figure 1B and C show such an effect by using DOG
filters. The plot on the right shows the brightness level of the middle row, and
the dark illusory spots are clearly visible (p1, p2, and p3).

However, DOG filters alone cannot account for more complex visual B-C
illusions. For example in the Hermann grid illusion, although the illusory spots
get explained pretty well, the conventional DOG model cannot explain why
the periphery (figure 1A, to the left) appears brighter than the illusory spots
(figure 1A, to the right). This output is counter to our perceived experience.
The reason for this failure is that the center of DOG in the peripheral area
receives inhibition from all the directions which results in a weaker response than
the intersections in the grid which only receive inhibition from four directions.
Moreover, the White’s effect [7] (figure 2A) cannot be explained using the
conventional DOG filter. As shown in figure 2B, the output using conventional
DOG filters gives an opposite result: The left gray patch on the black strip has a
lower output value than the one on the white strip. On the contrary, we perceive
that the left gray patch on the black strip as brighter than the one on the right.

Anatomical and physiological observations show that the center-surround
property in early visual processing may not be strictly feed-forward, and it in-
volves lateral inhibitions and, moreover, disinhibition. Hartline et al. used Limu-
lus optical cells (figure 3) to demonstrate lateral inhibition and disinhibition
effects in the receptive field [8]. (Note that disinhibition has also been found in
vertebrates retinas such as in tiger salamanders [9] and in mice [10].) Disinhibi-
tion can effectively reduce the amount of inhibition in the case if we have a large
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Fig. 2. The White’s effect A. The White’s effect. The gray patch on the left has
the same gray level as the one on the right, but we perceive the left to be brighter
than the right. B. The output using a conventional DOG filter. C. The brightness level
of the two gray patches calculated using conventional DOG filter. As in the previous
figure, we added up rows of 10 to 19 in the output to get the average response. Note
that the left patch has a lower average value (below zero) than the right patch (above
zero). The result contradicts our perceived brightness.

area of bright input, which might be the solution to the unsolved visual illusion
problem.

In this paper, unlike DOG, we explicitly model disinhibition to derive a filter
that is able to explain a wider variety of B-C illusions than the conventional
DOG filters. In the following, we first review the model of Hartline et al. [8,
11, 12], and introduce our model which is called the Inversed DOG model (or
IDOG) and show how it is derived. The next section shows the results to various
illusions. Finally, the issues raised by our model is discussed, followed by the
conclusion.

2 Hartline-Ratliff’s Model of Disinhibition

Experiments on Limulus optical cells showed that the disinhibition effect is re-
current (figure 3). The final response of a specific neuron can be considered as
the overall effect of the response from itself and from all other neurons. Con-
ventional convolution operation using the DOG filter does not account for the
effect of disinhibition which plays an important role in the final response. The
final response of each receptor resulting from a light stimulus can be enhanced
or reduced due to the interactions through inhibition from its neighbors, which
may be important. It turns out that this effect can help solve some unsolved
problems of B-C illusions, thus, it may be important to explicitly account for
disinhibition.

The Hartline-Ratliff equation describing disinhibition in Limulus can be sum-
marized as follows [8, 11, 12]:

rm = εm −Ksrm −
∑

km←n(rn − tm←n) (1)
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Fig. 3. Lateral inhibition in Limulus optical cells (Redrawn from [8]) The
figure shows the disinhibition effect in Limulus optical cells. A. The retina of Limulus.
Point light is presented to three locations (1, 2 and 3). B. The result of lighting position
1 and 2. The top trace shows the spike train of the neuron at 1, and the two bars below
show the duration of stimulation to cell 1 and 2. When position 2 is excited, the neuron
response of position 1 gets inhibited. C. Both 1 and 2 are illuminated, and after a short
time, position 3 is lighted. The top two traces show the spike trains of cell 1 and cell
2. The three bars below are input duration to the three cells. As demonstrated in
the figure, when position 3 is lighted, neurons at position 2 get inhibited by 3, so its
ability to inhibit others get reduced. As a result, the firing rate of neuron at position
1 gets increased during the time neuron at position 3 is excited. This effect is called
disinhibition.

where rm is the response, Ks is the self-inhibition constant, εm is excitation of
the m-th ommatidium, km←n is the inhibitory weight from other ommatidium,
and tm←n the threshold.

Brodie et al. extended this equation to derive a spatiotemporal filter, where
the input was assumed to be a sinusoidal grating [13]. This model is perfect in
predicting Limulus retina experiments as only a single spatial frequency chan-
nel filter, which means that only a fixed spatial frequency input is allowed [13].
Because of this reason, their model cannot be applied to a complex image (e.g.,
visual illusions such as the Hermann grid illusion), as various spatial frequen-
cies could coexist in the input. In the following section, we will build upon the
Hartline-Ratliff equation and derive a filter that can address these issues.

3 Simplified Disinhibition Model Using Single Matrix
Inverse Operation: The IDOG Model

Rearranging equation 1 and generalizing to n inputs, the responses of n cells
can be expressed in a simple matrix form as below by assuming the threshold
and self-inhibitory constant to be zero (in this paper, we only care for spatial
properties of visual illusion, so the assumption of zero self-inhibition rate is
reasonable):

Kr = e, (2)
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where r is the output vector, e is the input vector and K is the weight matrix:

r =


r1

r2

.
rn

 , e =


e1

e2

.
en

 ,K =


1 −w(1) .. −w(n− 1)

−w(1) 1 .. −w(n− 2)
.. .. .. ..

−w(n− 1) .. .. 1

 . (3)

The above 1D model can be easily extended to 2D by serialization. We can
serialize the input and output to 1D vectors to fit in the 1D model we have. The
weight matrix K can be fitted into 2D by assigning the weight Kij from neuron
j to neuron i as the classic two-mechanism DOG distribution [6]:

Kij =

−w(|i, j|) when i 6= j

1 when i = j
, (4)

w(x) = DOG(x) = kce
−(x/σc)

2
− kse

−(x/σs)2 , (5)

where |i, j| is the Euclidean distance between neuron i and j, kc and ks are
the scaling constants that determine the relative scale of the excitatory and
inhibitory distributions, and σc and σs their widths.

The response vector r can finally be derived from equation 2 as follows, and
we can apply inverse serialization operation to get vector r back into 2D format:

r = K−1e. (6)

Figure 4 shows a single row (corresponding to a neuron in the center) of the
weight matrix K, plotted in 2D. The plot shows that the neuron in the center can
be influenced by the inputs from locations far away, outside of its own receptive
field.

A B C

Fig. 4. An Inversed DoG filter The filter (i.e., the connection weights) of the central
neuron is shown in log scale. A. A 2D plot of the filter. B. A 3D mesh plot of the filter.
C. The plot of the central row of the filter. Note the multiple concentric rippling tails.



6 Y. Yu, T. Yamauchi, and Y. Choe

4 Results

In this section, we will test our IDOG model first with three Limulus cells and
then with several B-C illusions (Hermann grid, the White’s effect, and Mach
band). Based on these experiments, we will demonstrate that disinhibition does
play an important role in early visual processing.

4.1 Disinhibition in 1D: A model of the Limulus retinal cells

Reconsidering the Limulus experiments, let us suppose three Limulus cells have
the same input, say 100. We assigned the weights based on the distance w(1) =
−0.5 and w(2) = −0.1, which indicates that if the cells are near neighbors, their
inhibition effect is 50%, while if they are remote neighbors, the effect is reduced
to 10%. The response r is then calculated as follows:

r = K−1e =

 1 0.5 0.1
0.5 1 0.5
0.1 0.5 1

−1

×

100
100
100

 =

83.333
16.667
83.333

 .

If we increase the input a little bit (5%) to the neuron e1, the result becomes
different as shown below:

r = K−1e =

 1 0.5 0.1
0.5 1 0.5
0.1 0.5 1

−1

×

105
100
100

 =

90.227
12.500
84.722

 .

The third neuron increased the response from 83.333 to 84.722, since the second
neuron was further inhibited by the first neuron (the response decreased from
16.667 to 12.5000), which had its input increased from 100 to 105. This result
matches the experimental results from Hartline et al. [8], clearly demonstrating
the disinhibition effect in our model.

4.2 Disinhibition in 2D: the Hermann grid illusion

In the Hermann grid, the illusory spots can be modeled quite well using conven-
tional DOG filters. However, conventional DOG filters cannot explain why the
periphery area appears brighter than the dark illusory spots. Convolving with
conventional DOG filters results in more inhibition to the white peripheral area
than the intersections in the grid, because the periphery gets inhibition from all
radial directions while the intersection only get inhibition from four directions.

Our IDOG filter which explicitly models disinhibition provides a plausible
explanation to this problem. Figure 5 shows the result of applying our filter to
the Hermann grid image: C is the plot of the middle row of the filter response in
B. The periphery is indeed brighter than the dark illusory spots, showing that
disinhibition (and hence IDOG) can account for the perceived brightness in this
particular example.
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A B C

Fig. 5. The Hermann grid illusion and prediction A. Part of the Hermann grid
which we used to test the response of the periphery and the illusory spots. B. The
output response of IDOG. C. The prediction using the IDOG filter (from B). The
illusory spots are at position p1, p2 and p3, which have a brightness value lower than
the periphery. (The curve shows the column-wise sum of rows 27 to 29.)

4.3 Disinhibition in 2D: the White’s effect

The White’s effect [7] is shown in figure 6A: The gray patch on the black vertical
strip appears brighter than the gray patch on the right. As shown in figure 2,
DOG cannot explain this illusion. However, disinhibition plays an important role
in this illusion: While the gray patch on the black strip receives inhibition from
the two surrounding white strips, compared to the gray patch on the right side,
disinhibition is relatively stronger. Because of this, the gray patch on the right
side appears darker than the left side patch (C in figure 6).

A B C

Fig. 6. The White’s effect and prediction A. The White’s effect stimulus. B.
The output using IDOG. C. The prediction using the IDOG model (from B). The gray
patch on the left results in a higher value than the right patch. (The curve shows the
column-wise sum of rows 11 to 19.)

4.4 The Mach band

Comparing with the conventional DOG filter, one advantage of the IDOG model
is that it preserves the different level of brightness as well as enhances the con-
trast at the edge. As demonstrated in figure 7, the four shades of gray are clearly
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separated using IDOG. These different shades are not preserved using a conven-
tional DOG filter. Note that this can be simply because the sum of the DOG
matrix equals zero, and scaling up kc in equation 5 can correct the problem. How-
ever, there is one subtle point not captured in the conventional DOG approach:
the wrinkle (figure 7E) near the Mach bands observed in Limulus experiments
[14]. Compared to the IDOG result, we can clearly see that this wrinkle is absent
in the DOG output (figure 7C) .

A B C D E

Fig. 7. The Mach band A. The Mach band input image. B. The output using
a conventional DOG filter. The different brightness levels are not preserved. C. An
expanded view of the inset in B. D. The output using IDOG. The different brightness
levels are preserved E. An expanded view of the inset in D.

5 Discussion and Future Work

We have shown that by explicitly modeling disinhibition, we can more accurately
explain various B-C illusions. Although there are many other improved DOG
filter models, such as the oriented DOG (ODOG) filter proposed by Blakeslee
and McCourt [15], they still cannot (under our analysis) explain certain problems
like the phenomenon related to the periphery area of the Hermann grid (figure 1).

Our model is strongly motivated by biological facts as well as computational
considerations. First, experimental evidence shows that the inhibition in the reti-
nal receptive fields can be explained by the isotropic amacrine and horizontal
cells. Second, we utilize the classical two-mechanism DOG distribution. Third, as
the experiments demonstrated by Hartline and colleagues using Limulus cells,
disinhibition is a natural effect of recurrent lateral inhibition, which does not
work well with a single-pass convolution operation. Another interesting obser-
vation is that the IDOG filter has a similar shape as the circular Gabor filter
[16]. Circular Gabor filters have been successfully used in rotation-invariant tex-
ture discrimination, and it would be interesting to see if IDOG can also be used
in such a domain. Also, there is further psychophysical evidence [17] suggesting
that early visual processing can be modeled by filters similar to our disinhibition-
based IDOG filters.

Another observing is that the loop back feature of disinhibition network may
increase the overall robustness. Because disinhibition is recurrent inhibition, each
individual cell has output connected with some other cells and at the same time
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those cells send their output to this individual as feedback controls to this cell.
Comparing with a group of cell, one single cell usually has less stability. In the
case, one individual cell becomes less stable, the other cells in the loop could
adjust the cell by the feedback. Thus, this loop back feature may increase the
stability of the individual. To summarize , this recurrent network structure can
keep the feature of common feedforward lateral inhibition as to sharpen the edge,
perserve the brightness contrast information as much as perceived better than
feedforwards, and increase the stability of the system.

One limitation to our approach is that the inverse weight matrix results in
a non-local operation, thus it can be computationally inefficient. To overcome
this issue, we can use an approximated algorithm. Based on our observation, the
IDOG filter usually converges to a value near zero at a distance twice that of
the DOG-based receptive field. We can use the IDOG filter which is twice the
original receptive field size and still use a local convolution operation to process
larger images.

Potential applications of IDOG algorithm include designing new robust visual
capturing or display systems and automatic detection and correction of perceived
incoherences in luminance in video display panels, where accurate perception of
intensity level is critical. Such applications will be important in mission-critical
domains such as aircraft display panel design. The concept of disinhibition can
also be applied to higher brain functions such as categorization and memory (e.g.,
Vogel [18] proposed a model of associative memory based on disinhibition). We
believe a close analysis of cortical horizontal connections and their physiology
under the disinhibition framework can provide us with new insights on their
functions. This in turn will allow us to apply the general concept of disinhibition
in advanced intelligent systems, firmly based on biological observations.

6 Conclusion

We have shown that certain limitations of DOG filters can be overcome by explic-
itly modeling disinhibition, and that a simple feedforward filter can be derived.
Using the IDOG filter, we were able to successfully explain several B-C illusions
that were not sufficiently explained in previous models. Our work also shows
that complicated recursive effects can be explicitly calculated or approximated
using a single matrix multiplication. The results suggest that contextual effects
can be processed through recurrent disinhibition, and a similar analysis may
be applicable to higher brain functions. Such an analysis will allow us to apply
disinhibition in building advanced intelligent systems based on a firm grounding
on biology.
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