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Abstract

Visual cortex neurons have receptive fields resembling ori-
ented bandpass filters, and their response distributions on nat-
ural images are non-Gaussian. Inspired by this, we previously
showed that comparing the response distribution to normal
distribution with the same variance gives a good thresholding
criterion for detecting salient levels of edginess in images.
However, (1) the results were based on comparison with hu-
man data, thus, an objective, quantitative performance mea-
sure was not taken. Furthermore, (2) why a normal distri-
bution would serve as a good baseline was not investigated
in full. In this paper, we first conduct a quantitative analy-
sis of the normal-distribution baseline, using artificial images
that closely mimic the statistics of natural images. Since in
these artificial images, we can control and obtain the exact
saliency information, the performance of the thresholding al-
gorithm can be measured objectively. We then interpret the
issue of the normal distribution being an effective baseline for
thresholding, under the general concept of suspicious coinci-
dence proposed by Barlow. It turns out that salience defined
our way can be understood as a deviation from the unsuspi-
cious baseline. Our results show that the response distribution
on white-noise images (where there is no structure, thus zero
salience and nothing suspicious) has a near-Gaussian distri-
bution. We then show that the response threshold directly
calculated from the response distribution to white-noise im-
ages closely matches that of humans, providing further sup-
port for the analysis. In sum, our results and analysis show
an intimate relationship among subjective perceptual measure
of salience, objective measures of salience using normal dis-
tributions as a baseline, and the theory of suspicious coinci-
dence.

Introduction
Edge detection algorithms have been widely used in the past
with great success (Canny 1983). However, even after ini-
tial edge detection by these algorithms humans may have
to determine which edge feature seem to be the most promi-
nent. An alternative to standard edge-detection algorithms is
the oriented Gabor filters (Daugman 1980). As it turns out,
they are biologically grounded, i.e., the shape of the Gabor
filters closely resemble experimentally measured receptive
fields in the primary visual cortex (Jones & Palmer 1987).
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An interesting property of such filters is that when applied
to natural images, the response histogram shows a charac-
teristic non-Gaussian shape with a sharp peak at zero. Thus,
when compared to a normal distribution with the same vari-
ance, the response distribution has a heavy tail (Field 1987;
Simoncelli & Adelson 1996). Such a response property has
been found to be useful in tasks such as denoising (Simon-
celli & Adelson 1996) and salient contour detection through
thresholding. For instance, Lee & Choe (2003) showed
that a simple thresholding criterion based on the compari-
son of the filter response distribution to a normal distribu-
tion of the same variance can accurately predict the salience
level perceived by humans. Thus, these methods based on
Gabor filters may help address the problem of “salience”
in edge-detected images. Although the method by Lee &
Choe (2003) was effective, (1) an objective quantitative
measure of performance was not available, and (2) it was not
shown why a normal distribution serves so well as a baseline
in such a comparison.

In this paper, we first carry out a quantitative analysis
of the normal-distribution baseline using artificially gener-
ated images that closely mimic the characteristics of natural
images and which also yield to variations of the saliency
information. We conduct different experiments to objec-
tively measure the performance of fixed-percentile thresh-
olding methods and others derived from the orientation en-
ergy distribution (OED) where the normal distribution is
used as a baseline. Results show that the OED-derived
thresholding methods overwhelmingly outperform the fixed-
percentile thresholding methods.

Having objectively established the effectiveness of the
normal distribution for thresholding, we then investigate
why it would be so. We frame the problem in terms of
the concept of suspicious coincidence, proposed by Bar-
low (1989): Two statistical events A and B are said to be
a suspicious coincidence if they occur more often together
than can be expected from their individual probabilities.
In other words, the two events should be statistically non-
independent in order for them to be deemed a suspicious co-
incidence: P (A,B) > P (A)P (B). This approach is easily
extended into the problem of image analysis, where suspi-
ciousness can be determined by testing the inequality shown
above where events correspond to pixels from different lo-
cations in the image (Barlow 1994).



Suspiciousness is directly linked to salience, i.e., more
suspicious events may be seen as more salient to a percep-
tual system. According to the definition above, an image
where each pixel is independent from each other would con-
tain no suspicious coincidence between any pair of pixels.
An example is a white-noise image, where we cannot see
any noticeable salient feature. If we equate salience with
suspiciousness, this also implies that algorithms such as Lee
& Choe (2003) should fail to detect any salience in white-
noise images. In other words, the distribution of orientation
response to white-noise images should closely match a nor-
mal distribution.

We present results of comparing the oriented filter re-
sponse histograms from white-noise images to their match-
ing normal distributions that shows their close similarity and
suggest that normal distributions can serve as a baseline for
the detection of suspicious coincidence. The white-noise-
derived response distributions are then used as a new base-
line, and the results are shown to be consistent with results of
psychophysical experiments showing human performance
(Lee & Choe 2003).

Quantitative Analysis Using Synthetic Images
The synthetic image input for the quantitative analysis was
created by generating random squares of various sizes where
the gray-level was uniform within each square but differ-
ent from adjacent squares. Uniform background noise was
also embedded among these squares. A large number of
such squares were generated and were subjected to a cir-
cular aperture to discount any artefactual orientation bias.
Such synthetic images have the advantage that the error can
be precisely measured, by comparison with the orientation
energy matrix of the clean image without noise.

To find the orientation response (or energy) distribu-
tion, we followed the procedure described by Geisler et
al. (2001). The method uses a sequence of convolutions:
first the difference of Gaussian (DoG), and then the oriented
Gabor filters to calculate the orientation filter response. The
DoG filter uses the difference of two Gaussian functions
whose widths differ by a factor of 0.5, as

D(x, y) = G(σ/2)2(x, y)−Gσ2(x, y), (1)

where Gσ2(·) is a Gaussian function with variance σ2.
The gray level intensity matrix I of the input image is

convolved with the DoG filter to obtain the resultant matrix
Id (Id = I ∗D). We used a DoG filter of size 7×7 for all of
our experiments. The filtered image is then convolved with
oriented Gabor functions (Daugman 1980) of both even and
odd phases with orientation θ, phase φ, and width σ to ob-
tain the orientation energy matrix Eθ. The spatial frequency
and aspect ratio parameters of the Gabor filters were set to 1
each, and the convolution kernels were sized 7× 7 as usual.
The orientation energy matrix for a single orientation θ is

Eθ =
((

exp−
x′2+y′2

2σ2 . cos(2πx′)
)
∗ Id

)2
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Figure 1: Input Image and Response Distribution. A syn-
thetic image consisting of a set of overlapping squares with em-
bedded noise and its corresponding orientation energy distribution
(h(E)) is shown against the normal distribution of the same vari-
ance (g(E)). The synthetic image has a distribution similar to that
of natural images (i.e., showing a power law: see Fig. 6).

where x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ),
and (x, y) is the pixel location as above.

For each location (x, y), we obtained the vector sum
of six (θ, Eθ(x, y)) pairs in polar coordinates (θ =
0, π

6 , 2π
6 , 3π

6 , 4π
6 , 5π

6 ) to find the combined orientation en-
ergy which gives the estimated orientation θ∗(x, y) and the
associated orientation energy value E∗(x, y) at that location.
The orientation energy distribution is then estimated from
the E∗ responses using a histogram of bin size 100, followed
by normalization, as h(E)= f(E)∑

x∈Bh
f(x)

where f(E) is the

frequency of energy value E in the histogram, Bh is the set
of histogram bin locations, and h(E) is the resulting prob-
ability mass function which specifies the orientation energy
distribution for the filtered image.

One way to detect salient levels of orientation energy is
by comparing the orientation energy distribution for the in-
put image with a normal distribution of the same variance as
proposed in Lee & Choe (2003), so that unusually high lev-
els of orientation energy show up as salient. We calculate the
raw second moment of the E distribution (i.e., the expected
value of E2) for the input image as σ2

h =
∑

x∈Bh
x2h(x).

We use this calculated σ2
h to find the matching continuous

normal probability density function N (x; 0, σ2
h) with mean

0, variance σ2
h for all E ∈ Bh and normalize it to find the

discretized normal probability mass function g(E) of the
orientation energy level E:

g(E) =
N (E; 0, σ2

h)∑
x∈Bh

N (x; 0, σ2
h)

. (3)

From the above, we derived the saliency threshold based on
the L2 value (see Fig. 6(a)), following Lee & Choe (2003).

Note that E is always greater than zero (equation 2), i.e.,
∀E ∈ Bh, E ≥ 0, thus the above can be seen as a half-
normal distribution. In the following section we will mea-
sure the orientation energy E of natural and artificial images,
and their distributions h(E) and the matching normal distri-
butions g(E).

The OED for the synthetic images were similar to that
of natural images, and had a characteristic high peak and
a heavy tail. Fig. 1 shows a sample synthetic image and
its OED distribution plotted against the normal distribution



in log-log scale. We can see that the OED of the synthetic
image closely mimics that of natural images. In fact Lee,
Mumford, & Huang (2001) showed that similarly generated
synthetic images have statistical properties very similar to
natural images.

A quantitative analysis using synthetic images can then
be focused on suitable thresholding of the images to remove
the background noise and detect salient features given by the
edges of the squares. A good thresholding method should
perform two objectives: (1) detect as many salient edges
as possible, and (2) remove as much background noise as
possible. In the following sections, we describe two sets of
experiments for the quantitative analysis of the thresholding
methods where, (1) the number of overlapping squares was
kept constant but the background noise was varied; (2) and
the background noise was kept constant while the number of
squares (the input count) was varied. For each of the types,
we generated five different image configurations for a more
thorough analysis.

Variation in noise and performance
For this experiment, we generated synthetic images by keep-
ing the input count (the number of overlapping square el-
ements) constant and varied the background noise. The
embedded noise was uniformly distributed. Three density
levels of noise were used corresponding to 10%, 5% and
1% noise. The combined resultant images were then sub-
jected to a circular aperture, and the performance of the fixed
and OED-derived adaptive thresholding methods were mea-
sured.

To better investigate the relative merits of the global
and local thresholding methods as described in Lee &
Choe (2003), both the variations were used for the fixed per-
centile and OED-derived methods on all the images. For
each noise density level, 5 representative synthetic images
were generated with different configurations of the square
patterns in them, with the total number of squares fixed to
300. The OEDs for each image input were then calculated.
A fixed threshold of 85-percentile was used for the fixed per-
centile thresholding. For the local thresholding, a sliding
window of size 21× 21 was used.

Lee & Choe (2003) described four different thresholding
methods, which we used in this paper: (1) the global fixed
percentile thresholding, (2) the local fixed percentile thresh-
olding, (3) the global OED-derived adaptive thresholding,
and (4) the local OED-derived adaptive thresholding.

Thresholding results for a sample image with 300 over-
lapping squares and with 95-percentile and above embedded
noise level are shown in Fig. 2. We can see that the global
OED-derived thresholding method provides the best perfor-
mance for this kind of input.

Such qualitative results are also backed by values for the
quantitative measure of sum of squared error (SS Error).
The SS Error for a thresholding result could be defined as
the sum of the square of the difference in the orientation
energy values of the thresholded image (containing back-
ground noise) from the un-thresholded image representing
the ideal response with zero noise. The average SS Error
values for a sample noise level are shown in the plot of

(a) Input (b) Orientation
Energy (c) Reference

(d) Global
OED

(e) Global
85%

(f ) Local OED (g) Local 85%

Figure 2: Thresholding Results for Different Input Density.
(a) A synthetic image consisting of 300 overlapping squares with
embedded noise. (b) The orientation energy matrix for (a). (c) The
orientation energy matrix for the synthetic image without the noise
that is used as the reference. Results of thresholding by the four
different methods of (d) global OED, (e) global 85-percentile, (f)
local OED, and (g) local 85-percentile respectively are shown from
the left to the right. The global OED-derived adaptive thresholding
method seems to offer the best performance for this input.

Global OED Global 85% Local OED Local 85%

Global OED X < (p=0.018) < (p=0.35) < (p=0.021)
Global 85% X X > (p=0.019) > (p=0.014)
Local OED X X X < (p=0.025)
Local 85% X X X X

Table 1: The p-values for the paired t-test of the difference in the
mean sum of squared error values for the four thresholding meth-
ods, for a synthetic image with 300 squares and 5% noise. The ’<’
and ’>’ symbols indicate the relation between the mean SS Error
values of the two thresholding methods.

Fig. 3. We can see that the sum of squared error is the low-
est for the global OED derived method, followed closely by
the local OED derived method. The SS Error values for the
fixed 85-percentile methods were found to be significantly
higher. The significance in this difference was evaluated us-
ing paired t-test. The results of the paired t-test are given
in Table 1. The p-values of all the probable pairs of com-
parisons except the global OED vs. local OED comparison
were found to be less than 0.025, which indicates that the
mean SS Error values for the methods could indeed be sig-
nificantly different. The p-value for the global OED vs. local
OED comparison was found to be much higher, thus the dif-
ference was not significant.

The results for this experiment show that the OED-derived
adaptive methods overwhelmingly outperformed the fixed
percentile based methods in terms of detection efficiency of
edges in the image input, and suppression of noise. How-
ever, the global OED-derived method offered a slight im-
provement in performance compared to the local method.
This could probably be attributed to specific properties of
the input images considered, such as the low density of the
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Figure 3: Average Error in Thresholding (Experiment 1). Bar
plots show the average SS Error values for the thresholding results
for a sample noise level for the synthetic images. The global and
local OED-derived method have significantly smaller SS Error val-
ues than the fixed 85-percentile methods.

squares in the image.
The variation of noise seemed to have little effect on

the relative performance of the thresholding methods. The
global OED thresholding method offered the best perfor-
mance closely followed by the local OED thresholding
method. The global and local 85-percentile based threshold-
ing methods performed differently for different inputs but
were always weaker than the OED-derived methods.

Variation in input count and performance
The second experiment that was carried out was to keep
the background noise constant while varying the number of
input features. Three different image configurations were
used for each, where the numbers of overlapping synthetic
squares were 100, 300 and 500 respectively. The constant
background noise level was kept as 1%. For each input con-
figuration, 5 different image samples were generated as in
the first experiment. A fixed threshold of 85-percentile was
used for the fixed percentile thresholding methods, and a
sliding window of size 21 × 21 was employed for the local
thresholding method.

Thresholding results for a sample image with 500 overlap-
ping squares and with 1% embedded noise level are shown
in Fig. 4. The OED-derived thresholding methods again out-
performed the fixed 85-percentile based methods for all the
input configurations. Among the OED-derived methods, the
global method offered better performance for smaller input
count but fell behind the local method for larger input count.
Thus the local thresholding result for the 500-square config-
uration was better than the corresponding global threshold-
ing result. The average SS Error value was the lowest for the
local OED-derived thresholding method, but quite high for
the fixed-percentile methods. Fig. 5 shows this comparison.
The paired t-test statistic for the average SS Errors for the
different thresholding methods had p-values less than 0.015
for all the pairs of comparisons, except for the Global OED
vs. Local OED comparison (Table 2).

Relationship to Suspicious Coincidence
In this section we compared the orientation energy E of nat-
ural and artificial images, and their distributions h(E) and

(a) Input (b) Orientation
Energy (c) Reference

(d) Global
OED

(e) Global
85%

(f ) Local OED (g) Local 85%

Figure 4: Thresholding Results with Varying Noise Level. (a)
A synthetic image consisting of 500 overlapping squares with em-
bedded noise. (b-g) The results reflecting those in Fig. 2 are shown.
The local OED-derived adaptive thresholding method seems to of-
fer the best performance for this kind of input.
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Figure 5: Average Error in Thresholding (Experiment 2). The
thresholding results for a sample noise level for the synthetic im-
ages is shown. The same superiority of OED-derived methods is
shown as in Fig. 3.

the matching normal distributions g(E) to investigate their
relationship to the concept of suspicious coincidence. For
the experiment, we used the 42 natural images and the hu-
man performance data from Lee & Choe (2003). The ori-
entation energy distribution of the images follows approx-
imately a power law (i.e., p(x) = 1/xa where a is the
fractal exponent), and as such, it has a heavy-tail where
extreme values have higher probability of occurrence com-
pared to a normal distribution of the same variance For ex-
ample, Fig. 6(a) shows an illustration of power law distri-
bution compared to a normal distribution having the same
variance, and Fig. 6(b) shows the orientation energy distri-
bution calculated from a natural image h(E) compared to
its matching normal distribution g(E). The straight declin-
ing slope characteristic of a power law distribution is evident
in h(E). The two curves intersect at two points, near E ∼
500 (L1) and E ∼ 7,000 (L2). Beyond L2, g(E) plummets,
but h(E) remains high relative to g(E).

Lee & Choe (2003) empirically derived the effective
threshold for the detection of salient contours, which was
linear to the orientation energy corresponding to the second



Global OED Global 85% Local OED Local 85%

Global OED X < (p=0.0107) > (p=0.258) < (p=0.014)
Global 85% X X > (p=0.011) > (p=0.006)
Local OED X X X < (p=0.015)
Local 85% X X X X

Table 2: The p-values for the paired t-test of the difference in the
mean sum of squared error values for the four thresholding meth-
ods, for a synthetic image with 500 squares and 1% noise. The ’<’
and ’>’ symbols indicate the relation between the mean SS Error
values of the two thresholding methods.
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Figure 6: Orientation Energy Distribution of a Natural Image
vs. its Matching Normal Distribution.

point of intersection (L2) of the response distribution and its
matching normal distribution. However, it was not clear why
the simple idea of comparing to a normal distribution has to
be so effective. That is, why does a Gaussian distribution
form a reasonable baseline for comparison? We observe that
the detected salience in our method may correspond to a sus-
picious event in the image, i.e., a suspiciously high degree of
edginess. If suspiciousness (as defined by Barlow (1989)) is
indeed related to salience defined in our way, we can expect
that a random image with completely independent statisti-
cal features (e.g., a uniformly randomly distributed white-
noise image) may not show suspicious (i.e., salient) levels of
orientation energy. (Note that we are not arguing that non-
edge features in natural images have a white-noise statistic.
Rather, our argument is that images containing white-noise
statistic will not show any salience.) For this to happen in
our method, the orientation energy distribution of white-
noise images should not have a heavy tail, and in a more
strict sense, it should coincide with its matching normal dis-
tribution. That is, it should be near-Gaussian.

To test if this is the case, we calculated the orientation
energy distribution from a white-noise image and compared
it with its matching normal distribution. The white-noise
image was a 256 × 256 intensity matrix of uniformly ran-
domly distributed values between 0 and 255 (Fig. 7(a)). The
orientation energy distribution was then found using the pro-
cedure outlined in the previous section. We then compared
the orientation energy distribution to the matching normal
distribution of the same variance to see if there is any simi-
larity between the two. It turns out that the two distributions
closely overlap as expected (Fig. 7). Simoncelli & Adel-
son (1996) also point to a similar result, where they showed
that wavelet response histograms from white-noise images
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Figure 7: Orientation Energy Distribution of a White-Noise
Image vs. Its Matching Normal Distribution. (a) A white-noise
image shown in gray-scale. (b) The orientation energy E of the im-
age in (a). There is no clear structure visible. (c) The log-log plot
shows the orientation energy distribution h(E) for the white-noise
image against a normal distribution of the same variance g(E). The
two distributions show a close resemblance.

are near-Gaussian. However, they applied that finding in a
different context than ours. These results suggests that nor-
mal distributions correspond to a baseline where all pixel
values are independent (and thus no suspicious coincidence),
and any deviation from this baseline can be seen as suspi-
cious, or salient. Thus, salience as defined in our work can
be understood as a deviation from the unsuspicious baseline.

From this result, we expect that the white-noise input
based orientation energy distribution can also be used di-
rectly in finding the appropriate threshold. To test this, we
conducted another experiment in which we generated new
L2 values by comparing the orientation energy distribution
with the white-noise based distribution. Since the standard
deviation of a random variable scaled by the factor of c is
c × σ where σ is the standard deviation before scaling, we
multiplied the orientation energy matrix of the white-noise
image with a constant σh/σr, where σh and σr are the stan-
dard deviations from a natural image and the white-noise im-
age, respectively. Then the resulting orientation energy ma-
trix has the same variance as the reference distribution cal-
culated from a given natural image. The new L2 values were
then found computationally by comparing the two distribu-
tions. These values were compared to the orientation energy
thresholds selected by humans. The results are shown in
Fig. 8(a). It is clear that the new white-noise based L2 val-
ues also have a strong linear relationship with the human-
selected thresholds, even more so than the old Gaussian-
based L2 values (correlation of r = 0.98 for the new L2,
and r = 0.91 for the old one).

Discussion
The usefulness of identifying significant values of orienta-
tion energy has been studied previously, in applications such
as denoising, texture perception, and image representation.
For example, Malik et al. (1999) used peak values of ori-
entation energy to define boundaries of regions of coherent
brightness and texture. The non-Gaussian nature of orienta-
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Figure 8: Comparison of the White-Noise and Gaussian L2
Values with Human-Chosen Thresholds. The new L2 values de-
rived from the white-noise based distribution against the human-
chosen thresholds for a set of 42 natural images are shown (each
square represents one image). The correlation coefficient was
r = 0.98 (higher than r = 0.91 in Lee & Choe (2003)). The
least-square fit is shown in the background.

tion energy (or wavelet response) histograms has also been
recognized and utilized for some time now, especially in
denoising and compression (Simoncelli & Adelson 1996).
Our approach was inspired by Barlow (1994) that compar-
ing peaked distributions with high kurtosis and distributions
derived from an unsuspicious baseline could be useful. The
current work, to our knowledge, is the first systematic study
of the relationship between measures of salience (perceived
and objective measures) derived from a normal-distribution
baseline and the concept of suspicious coincidence.

Response histograms in general are also widely used in
computational vision. For example, Liu & Wang (2002)
used what they call the spectral histogram to segment and
synthesize texture images. It would be interesting to find out
whether other response histograms can be analyzed and used
in a similar manner as described in this paper for salience
detection in different image feature spaces.

Finally, there are alternative theoretical frameworks of
salience related or complementary to our work. Itti &
Baldi (2006) defined saliency based on KL divergence be-
tween the prior and the posterior probability after an obser-
vation has been made. However, their model requires ex-
tensive computation, while ours only require the local vari-
ance in orientation energy, thus is more efficient. There
are other theoretical definitions of salience based on infor-
mation theory. Bruce & Tsotsos (2006) defined saliency
based on information maximization, but they did not give
a threshold criterion for saliency, unlike our approach.
Jägersand (1995), on the other hand, used differential infor-
mation gain across scale space to define salience, but again,
he did not address the issue of how to set the saliency thresh-
old.

Conclusion
In this paper, we have shown that salience measures derived
from comparisons of the orientation energy distribution with
a normal distribution have an objective basis. Further, we
have demonstrated that the good performance seen in OED-
based thresholding can be analyzed and understood under

the general framework of suspicious coincidence. We di-
rectly used a scaled energy distribution from white-noise im-
ages to further demonstrate this point through a comparison
to human performance. The results suggest that a similar ap-
proach can be applied to other sensory tasks where a similar
response distribution is found.
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