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Abstract— Tool construction requires sophisticated cognitive 

function and is only observed in higher mammals and a few 

avian species. In this paper, we will examine the spontaneous 

emergence of tool construction during the simulated evolution of 

a two-degree-of-freedom articulated limb controller in a reaching 

task environment. The limb controller is a recurrent neural 

network with a topology evolved using the NeuroEvolution of 

Augmenting Topologies (NEAT) algorithm. First, we show how 

broad fitness criteria such as distance to target, number of 

successful reaches, number of steps to reach the target, and 

number of instances holding the correct length tool are enough to 

give rise to tool construction. Second, we analyze how the 

number of tools and their location in the environment during 

evolution affect the evolved neural circuits’ ability to detect tool 

affordances and employ the optimal decision strategy. We expect 

our results to help us understand the implications of tool use 

capability and the environmental conditions that may facilitate 

its development.  

I. INTRODUCTION  

A. Background 

    The use of tools in animals indicates a high level of 

cognitive capability, requiring a detailed understanding of the 

causal relations in the environment, complex planning, and 

learning through trial and error [1]. Consequently, tool use 

behavior is only observed in a small number of higher 

mammals and avian species [2][3][4][5]. Associative tool use, 

tool use and tool construction incorporating more than one 

tool to solve a task, is only seen among the great apes [6].  

    Chung and Choe demonstrated that simple neural circuits 

can be evolved to use the simplest form of tool, i.e. a “bread-

crumb” dropped in the environment to serve as external 

memory [7]. In previous work, we evolved neural circuits 

controlling a simulated two-degree-of-freedom articulated 

limb to reach distant objects, having access to a simulated 

reaching tool to extend the range of the limb upon pickup [8]. 

We also showed that broad fitness criteria such as distance to 

target, number of steps to reach the target, number of 

successful reaches, and the difference between the number of 

required and actual tool pickups were sufficient to evolve 

networks that implement near-optimal decision strategy [9].  

 

    In this paper, we investigate how similarly broad fitness 

criteria can be used to evolve neural circuits capable of a 

simple form of associative tool use, combination-based tool 

construction. This behavior requires simultaneous or 

sequential access to two reaching tools capable of being 

combined to form one reaching tool of longer length. In either 

case, the tool that is first picked up can be used independently 

to reach the target, or it can be used as a secondary tool, a tool 

used to construct (structurally modify) another tool. In 

general, different modes of construction are possible, 

including detachment, material subtraction, material addition, 

combination, and reshaping. In this paper we are concerned 

with arguably the simplest of these modes, combination, in 

which the secondary tool is used to combine with another tool 

forming a tool with length equal to the sum of its constituent 

lengths. Because the secondary tool is used to reach and 

acquire as well as to combine with the constructed tool, it can 

also be considered a sequential tool. 

    Furthermore, we investigate how, during evolution, 

variation in the number of tools and their placement within the 

environment, and consequently whether they afford use as 

secondary tools, affects the evolved neural circuits’ capability 

to detect tool affordances and employ the optimal decision 

strategy. 

 

B. Related Work 

    Tool use has been extensively studied in artificial 

intelligence and robotics [10], and the existing work can be 

grouped into four categories:  

 

1. Programmed, hard-coded behavior [11] 

2. Learning through demonstration[12] [13][14][15][16] 

3. Learning through random trial-and-error [17][18][19]  

4. Evolved tool use behavior [20][7][8][9] and evolved 

body morphology [21] 

 

    Most of these works required some degree of designer 

knowledge regarding tool use and motor control, spanning 

fully hard-coded behavior, already attached tools, predefined 

tool features, and predefined motor primitives. The evolution-

based approaches were relatively free of such constraints. 
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II. APPROACH 

    In this section, we introduce the NEAT neuroevolution 

algorithm, specify the variants of the reaching task 

environment in which our experiments took place, and detail 

how the neural circuits are integrated with the environment. 

Finally we define the fitness criteria used for evolution across 

all tested reaching task environment specifications. 

 

A. Algorithm for Evolving Neural Circuits 

    Unlike standard neuroevolution algorithms, the 

NeuroEvolution of Augmenting Topologies (NEAT) 

algorithm developed by Stanley and Miikkulainen evolves 

both the connection weights and the network topology over 

time, achieving behavioral complexity through gradual 

topological complexification [22]. NEAT has been shown to 

be effective in evolving complex, non-trivial behavior in 

various learning environments [23][24]. 

    The strength of NEAT is in the way it uses speciation to 

protect topological innovations. Unlike connection weight 

mutations, topological mutations such as the addition of a 

neuron in the middle of a connection or adding a connection 

between two neurons are unlikely to immediately confer a 

fitness advantage and are more likely to confer an initial 

disadvantage. To keep these innovations from being 

eliminated immediately during selection, they are protected 

through speciation and explicit fitness sharing, made possible 

by the labeling of genes with innovation numbers which 

provide a means for determining how compatible two 

chromosomes are by measure of how many topological 

structures they have in common. 

    The overall operation of the NEAT algorithm proceeds as 

follows: the recurrent neural network phenotype is instantiated 

from the genotype, it is tested on the task environment, and its 

fitness is calculated. When finished for all chromosomes, 

selection and reproduction occur, and the cycle repeats for the 

next generation. 

 

B. Reaching Task Environment 

    The task is to control a two-limbed articulated arm to reach 

an object. It is a 2 degree of freedom arm that moves on a 2-D 

plane. The target object can appear both within and outside 

reach of the arm. The environment is equipped with one or 

two tools that can be picked up, and in the latter case 

combined, and used to reach objects beyond the reach of the 

arm. 

    As depicted in Figure 1, all task variants involve an arm 

composed of an upper limb of length l1 = 80 attached to a 

fixed shoulder joint around which it can be rotated from -150° 

to 150° and a lower limb of length l2 = 100 hinged to the 

upper limb at an elbow joint rotatable from -150° to 150°  

 

 

Fig. 1. Sample task environment. A two-degree-of-freedom articulated limb 

can move freely on a 2-D plane containing reaching tools and a target object. 

The three solid semicircles of increasing radii depict the farthest reachable 

distance with no tool, one tool, and both tools combined, respectively. The 
three dashed semicircles of increasing radii depict the closest reachable 

distance with no tool, one tool, and both tools combined, respectively. 

 

Fig. 2. Regions of interest. The regions of the environment that are reachable 

without a tool, with a tool, and with both tools combined are represented by 
the shaded areas labeled R0, R1, and R2, respectively. T1 is the region in 

which one tool is required to reach a target, and T2 is the region in which both 
tools are required to reach a target. Finally, the region that is reachable both 

with and without a tool is depicted in the bottom-right. 

relative to the upper limb. The joint angles θ1 and θ2 (see 

Figure 4b) can be changed by up to 1.5° each time step, 

thereby moving the end effector. When the end effector 

reaches the base of a tool, it automatically picks up the tool or 

combines it with the tool it’s already holding, collinearly 

extending the second limb by the length of the tool, lt = 80. 

    We have defined regions R0, R1, and R2 to be the areas in 

the environment that are reachable under each tool-holding 

condition, holding no tool, holding one tool, and holding two 

tools combined into one longer, constructed tool. Region T1 is 

the area in which a tool or target could appear that would 

require holding one tool to be reached, including area also 

reachable while holding the constructed tool. Region T2 is the 

area that is only reachable while holding the constructed tool. 

Finally, region R0 ⋂ R1 is the area that is both reachable 

while not holding a tool and while holding a non-constructed 

tool.  

 

     

 

     

https://ieeexplore.ieee.org/abstract/document/7965913


 

Note: This is a preprint. Some content may be slightly different from the final version. See 

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version. 

 

 

Fig. 3. Task variants. C1-C6 depict the six examined task variants. The cyan 
and yellow shaded areas depict where the first and second tools appear, 

respectively, with green depicting overlap. 

    The simplest task variant, condition C1, is defined such that 

the target object can appear in R1 and one tool can appear in 

R0. Task variant C1 can be solved given any initial conditions 

and does not require tool construction. 

    The remaining task variants differ in that the target object 

can appear anywhere in R0 ⋃ T1 ⋃ T2 and in that two tools 

always appear in the environment. In task variant C2, one tool 

can appear anywhere in R0, and the other tool can appear 

anywhere in R0 ⋃ T1. C2 is unique in that it is the only task 

variant that is not always solvable. For example, the target 

could appear in T2 with both tools located in R0 - R0 ⋂ R1. In 

this case, neither tool affords use as a secondary tool because 

its pickup makes the remaining tool out of reach. Task variant 

C3 is defined such that every initial configuration is solvable, 

but it may become unsolvable if the neural circuit employs 

suboptimal strategy. In C3, one tool appears in R0, and the 

other tool appears in R1. Because of the overlap, there are 

some instances where the order in which the two tools are 

picked up determines whether the problem can be solved. In 

these cases, one tool affords use as a secondary tool whereas 

the other does not. 

    Task variant C4 differs from C1 and C2 in that the order in 

which the tools may be picked up is fixed, so picking up one 

tool will never prohibit the arm from reaching the other tool. 

This is accomplished by having the first tool appear in R0 and 

the second tool appear in T1.  

    Task variant C5, in which one tool appears in R0 – R0 ⋂ R1 

and the other in R0 ⋂ R1. This configuration ensures that only 

one tool, the one appears in R0 – R0 ⋂ R1, closer to the 

shoulder joint, affords use as a secondary tool. Thus if the 

target appears in T2, the order in which the tools are picked up 

determines whether it can be reached. Preliminary results from 

evolving circuits on C5 suggested the tendency to adopt a 

strategy that performs well on C5 but generalizes poorly to 

other task variants, namely avoiding picking up a tool in 

region R0 ⋂ R1 if not holding a tool already. Therefore, C5 

was only used to test evolved circuits’ ability to detect tool 

affordances. 

    Finally, task variant C6, in which one tool appears in R0 ⋂ 

R1 and the other appears in R1, was evolved on, but evolved 

circuits’ performance in general were not tested on it. 

 

 

 

 

 

 

Fig. 4. Agent-centered sensory representation (AC) and kinematics of the 

articulated limb. (a) AC uses a polar coordinate system. The angles for the 
end effector, target, and tool are represented by φ1, φ2, and φ3, respectively. 

Analogously, the distances are represented by d1, d2, and d3. (b) The arm 

consists of two limbs, l1 = 80 and l2 = 100. The angle between the reference 
direction (up) and the first limb is represented by θ1, and the angle between 

the first and second limb is represented by θ2. 

    The two-tool task variants differ from one another by which 

regions in the environment the two tools can appear in. The 

dimensions of these regions are an artifact of the limb and tool 

lengths and the joint angle constraints. If those parameters 

were to have different values, the regions would change shape, 

but the affordance of the tools and consequently the optimal 

strategy, which are defined by the tool placement 

configuration within these regions, would not. 

 

C. Input and Output for Neural Circuits 

    As in our previous work [7][8][9], we chose a relative 

agent-centered (RAC) environment representation using polar 

coordinates [25]. Consequently, environment configurations 

that are equivalent after translation or rotation are naturally 

characterized by the same coordinates. RAC produces the 

following coordinates: 

 

ACend_eff = (φ1, d1) 

ACtarget = (φ2, d2) 

ACtool = (φ3, d3) 

RACend_eff&target = (φ2 – φ1, d2 – d1) 

RACend_eff&tool = (φ3 – φ1, d3 – d1) 

 

    The input layer for the neural circuit includes both 

perceptual and proprioceptive neurons [11]. Eight input 

neurons are used: two joint angles θ1 and θ2, relative distance 

and angle to the target from the end effector φ2 – φ1 and d2 – 

d1, relative distance and angle to the tool that is closest to the 

end effector from the end effector φ3 – φ1 and d3 – d1, and joint 

limit detectors (υ1, υ2), where υi = 1 if θi = 150°, -1 if  

θi = -150°, and 0 otherwise.  

    The output layer consists of two neurons, the values of 

which determine the change in the two joint angles, with a 

maximum of 1.5° change per time step.  
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D. Fitness Criteria 

    Each neural circuit was evaluated on n = 100 random initial 

configurations for up to  = 600 time steps each. At the end 

of the evaluation period, the quantities representing the four 

fitness criteria were calculated and multiplied together to yield 

the individual’s fitness value. 

    The distance factor of the fitness function is:                

 

 
 

where    is the location of the target object in the k-th trial, 

 is the location of the end effector at the end of the k-th trial, 

and =  or ,  for one and two tools 

respectively. D is a measure of how close the end effector got 

to the target object relative to the total length of the arm, on 

average. 

 

    The step factor, a measure of how quickly the end effector 

reached the target object on average, is: 

 

 
 

where  is the number of time steps required to reach the 

target in the k-th trial. If the end effector does not reach the 

target, S = . 

    The reach factor, effectively the success rate, is: 

 

 
 

where   = 1 if the target was successfully reached in the k-th 

trial, and  = 0 otherwise. 

    Finally, the tool factor, a measure of optimal tool use is:  

 

 
 

where   = 1 if the target region and number of tools picked 

up were respectively R0 and zero, T1 and one, or T2 and two, 

and  = 0 otherwise. Previous work [8] demonstrated that T is 

not required to evolve tool use behavior, but it facilitates its 

evolution. 

    The fitness factors, D, S, R, and T, were normalized to the 

interval [0.5;1] and multiplied together to yield the overall 

fitness score. 

 

 

Fig. 5. Comparison of success rates. Controllers were evolved for five task 

variants, C1, C2, C3, C4, and C6 (see color-coded inset boxes), and they were 

evaluated on five task variants C1, C2, C3, C4, and C5 (x-axis labels). 

Evolving on task variant C6, in which one tool is placed in R0 ⋂ R1 and the 

other is placed in R1, led to the best performance on all task variants. High 

performance on C5 requires accurate detection of tool affordances 

III. EXPERIMENT (SIMULATION) 

    Each neural circuit controller was evaluated on n = 100 

randomly instantiated trials, with joint angles assigned initial 

values in the range [-150°;150°] according to a uniform 

distribution on that interval. The target object and tool(s) are 

placed randomly according to a uniform random distribution 

on the semicircle from -90° to 90° around the shoulder joint 

location. The distance range in which the target and tool(s) 

vary by task variant as was described in the previous section. 

Each trial consists of up to  = 600 time steps, ending early 

when the target is reached.  

    Four times for each of the five task variants C1, C2, C3, C4, 

and C6, a population of 100 controllers was evolved for 100 

generations.  The highest fitness controller was kept from each 

evolutionary run, yielding four high performing neural circuits 

evolved for each task variant.  Each of these controllers was 

evaluated five times on the same random 300 target object 

locations, 100 from each of R0, T1, and T2, on each of the five 

task variants C1, C2, C3, C4, and C5.  
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Fig. 6. Rates of success and optimal tool use by target location for select conditions. The two plots in the top-left depict success rate and rate of optimal tool use 

by neural circuits evolved on task variant C3 when evaluated on task variant C3. The two plots in the top-right depict the same for circuits evolved on C4, 

evaluated on C3. The bottom row depicts the performance of circuits evolved on C6, evaluated on C3 (left) and on C5 (right). 

 

Fig. 7. Limb trajectories and associated hidden neuron activation patterns for three instances of the task requiring tool construction. For the trajectories, blue 
depicts the upper limb, red the lower limb, green the secondary tool, and yellow the constructed tool. The plot at the bottom of each of the three hidden neuron 

activation patterns depicts the times of the tool pickup events in those runs. The activations of several groups of hidden neurons are correlated with one another, 

and many hidden neurons change mode in anticipation of or in response to tool pickup and in anticipation of reaching the target.
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IV. RESULTS 

    The four chosen fitness criteria, DSRT, proved sufficient to 

evolve a capacity for tool construction behavior, even when 

tool construction was not possible during evolution. Figure 5 

shows how neural circuit controllers evolved on each task 

variant performed on each task variant. A few patterns are 

apparent. First, all neural circuit controllers performed better 

on C1, the task variant only requiring tool use, than they did 

on all other task variants, which require tool construction. 

Second, the controllers evolved on task variant C2 performed 

worst on all tasks, suggesting that the guaranteed failure of a 

portion of trials during evolution does not confer any 

performance advantage. Third, although evolving under 

condition C4 produced neural circuits that perform better “on 

average” than those evolved under condition C3, C3 produced 

better “highest success rates” than C4-evolved neural circuits. 

The C3-evolved circuits are better able to detect tool 

affordances as evidenced by their much higher performance 

on tasks C2 and C5, the latter being the most challenging task 

variant. Finally, neural circuits evolved under condition C6 

outperformed all others on all task variants both “on average” 

and by “highest success rates”.  

    Figure 6 depicts the relationship between target location and 

likelihood of success and optimal tool use for different 

evolution conditions. The top row contrasts the C3 

performance of neural circuits evolved on C3 and C4. 

Controllers evolved on C3 appear to prioritize reaching for the 

target over tool pickup, whereas those evolved on C4 appear 

to employ the opposite strategy. Interestingly, C4 controllers 

appear to know not to pick up a tool when the target is close, 

but they still usually fail to reach said target. It’s possible that, 

since these controllers appear optimized for reaching the target 

when no tools are available for pickup, the sensory input 

received from a tool interferes with their ability to reach the 

target. 

    The bottom row of Figure 6 depicts the performance of 

neural circuits evolved on C6 on task variants C3 (left) and C5 

(right). Unlike the controllers evolved on C3 and C4, those 

evolved on C6 display much greater uniformity of success 

across target locations on task C3, and they ever perform 

better than chance at choosing which tool to pick up first on 

task C5. This suggests that evolution on task variant C6 

confers the ability to detect whether a tool affords use as a 

secondary tool for reaching and combining with the remaining 

tool. Additionally, because the neural circuit is receiving 

sensory input from one tool at a time, exploration behavior 

must be employed should the sensed tool not afford reaching 

the target.  

    Figure 7 shows three limb trajectories involving tool 

construction and the controller’s associated hidden neuron 

activation patterns. During reaching behavior, the controller 

tends to move the end effector to the correct distance before 

rotating to the correct angle. The very bottom three plots 

display the timing of the tool pickup events, allowing for 

comparison with changes in the hidden state of the network.  

 

Fig. 8.   Network topologies for highest fitness individuals on each task 
variant. Red depicts input neurons, green output neurons, and orange hidden 

neurons. Solid arrows are feedforward connections, and dashed arrows are 

recurrent connections. (a), (b), (c), (d), and (e), are networks evolved on tasks 
C1, C2, C3, C4, and C6, respectively. (e) notably depicts the best performing 

network overall.    
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Fig. 9. Growth in number of recurrent connections in highest fitness 

individual over the course of an average evolutionary run.  

 

Fig. 10. Average (top) and best (bottom) fitness trajectories for each task 

variant  

 

Fig. 11. Average (top) and best (bottom) fitness trajectories for each task 

variant  

It’s evident that several hidden neurons change their mode of 

activation in anticipation of, or in response to, tool pickup as 

well as in anticipation of reaching the target. This suggests 

active planning is being done by the neural network controller. 

Additionally, several groups of neurons’ activation patterns 

appear to correlate with one another, and neurons output both 

constant and oscillatory signals, as was seen previously [8].  

    Figures 8 and 9 show how network complexity varies 

across the different evolution task variants. The number of 

recurrent connections, which have been shown to be necessary 

for tool use [8], and consequently the network complexity, 

grows at different, roughly quadratic rates, depending on 

evolution task variant. Networks evolved on C1, C4, and C6 

tend to maintain relatively simple topologies over the course 

of their evolution, which leads to evolutionary runs on those 

task variants being much faster than on other task variants. 

    Figure 10 shows the fitness trajectories averaged over all 

runs on the five evolution task variants and the fitness 

trajectories for the best individual on each task variant. 

Notably, controllers evolved on C4 tend to experience early 

increases in fitness, whereas those evolved on C6 experience 

them later. C4 controllers tend to be optimized for reaching 

targets in area T2, requiring both tools to be picked up, 

whereas C6 controllers have more well-rounded performance. 

It’s likely that the early fitness gains for C4 controllers may 

come from learning to always pick up both tools before trying 

to reach the target, which is a good, sub-optimal strategy 

because most targets are in R2. C6 controllers take longer but 

evolve the optimal strategy. 

V. DISCUSSION 

    This main contribution of this paper is two-fold: (1) we 

showed that combination-based tool construction, a form of 

associative tool use, can be evolved with broad fitness criteria, 

and (2) we found that small variations in the task definition, 

namely the possible locations of tools, led to significant 

differences in evolved strategy and capability of detecting tool 

affordances.  

    Our approach has several limitations. For instance, world 

properties such as target location and tool location were 

heavily encoded in the inputs themselves. In future work, 

object recognition and grounding [26][27] and efficient codes 

for motor encoding [28] can be incorporated into our system 

for increased realism. Even without such additions, though, 

our approach allows for distinguishing between different types 

of associative tool use and can serve as a general method for 

investigating the difficulty and nuances of evolving such 

distinct behaviors. Other types of associative tool use worth 

investigating include the use of a tool set, more than one tool 

used sequentially in different modes, the use of a tool 

composite, more than one tool used simultaneously in 

different modes, and tool crafting, construction requiring 

multiple steps. Other modes of construction could be tested as 

well. Although preliminary work involving the addition of 

noise during evolution did not confer an advantage, it still may 

be worth investigating further. 

    It would be beneficial to add a pick up or drop output so as 

to eliminate any need for path avoidance behavior due to pick 

up occurring automatically and to allow for interaction with 

another arm. This would allow for the evolution of 

cooperative behaviors such as coordinated reaching and 

sharing of tools, and a second arm would allow for more 

complex tool construction such as variable angle tool 

connection.  Instantiating these controllers in social 

environments may demonstrate more complex dynamics such 

as preferential association between agents due to information 

provided by each one’s behavior relative to the environment. 

    Future research will attempt to use a generative adversarial 

network (GAN) as an inference network, trained in a wake 

sleep cycle, equipped with auxiliary policy networks evolved 

to perform basic tool use tasks. This inference net would be 

trained in an unsupervised manner on the experiences of the 

evolved policy networks with the purpose of forming a 

posterior over policies given perceptual input while 

performing some, possibly not seen before, task. This 

posterior would provide a weighting of the outputs of the 

individual policy networks, determining the extent to which 

each is applied in that time step. This might allow for more 

complex tool use and construction to emerge via the 

combination of more fundamental behaviors. Furthermore, the 

search of behavior space by the inference net may be 
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constrained in a supervised manner with the use of a 

parameter defining the extent to which the previous 

superposition of policies is used versus the one inferred from 

the current percepts. Continuing to use the same weighting of 

policies could be seen as exploitation, whereas using the 

weighting based only on current percepts might be seen as 

exploration.  Learning this parameter as a function of 

environmental or perceptual features may provide an intrinsic 

motivation for the agent. 

VI. CONCLUSION 

    In this paper, we investigated how the capability of 

combination-based tool construction behavior can 

spontaneously emerge in an evolved neural controller for a 

two-degree-of-freedom articulated limb in a target-reaching 

task. The neural circuit evolution algorithm NEAT was used 

for evolution of the controllers, permitting the evolution of 

network topology in addition to weights. We found that small 

changes in the task definition, namely tool locations, lead to 

significant differences in strategy, particularly impacting the 

evolved controllers’ ability to detect tool affordances, and we 

found that one such task variant yielded the best performance 

along all metrics. These findings will inform future 

investigation of the origin of associative tool use, helping use 

to understand what types of neural circuits and what 

environmental characteristics enabled such a powerful 

capability. 
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