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Abstract. The motor maps in the cortex are topologically organized,
just like the sensory cortical maps, where nearby locations in the map
represent behaviors of similar kinds. However, there is not much research
on how such motor maps are formed. In this paper, as a first step in
this direction, we developed a target reaching gesture map using a self-
organizing map model of cortical development (the GCAL model, a sim-
plified yet enhanced version of the LISSOM model). The inputs were tar-
get reaching behavior of a two-joint arm on a 2D plane (2 DOF), encoded
as a time-lapse image where time was encoded as the pixel intensity.
For training, 20,000 random arm movements were generated where each
arm movement started at a random initial location and moved toward
one of 24 predefined target locations. The resulting gesture map showed
global topological order where nearby neurons represented gestures to-
ward nearby target locations, comparable to the motor map reported in
the experimental literature. Although our simulations were based on a
sensory cortical map development framework, the results suggest that
it could be easily adapted to transition into motor map development.
Our work is an important first step toward a fully motor-based motor
map development (e.g. using proprioceptive input), and we expect the
findings reported in this paper to help us better understand the general
nature of cortical map development, not just for the sensory but also for
the motor modality.

Keywords: Motor map development, Self-organizing maps, Cortical de-
velopment, Target reaching gesture

1 Introduction

In the recent studies, Graziano et al. found that the motor cortex in the macaque
brain forms a topographical map of complex behaviors [1], where the final posture
of the movements from an organized map. As we can see in the Fig.1(a), the
monkey’s the hand target location of reaching behavior evoked from extended
electrical microstimulation on a certain location of the mortor cortex was always
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the same, regardless of the initial hand position. Furthermore, the target location
forms an organized map on the motor cortex, where ventral and anterior areas
corresponded to the target locations in the upper space of the body, whereas
dorsal and posterior areas in the motor cortex corresponded to target locations in
the lower space of the body as in Fig.1(b). Based on theses findings, our question
is how such motor maps are formed in the cortex through the development
period.

(a) Eight example posture illus-
trating the topographic map found
in the precentral cortex of monkey.

(b) Topography of hand and arm
postures in the precentral gyrus
based on 201 stimulation sites in
monkey.

Fig. 1. The topographic map found in precentral cortex of Monkey. (a) The enlarged
view at the bottom shows the sites of the electrical microstimulation. The movements
shown in the rectangles A - H were evoked by stimulating the sites A - H in the
enlarged circle at the bottom. The stimulation of the right side of the brain caused
mainly the left side of the body (left arm to move). (b) A shows the distribution
of hand positions along the vertical axis, which are upper, middle, and lower space.
After each stimulation, the evoked final target positions were used to categorize the
site. B shows the distribution of hand positions along the horizontal axis, which are
contralateral (right when using left hand), central, and ipsilateral (left when using left
hand) space. Adapted from [1].

In existing works, simulation studies were conducted to mimic the devel-
opment of visual and tactile maps in the cortex. The visual cortical neuron’s
receptive fields (RFs) and their map were computationally developed using a
self-organizing map model of the cortex (the LISSOM model) by Miikkulainen
et al. [2]. Park et al. showed that both visual RFs and tactile RFs can be derived
by training the same self-organizing map model of the cortex with different types
of inputs (natural-scene images and texture images, respectively) [3].
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In this paper, we investigate the possibility that a motor map in the cortex
can be developed based on the same cortical learning process as the visual and
tactile maps in the cortex. A self-organizing map model of the cortex (the GCAL
model[4][5]: a simplified yet enhanced version of the LISSOM model[2]) was
trained with two-joint arm movements (2 DOF) on a 2D plane, which were
subsequently encoded as a time-lapse image (cf. Motion History Images [6])
where time was encoded as the pixel intensity. We investigated if the experiment
can give rise to a motor map organization similar to Fig. 1.

This paper is organized as follows. The related work is reviewed in Section
2. Next, the GCAL model will be explained in Section 3. Section 4 will explains
the platforms and the procedure for the experiments. The results are presented
in Section 5. The discussion and conclusion are in Section 6 and 7, respectively.

2 Related Work

There is not much work on how motor map is formed in the cortex. Recently,
several related studies were conducted, where a simulation study for the motor
map clustering of monkey using a standard self-organized map (SOM) learning
with encoded movements, and a multi-modal reinforcement learning algorithm
to form a map according to behavioral similarity.

Aflalo and Graziano [7] showed a computational topographic map organi-
zation with three constraints. The three constraints are the body parts that
were being moved for movements, the position reached in Cartesian space, and
the ethological (behavioral) category to which the movement belonged. Encoded
movements (body parts, hand coordinates, and behavioral category) were used
as inputs for training. The initial somatotopic body map from the literature was
used to initialize the model. A standard Self-Organized Map (SOM) learning
[8] was used for the motor map clustering. However, their map configuration
through the SOM learning is purely computational since their experiment with
the learning algorithm did not consider the neural connectivity or plasticity in
the cortex. Also, the initial somatotopic body map which already represent a
rough motor map of the adult brain significantly affected the final configuration
of the map.

Ring et al. introduced a new approach to address the problem of continual
learning [9][10], which was inspired by the recent research on the motor cortex
[1]. Their system modules, called mot , are self-organized in a two-dimensional
map according to behavioral similarity. However, their method was based on a
multi-modal reinforcement learning algorithm, and did not consider the neural
underpinnings. Their aim in the study was to improve learning performance
through their new approach, not to understand how the motor map in the cortex
is developed in the cortex.

While several related studies have been conducted, there is a lack of studies
for fine-grained, biologically plausible motor map development in the cortex.
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3 The GCAL Model

We trained the GCAL (Gain Control, Adaptation, Laterally connected) model
of cortical development to investigate motor map development in the cortex
with 2 DOF arm movements in 2D plane. The GCAL model is a simplified, but
more robust and more realistic version of the LISSOM model, which has been
developed recently by Bednar et al. [4][5]. The GCAL model was designed to
remove some of the artificial limitations and biologically unrealistic features of
the LISSOM model.

GCAL is a self-organizing map model of the visual cortex [4][5]. Even though
GCAL was originally developed to model the visual cortex, it is actually a more
general model of how the cortex organizes to represent correlations in the sensory
input. Therefore, sensory modalities other than vision should work with GCAL.
For example, earlier work with LISSOM, a precursor of GCAL, was used to
model somatosensory cortex development [3] [11].

In our GCAL experiments, we decreased the retina size to 2.0 to fit the
input image size (80×80 pixels) and enlarged the projection area (radius: 1.5)
to project all parts of the arm movements. The sizes of LGN ON and LGN
OFF maps in the thalamus (lateral geniculate nucleus) and their projection size
were the same as that of the retina. The radius of the projection area for LGN
ON (and LGN OFF) was calculated as r = v+l

2 , where r, v, and l indicate the
radius of the projection area for LGN ON (or LGN OFF), the V1 area, and the
LGN ON (or LGN OFF) sheet size, respectively. This way, the arm movements
can be projected to the V1 level without cropping. Also, the other parameters
were adjusted according to the sheets and the projection sizes. Note that in the
following we will use the GCAL terminology of retina, LGN, and V1 to refer to
the sensory surface, thalamus, and cortex, respectively.

The following description of the GCAL model closely follows [4][5]. The basic
GCAL model is composed of four two-dimensional sheets (three levels) of neural
units, including the retinal photoreceptor (input) and the ON and OFF channel
of RGC/LGN (retinal ganglion cells and the lateral geniculate nucleus), the
pathway from the photoreceptors to V1 area. Fig. 2 shows the architecture of
GCAL we used.

The GCAL training consists of four steps overall as below.

1. At each iteration (input), the retina (sheet) is activated by the time-lapse
image of the 2-DOF arm movement.

2. LGN ON and LGN OFF sheets are activated according to the connection
weights between the retina and the LGN ON and LGN OFF sheets. Also,
the lateral connections from other neurons in the LGN ON and LGN OFF
sheets affect the activations. The activation level η for a unit at position j in
an RGC/LGN sheet L at time t+ δt is defined as:

ηj,L(t+ δt) = f

γL ∑
i∈Fj

ψi,P (t)ωi,j

 (1)
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Fig. 2. The GCAL architecture. In the model, the retina size was increased to 2.0
(side) to fit the input image size (80×80 pixels) and the projection area enlarged to 1.5
(radius) to project all parts of the arm movements. Note that in the text we will use the
GCAL terminology of retina, LGN, and V1 to refer to the sensory surface, thalamus,
and cortex in our gesture map model, respectively.

where the activation function f is a half-wave rectifying function. The terms
γL, ψi,P , and ωij are defined as follows:
– γL is an arbitrary multiplier for the overall strength of connections from

the retina sheet to the LGN sheet.
– ψi,P is the activation of unit i in the two-dimensional array of neurons

on the retina sheet from which LGN unit j receives input (its connection
field Fj).

– ωij is the connection weight from photoreceptor weight from the retina i
to LGN unit j.

3. V1 sheet is activated by three different types of connections: 1) the afferent
connection from the LGN ON and LGN OFF sheets (p = A), 2) the recurrent
lateral excitatory connection (p = E), and 3) the recurrent lateral inhibitory
connection from other neurons in V1 sheet (p = I). The V1 activation is set-
tled through the lateral interactions. The contribution, Xjp, to the activation
of unit j from each lateral projection type (p = E, I) is then updated for the
settling steps as:

Xjp(t+ δt) =
∑
i∈Fjp

ηi,V (t)ωij,p (2)

where ηi,V indicates the activation of unit i taken from the set of neurons in
V1 that connect to unit j. Fj is its connection field. The weight ωij,p is for
the connections from unit i in V1 to unit j in V1 for the projection p. The
afferent activity (p = A) remains constant during this setting of the lateral
activity.

4. V1 neuron’s activation level is calculated over time by a running average
(smoothed exponential average), and the threshold automatically adjusted
through a homeostatic mechanism.
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5. LGN to V1 and V1 lateral connections are adjusted using a normalized Heb-
bian learning rule.

ωij,p(t) =
ωij,p(t− 1) + αηjηi∑
k (ωkj,p(t− 1) + αηjηk)

(3)

where for unit j, α is the Hebbian learning rate for the afferent connection
field Fj .

4 Experiment

We trained the GCAL model in Fig.2 with target reaching behavior of the two-
joint arm on a 2D plane. We generated 20,000 movements in which each started
from a random location (posture) and moved towards one of the 24 predefined
target locations (postures). These input movements simulate the monkey’s arm
movement in Fig 1(a). Our main question was if the model can learn a target
reaching gesture map such that the map has the characteristics of the motor map
in Fig. 1(a) and Fig. 1(b). Details about the experiment platform, generating
movements, and experiment procedures are as follows.

4.1 Experiment Platform

We ran the experiments on a Desktop PC (CPU: Intel Core 2 Duo 3.16GHz,
Memory: 16GB) and Laptop (CPU: Intel Core i7 2 GHz, Memory: 8GB). Both
machines ran on Ubuntu 10.04 (32bit). The installed Topographica version was
0.9.7. The python version was 2.6.5, and the gcc/g++ version 4.4.3.

For training the GCAL model, we mainly used the Topographica neural map
simulator package, developed by Bednar et al. [2]. Topographica is a simulator
for topographic maps in any two-dimensional cortical or subcortical region, such
as visual, auditory, somatosensory, proprioceptive, and motor maps plus the
relevant parts of the external environment [2]. The simulator is mainly written
in Python, which makes it easily extendable and customizable according to the
users’ needs. The simulator is freely available including the full source code at
http://topographica.org.

4.2 Generating movements

Two-joint arm movements were generated on a 2D plane and used as inputs for
the GCAL model training. Each of the 20,000 different arm movements started at
a random location (posture) and moved towards one of the 24 predefined target
locations (postures). These generated movements represent the arm movements
of the monkey described in Fig. 1(a) and Fig. 1(b).

The arm consisted of two joints J1 (θ1) and J2 (θ2) in which the length ratio
of the arm L1 : L2 is 1.6 : 1 (Fig. 3(a)). For each movement, first randomly
pick initial angles for θ1 and θ2 (between -180 ∼ 180 degrees) and the 24 target
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(a) Kinematics of the
arm

(b) Time-lapse en-
coded arm movement

Fig. 3. The kinematics and movement of the two-joint arm. (a) The arm consists of
two joint J1 (θ1) : J2 (θ2), and the arm L1 : L2 (with the length ratio 1.6 : 1). The
θ1 and θ2 are randomly picked initially and change toward the target. (b) The arm
movement is encoded as time-lapse image where time is encoded as the pixel intensity.
The darkest one is the target (most recent) posture.

locations as shown in Fig. 4. Then, J1 (θ1) and J2 (θ2) are changed toward
the target locations from the initial angles either by 5 or 10 degrees each step,
until they reach to the target posture. After each step of the angle update, the
posture of the arm was plotted on the same sheet but with different opacity. The
intensity was increased over time by 20% (Fig. 3(b)). Fig. 4 shows the examples
of the generated arm movements. The size of the resulting images was 160 × 124
pixels. The 24 predefined target locations consisted of 16 distal locations (Fig.
4(a)) and 8 proximal locations (Fig. 4(b)). Note that in generating these motion
patterns, we did not consider the natural movement statistics of the monkey’s
arm, largely due to the lack of such data.

Fig. 4. Examples of movements with 24 target locations. Starting from a random pos-
ture, move toward to one of 24 target locations (postures). The movement over time
is expressed using different pixel intensity (darker = more recent). (a) Example move-
ments with 16 distal target locations. (b) Example movements with 8 proximal target
locations. These movements simulate the arm movements in the experimental litera-
ture (Fig.1(a)). Note: For the same target location, many different time-lapse images
were generated by varying the initial posture.
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4.3 Experiment Procedure

After generating 20,000 random reaching movements encoded as a time-lapse
image, we trained the GCAL model with these inputs. In each iteration, one of
the 20,000 inputs was randomly picked for training. The size of the two LGN
sheets and the single V1 sheet were 24 × 24 and 48 × 48, respectively. The
parameters of the model for training were based on the default parameters in the
Topographica package except some parameters such as retina sizes as described
in Section 3. Once the training is done, we analyzed the resulting map, with a
focus on the LGN to V1 afferent connection patterns.

5 Results

5.1 Local topography based on target location similarity

The resulting gesture map is shown in Fig. 5. As we can see, the map is topologi-
cally ordered according to the target locations, where nearby locations (neurons)
of the map represent nearby target locations (end-effector locations of final pos-
tures). For example, we can see that the similar target locations are clustered
in the areas of top-left, top-right, bottom-left, bottom-right, center-left, center-
right, and so on. In Fig. 6, each arrow of the grids shows the orientation and
the distance of the target locations from the center. The vectors (arrows) with
similar lengths and orientations represent similar target distance and angle.

Fig. 5. The resulting gesture maps of LGN OFF to V1 projection. 17 × 17 RFs are
plotted from 48 × 48 cortex size to see the details of them. The enlarged views show
the zoomed in views of 3 × 3 RFs at each corner. Note: LGN OFF and LGN ON
patterns are exact inverses of each other and thus contain the same information. The
learned projections to V1 from these two sheets were similar as a result, so here we
only showed the LGN OFF to V1 projections which is easier to visually inspect.

5.2 Global topographic order

The resulting gesture map show global topographic order. The color maps of the
horizontal and the vertical components of the vector field in Fig. 6(a) are shown
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(a) Target vector map (b) Horizontal (top) and
vertical (bottom) components

Fig. 6. (a) Target vectors estimated from the resulting gesture map receptive fields
(Fig. 5). The direction and the length of each arrow show the target location’s direction
and the distance from the center. (b) The color maps of the horizontal and the vertical
components of the vectors in (a): bright=high (right, up), dark=low (left, down). The
color maps were convolved with a Gaussian filter of size 15×15 pixels and sigma 2.5 to
show more clearly the global order.

in Fig. 6(b). As we can see, the vectors (the target locations) show horizontal
order (Fig. 6(b), top) and vertical order (Fig. 6(b), bottom), which is comparable
to the findings reported in the experimental literature (Fig. 1). Some neighbor-
ing vectors show opposite directions in Fig. 6(a), but this is coherent with the
biological observations. As we can see in Fig. 1(b), some adjacent stimulation
sites in the precentral gyrus in the monkey show targets in the opposite direc-
tions such as upper vs. lower, or left vs. right arm postures. Look for + and N
located right next to each other in Fig. 1(b).

6 Discussion

The main contribution of this paper is the use of a general cortical development
model (GCAL) to show how fine-grained target reaching gesture maps can be
learned, based on realistic arm reaching behavior. An immediate limitation is
that the input itself was not a dynamic pattern of movement (i.e., it was just a
static time-lapse image). However, as shown by Miikkulainen et al. [2], addition
of multiple thalamus sheets with varying delay can address this kind of issue.
Miikkulainen et al. [2] used such a configuration to learn visual (motion) direction
sensitivity in V1. We intend to extend our model to include such a dynamic
component in the input. Also, we are working on gesture map development
using proprioceptive input from a simulated joint with muscle spindle afferent,
departing from the visually oriented simulation framework used in this paper.
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7 Conclusion

In this paper, we developed a target reaching gesture map using a biologically
motivated self-organizing map model of the cortex (GCAL model, a simplified
yet enhanced version of the LISSOM model) with two-joint arm movements as
inputs. The resulting gesture map showed a golbal topographic order based on
the target locations. The map is comparable to the motor map reported in the
experimental study [1] (Fig. 1(a) and Fig. 1(b)). Although our simulations were
based on a sensory cortical map development framework, the results suggest that
it could be easily adapted to transition in to motor map development. Our work
is an important first step toward a fully motor-based motor map development,
and we expect the findings reported in this paper to help us better understand
the general nature of cortical map development, not just for the sensory but also
for the motor modality.
Acknowledgments: All simulations were done using Topographica (GCAL),
available at http://topographica.org.
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