

Note: This is a preprint. Some content may be slightly different from the final version. See

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version.

Emergence of Tool Construction in an Articulated

Limb Controlled by Evolved Neural Circuits

Randall Reams, Yoonsuck Choe

Department of Computer Science and Engineering

Texas A&M University

College Station, TX

{reams, choe}@tamu.edu

Abstract— Tool construction requires sophisticated cognitive

function and is only observed in higher mammals and a few

avian species. In this paper, we will examine the spontaneous

emergence of tool construction during the simulated evolution of

a two-degree-of-freedom articulated limb controller in a reaching

task environment. The limb controller is a recurrent neural

network with a topology evolved using the NeuroEvolution of

Augmenting Topologies (NEAT) algorithm. First, we show how

broad fitness criteria such as distance to target, number of

successful reaches, number of steps to reach the target, and

number of instances holding the correct length tool are enough to

give rise to tool construction. Second, we analyze how the

number of tools and their location in the environment during

evolution affect the evolved neural circuits’ ability to detect tool

affordances and employ the optimal decision strategy. We expect

our results to help us understand the implications of tool use

capability and the environmental conditions that may facilitate

its development.

I. INTRODUCTION

A. Background

 The use of tools in animals indicates a high level of

cognitive capability, requiring a detailed understanding of the

causal relations in the environment, complex planning, and

learning through trial and error [1]. Consequently, tool use

behavior is only observed in a small number of higher

mammals and avian species [2][3][4][5]. Associative tool use,

tool use and tool construction incorporating more than one

tool to solve a task, is only seen among the great apes [6].

 Chung and Choe demonstrated that simple neural circuits

can be evolved to use the simplest form of tool, i.e. a “bread-

crumb” dropped in the environment to serve as external

memory [7]. In previous work, we evolved neural circuits

controlling a simulated two-degree-of-freedom articulated

limb to reach distant objects, having access to a simulated

reaching tool to extend the range of the limb upon pickup [8].

We also showed that broad fitness criteria such as distance to

target, number of steps to reach the target, number of

successful reaches, and the difference between the number of

required and actual tool pickups were sufficient to evolve

networks that implement near-optimal decision strategy [9].

 In this paper, we investigate how similarly broad fitness

criteria can be used to evolve neural circuits capable of a

simple form of associative tool use, combination-based tool

construction. This behavior requires simultaneous or

sequential access to two reaching tools capable of being

combined to form one reaching tool of longer length. In either

case, the tool that is first picked up can be used independently

to reach the target, or it can be used as a secondary tool, a tool

used to construct (structurally modify) another tool. In

general, different modes of construction are possible,

including detachment, material subtraction, material addition,

combination, and reshaping. In this paper we are concerned

with arguably the simplest of these modes, combination, in

which the secondary tool is used to combine with another tool

forming a tool with length equal to the sum of its constituent

lengths. Because the secondary tool is used to reach and

acquire as well as to combine with the constructed tool, it can

also be considered a sequential tool.

 Furthermore, we investigate how, during evolution,

variation in the number of tools and their placement within the

environment, and consequently whether they afford use as

secondary tools, affects the evolved neural circuits’ capability

to detect tool affordances and employ the optimal decision

strategy.

B. Related Work

 Tool use has been extensively studied in artificial

intelligence and robotics [10], and the existing work can be

grouped into four categories:

1. Programmed, hard-coded behavior [11]

2. Learning through demonstration[12] [13][14][15][16]

3. Learning through random trial-and-error [17][18][19]

4. Evolved tool use behavior [20][7][8][9] and evolved

body morphology [21]

 Most of these works required some degree of designer

knowledge regarding tool use and motor control, spanning

fully hard-coded behavior, already attached tools, predefined

tool features, and predefined motor primitives. The evolution-

based approaches were relatively free of such constraints.

https://ieeexplore.ieee.org/abstract/document/7965913

Note: This is a preprint. Some content may be slightly different from the final version. See

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version.

II. APPROACH

 In this section, we introduce the NEAT neuroevolution

algorithm, specify the variants of the reaching task

environment in which our experiments took place, and detail

how the neural circuits are integrated with the environment.

Finally we define the fitness criteria used for evolution across

all tested reaching task environment specifications.

A. Algorithm for Evolving Neural Circuits

 Unlike standard neuroevolution algorithms, the

NeuroEvolution of Augmenting Topologies (NEAT)

algorithm developed by Stanley and Miikkulainen evolves

both the connection weights and the network topology over

time, achieving behavioral complexity through gradual

topological complexification [22]. NEAT has been shown to

be effective in evolving complex, non-trivial behavior in

various learning environments [23][24].

 The strength of NEAT is in the way it uses speciation to

protect topological innovations. Unlike connection weight

mutations, topological mutations such as the addition of a

neuron in the middle of a connection or adding a connection

between two neurons are unlikely to immediately confer a

fitness advantage and are more likely to confer an initial

disadvantage. To keep these innovations from being

eliminated immediately during selection, they are protected

through speciation and explicit fitness sharing, made possible

by the labeling of genes with innovation numbers which

provide a means for determining how compatible two

chromosomes are by measure of how many topological

structures they have in common.

 The overall operation of the NEAT algorithm proceeds as

follows: the recurrent neural network phenotype is instantiated

from the genotype, it is tested on the task environment, and its

fitness is calculated. When finished for all chromosomes,

selection and reproduction occur, and the cycle repeats for the

next generation.

B. Reaching Task Environment

 The task is to control a two-limbed articulated arm to reach

an object. It is a 2 degree of freedom arm that moves on a 2-D

plane. The target object can appear both within and outside

reach of the arm. The environment is equipped with one or

two tools that can be picked up, and in the latter case

combined, and used to reach objects beyond the reach of the

arm.

 As depicted in Figure 1, all task variants involve an arm

composed of an upper limb of length l1 = 80 attached to a

fixed shoulder joint around which it can be rotated from -150°

to 150° and a lower limb of length l2 = 100 hinged to the

upper limb at an elbow joint rotatable from -150° to 150°

Fig. 1. Sample task environment. A two-degree-of-freedom articulated limb

can move freely on a 2-D plane containing reaching tools and a target object.

The three solid semicircles of increasing radii depict the farthest reachable

distance with no tool, one tool, and both tools combined, respectively. The
three dashed semicircles of increasing radii depict the closest reachable

distance with no tool, one tool, and both tools combined, respectively.

Fig. 2. Regions of interest. The regions of the environment that are reachable

without a tool, with a tool, and with both tools combined are represented by
the shaded areas labeled R0, R1, and R2, respectively. T1 is the region in

which one tool is required to reach a target, and T2 is the region in which both
tools are required to reach a target. Finally, the region that is reachable both

with and without a tool is depicted in the bottom-right.

relative to the upper limb. The joint angles θ1 and θ2 (see

Figure 4b) can be changed by up to 1.5° each time step,

thereby moving the end effector. When the end effector

reaches the base of a tool, it automatically picks up the tool or

combines it with the tool it’s already holding, collinearly

extending the second limb by the length of the tool, lt = 80.

 We have defined regions R0, R1, and R2 to be the areas in

the environment that are reachable under each tool-holding

condition, holding no tool, holding one tool, and holding two

tools combined into one longer, constructed tool. Region T1 is

the area in which a tool or target could appear that would

require holding one tool to be reached, including area also

reachable while holding the constructed tool. Region T2 is the

area that is only reachable while holding the constructed tool.

Finally, region R0 ⋂ R1 is the area that is both reachable

while not holding a tool and while holding a non-constructed

tool.

https://ieeexplore.ieee.org/abstract/document/7965913

Note: This is a preprint. Some content may be slightly different from the final version. See

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version.

Fig. 3. Task variants. C1-C6 depict the six examined task variants. The cyan
and yellow shaded areas depict where the first and second tools appear,

respectively, with green depicting overlap.

 The simplest task variant, condition C1, is defined such that

the target object can appear in R1 and one tool can appear in

R0. Task variant C1 can be solved given any initial conditions

and does not require tool construction.

 The remaining task variants differ in that the target object

can appear anywhere in R0 ⋃ T1 ⋃ T2 and in that two tools

always appear in the environment. In task variant C2, one tool

can appear anywhere in R0, and the other tool can appear

anywhere in R0 ⋃ T1. C2 is unique in that it is the only task

variant that is not always solvable. For example, the target

could appear in T2 with both tools located in R0 - R0 ⋂ R1. In

this case, neither tool affords use as a secondary tool because

its pickup makes the remaining tool out of reach. Task variant

C3 is defined such that every initial configuration is solvable,

but it may become unsolvable if the neural circuit employs

suboptimal strategy. In C3, one tool appears in R0, and the

other tool appears in R1. Because of the overlap, there are

some instances where the order in which the two tools are

picked up determines whether the problem can be solved. In

these cases, one tool affords use as a secondary tool whereas

the other does not.

 Task variant C4 differs from C1 and C2 in that the order in

which the tools may be picked up is fixed, so picking up one

tool will never prohibit the arm from reaching the other tool.

This is accomplished by having the first tool appear in R0 and

the second tool appear in T1.

 Task variant C5, in which one tool appears in R0 – R0 ⋂ R1

and the other in R0 ⋂ R1. This configuration ensures that only

one tool, the one appears in R0 – R0 ⋂ R1, closer to the

shoulder joint, affords use as a secondary tool. Thus if the

target appears in T2, the order in which the tools are picked up

determines whether it can be reached. Preliminary results from

evolving circuits on C5 suggested the tendency to adopt a

strategy that performs well on C5 but generalizes poorly to

other task variants, namely avoiding picking up a tool in

region R0 ⋂ R1 if not holding a tool already. Therefore, C5

was only used to test evolved circuits’ ability to detect tool

affordances.

 Finally, task variant C6, in which one tool appears in R0 ⋂

R1 and the other appears in R1, was evolved on, but evolved

circuits’ performance in general were not tested on it.

Fig. 4. Agent-centered sensory representation (AC) and kinematics of the

articulated limb. (a) AC uses a polar coordinate system. The angles for the
end effector, target, and tool are represented by φ1, φ2, and φ3, respectively.

Analogously, the distances are represented by d1, d2, and d3. (b) The arm

consists of two limbs, l1 = 80 and l2 = 100. The angle between the reference
direction (up) and the first limb is represented by θ1, and the angle between

the first and second limb is represented by θ2.

 The two-tool task variants differ from one another by which

regions in the environment the two tools can appear in. The

dimensions of these regions are an artifact of the limb and tool

lengths and the joint angle constraints. If those parameters

were to have different values, the regions would change shape,

but the affordance of the tools and consequently the optimal

strategy, which are defined by the tool placement

configuration within these regions, would not.

C. Input and Output for Neural Circuits

 As in our previous work [7][8][9], we chose a relative

agent-centered (RAC) environment representation using polar

coordinates [25]. Consequently, environment configurations

that are equivalent after translation or rotation are naturally

characterized by the same coordinates. RAC produces the

following coordinates:

ACend_eff = (φ1, d1)

ACtarget = (φ2, d2)

ACtool = (φ3, d3)

RACend_eff&target = (φ2 – φ1, d2 – d1)

RACend_eff&tool = (φ3 – φ1, d3 – d1)

 The input layer for the neural circuit includes both

perceptual and proprioceptive neurons [11]. Eight input

neurons are used: two joint angles θ1 and θ2, relative distance

and angle to the target from the end effector φ2 – φ1 and d2 –

d1, relative distance and angle to the tool that is closest to the

end effector from the end effector φ3 – φ1 and d3 – d1, and joint

limit detectors (υ1, υ2), where υi = 1 if θi = 150°, -1 if

θi = -150°, and 0 otherwise.

 The output layer consists of two neurons, the values of

which determine the change in the two joint angles, with a

maximum of 1.5° change per time step.

https://ieeexplore.ieee.org/abstract/document/7965913

Note: This is a preprint. Some content may be slightly different from the final version. See

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version.

D. Fitness Criteria

 Each neural circuit was evaluated on n = 100 random initial

configurations for up to = 600 time steps each. At the end

of the evaluation period, the quantities representing the four

fitness criteria were calculated and multiplied together to yield

the individual’s fitness value.

 The distance factor of the fitness function is:

where is the location of the target object in the k-th trial,

 is the location of the end effector at the end of the k-th trial,

and = or , for one and two tools

respectively. D is a measure of how close the end effector got

to the target object relative to the total length of the arm, on

average.

 The step factor, a measure of how quickly the end effector

reached the target object on average, is:

where is the number of time steps required to reach the

target in the k-th trial. If the end effector does not reach the

target, S = .

 The reach factor, effectively the success rate, is:

where = 1 if the target was successfully reached in the k-th

trial, and = 0 otherwise.

 Finally, the tool factor, a measure of optimal tool use is:

where = 1 if the target region and number of tools picked

up were respectively R0 and zero, T1 and one, or T2 and two,

and = 0 otherwise. Previous work [8] demonstrated that T is

not required to evolve tool use behavior, but it facilitates its

evolution.

 The fitness factors, D, S, R, and T, were normalized to the

interval [0.5;1] and multiplied together to yield the overall

fitness score.

Fig. 5. Comparison of success rates. Controllers were evolved for five task

variants, C1, C2, C3, C4, and C6 (see color-coded inset boxes), and they were

evaluated on five task variants C1, C2, C3, C4, and C5 (x-axis labels).

Evolving on task variant C6, in which one tool is placed in R0 ⋂ R1 and the

other is placed in R1, led to the best performance on all task variants. High

performance on C5 requires accurate detection of tool affordances

III. EXPERIMENT (SIMULATION)

 Each neural circuit controller was evaluated on n = 100

randomly instantiated trials, with joint angles assigned initial

values in the range [-150°;150°] according to a uniform

distribution on that interval. The target object and tool(s) are

placed randomly according to a uniform random distribution

on the semicircle from -90° to 90° around the shoulder joint

location. The distance range in which the target and tool(s)

vary by task variant as was described in the previous section.

Each trial consists of up to = 600 time steps, ending early

when the target is reached.

 Four times for each of the five task variants C1, C2, C3, C4,

and C6, a population of 100 controllers was evolved for 100

generations. The highest fitness controller was kept from each

evolutionary run, yielding four high performing neural circuits

evolved for each task variant. Each of these controllers was

evaluated five times on the same random 300 target object

locations, 100 from each of R0, T1, and T2, on each of the five

task variants C1, C2, C3, C4, and C5.

https://ieeexplore.ieee.org/abstract/document/7965913

Note: This is a preprint. Some content may be slightly different from the final version. See

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version.

Fig. 6. Rates of success and optimal tool use by target location for select conditions. The two plots in the top-left depict success rate and rate of optimal tool use

by neural circuits evolved on task variant C3 when evaluated on task variant C3. The two plots in the top-right depict the same for circuits evolved on C4,

evaluated on C3. The bottom row depicts the performance of circuits evolved on C6, evaluated on C3 (left) and on C5 (right).

Fig. 7. Limb trajectories and associated hidden neuron activation patterns for three instances of the task requiring tool construction. For the trajectories, blue
depicts the upper limb, red the lower limb, green the secondary tool, and yellow the constructed tool. The plot at the bottom of each of the three hidden neuron

activation patterns depicts the times of the tool pickup events in those runs. The activations of several groups of hidden neurons are correlated with one another,

and many hidden neurons change mode in anticipation of or in response to tool pickup and in anticipation of reaching the target.

https://ieeexplore.ieee.org/abstract/document/7965913

Note: This is a preprint. Some content may be slightly different from the final version. See

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version.

IV. RESULTS

 The four chosen fitness criteria, DSRT, proved sufficient to

evolve a capacity for tool construction behavior, even when

tool construction was not possible during evolution. Figure 5

shows how neural circuit controllers evolved on each task

variant performed on each task variant. A few patterns are

apparent. First, all neural circuit controllers performed better

on C1, the task variant only requiring tool use, than they did

on all other task variants, which require tool construction.

Second, the controllers evolved on task variant C2 performed

worst on all tasks, suggesting that the guaranteed failure of a

portion of trials during evolution does not confer any

performance advantage. Third, although evolving under

condition C4 produced neural circuits that perform better “on

average” than those evolved under condition C3, C3 produced

better “highest success rates” than C4-evolved neural circuits.

The C3-evolved circuits are better able to detect tool

affordances as evidenced by their much higher performance

on tasks C2 and C5, the latter being the most challenging task

variant. Finally, neural circuits evolved under condition C6

outperformed all others on all task variants both “on average”

and by “highest success rates”.

 Figure 6 depicts the relationship between target location and

likelihood of success and optimal tool use for different

evolution conditions. The top row contrasts the C3

performance of neural circuits evolved on C3 and C4.

Controllers evolved on C3 appear to prioritize reaching for the

target over tool pickup, whereas those evolved on C4 appear

to employ the opposite strategy. Interestingly, C4 controllers

appear to know not to pick up a tool when the target is close,

but they still usually fail to reach said target. It’s possible that,

since these controllers appear optimized for reaching the target

when no tools are available for pickup, the sensory input

received from a tool interferes with their ability to reach the

target.

 The bottom row of Figure 6 depicts the performance of

neural circuits evolved on C6 on task variants C3 (left) and C5

(right). Unlike the controllers evolved on C3 and C4, those

evolved on C6 display much greater uniformity of success

across target locations on task C3, and they ever perform

better than chance at choosing which tool to pick up first on

task C5. This suggests that evolution on task variant C6

confers the ability to detect whether a tool affords use as a

secondary tool for reaching and combining with the remaining

tool. Additionally, because the neural circuit is receiving

sensory input from one tool at a time, exploration behavior

must be employed should the sensed tool not afford reaching

the target.

 Figure 7 shows three limb trajectories involving tool

construction and the controller’s associated hidden neuron

activation patterns. During reaching behavior, the controller

tends to move the end effector to the correct distance before

rotating to the correct angle. The very bottom three plots

display the timing of the tool pickup events, allowing for

comparison with changes in the hidden state of the network.

Fig. 8. Network topologies for highest fitness individuals on each task
variant. Red depicts input neurons, green output neurons, and orange hidden

neurons. Solid arrows are feedforward connections, and dashed arrows are

recurrent connections. (a), (b), (c), (d), and (e), are networks evolved on tasks
C1, C2, C3, C4, and C6, respectively. (e) notably depicts the best performing

network overall.

https://ieeexplore.ieee.org/abstract/document/7965913

Note: This is a preprint. Some content may be slightly different from the final version. See

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version.

Fig. 9. Growth in number of recurrent connections in highest fitness

individual over the course of an average evolutionary run.

Fig. 10. Average (top) and best (bottom) fitness trajectories for each task

variant

Fig. 11. Average (top) and best (bottom) fitness trajectories for each task

variant

It’s evident that several hidden neurons change their mode of

activation in anticipation of, or in response to, tool pickup as

well as in anticipation of reaching the target. This suggests

active planning is being done by the neural network controller.

Additionally, several groups of neurons’ activation patterns

appear to correlate with one another, and neurons output both

constant and oscillatory signals, as was seen previously [8].

 Figures 8 and 9 show how network complexity varies

across the different evolution task variants. The number of

recurrent connections, which have been shown to be necessary

for tool use [8], and consequently the network complexity,

grows at different, roughly quadratic rates, depending on

evolution task variant. Networks evolved on C1, C4, and C6

tend to maintain relatively simple topologies over the course

of their evolution, which leads to evolutionary runs on those

task variants being much faster than on other task variants.

 Figure 10 shows the fitness trajectories averaged over all

runs on the five evolution task variants and the fitness

trajectories for the best individual on each task variant.

Notably, controllers evolved on C4 tend to experience early

increases in fitness, whereas those evolved on C6 experience

them later. C4 controllers tend to be optimized for reaching

targets in area T2, requiring both tools to be picked up,

whereas C6 controllers have more well-rounded performance.

It’s likely that the early fitness gains for C4 controllers may

come from learning to always pick up both tools before trying

to reach the target, which is a good, sub-optimal strategy

because most targets are in R2. C6 controllers take longer but

evolve the optimal strategy.

V. DISCUSSION

 This main contribution of this paper is two-fold: (1) we

showed that combination-based tool construction, a form of

associative tool use, can be evolved with broad fitness criteria,

and (2) we found that small variations in the task definition,

namely the possible locations of tools, led to significant

differences in evolved strategy and capability of detecting tool

affordances.

 Our approach has several limitations. For instance, world

properties such as target location and tool location were

heavily encoded in the inputs themselves. In future work,

object recognition and grounding [26][27] and efficient codes

for motor encoding [28] can be incorporated into our system

for increased realism. Even without such additions, though,

our approach allows for distinguishing between different types

of associative tool use and can serve as a general method for

investigating the difficulty and nuances of evolving such

distinct behaviors. Other types of associative tool use worth

investigating include the use of a tool set, more than one tool

used sequentially in different modes, the use of a tool

composite, more than one tool used simultaneously in

different modes, and tool crafting, construction requiring

multiple steps. Other modes of construction could be tested as

well. Although preliminary work involving the addition of

noise during evolution did not confer an advantage, it still may

be worth investigating further.

 It would be beneficial to add a pick up or drop output so as

to eliminate any need for path avoidance behavior due to pick

up occurring automatically and to allow for interaction with

another arm. This would allow for the evolution of

cooperative behaviors such as coordinated reaching and

sharing of tools, and a second arm would allow for more

complex tool construction such as variable angle tool

connection. Instantiating these controllers in social

environments may demonstrate more complex dynamics such

as preferential association between agents due to information

provided by each one’s behavior relative to the environment.

 Future research will attempt to use a generative adversarial

network (GAN) as an inference network, trained in a wake

sleep cycle, equipped with auxiliary policy networks evolved

to perform basic tool use tasks. This inference net would be

trained in an unsupervised manner on the experiences of the

evolved policy networks with the purpose of forming a

posterior over policies given perceptual input while

performing some, possibly not seen before, task. This

posterior would provide a weighting of the outputs of the

individual policy networks, determining the extent to which

each is applied in that time step. This might allow for more

complex tool use and construction to emerge via the

combination of more fundamental behaviors. Furthermore, the

search of behavior space by the inference net may be

https://ieeexplore.ieee.org/abstract/document/7965913

Note: This is a preprint. Some content may be slightly different from the final version. See

https://ieeexplore.ieee.org/abstract/document/7965913 for the final version.

constrained in a supervised manner with the use of a

parameter defining the extent to which the previous

superposition of policies is used versus the one inferred from

the current percepts. Continuing to use the same weighting of

policies could be seen as exploitation, whereas using the

weighting based only on current percepts might be seen as

exploration. Learning this parameter as a function of

environmental or perceptual features may provide an intrinsic

motivation for the agent.

VI. CONCLUSION

 In this paper, we investigated how the capability of

combination-based tool construction behavior can

spontaneously emerge in an evolved neural controller for a

two-degree-of-freedom articulated limb in a target-reaching

task. The neural circuit evolution algorithm NEAT was used

for evolution of the controllers, permitting the evolution of

network topology in addition to weights. We found that small

changes in the task definition, namely tool locations, lead to

significant differences in strategy, particularly impacting the

evolved controllers’ ability to detect tool affordances, and we

found that one such task variant yielded the best performance

along all metrics. These findings will inform future

investigation of the origin of associative tool use, helping use

to understand what types of neural circuits and what

environmental characteristics enabled such a powerful

capability.

ACKNOWLEDGEMENT

 Neural circuit evolution experiments was performed using

ANJI (Another NEAT Java Implementation,

anji.sourceforge.net), an open-source Java implementation of

the algorithm by Stanley and Miikkulainen [22].

REFERENCES

[1] A. Whiten, J. Goodall, W. C. McGrew, T. Nishida, V. Reynolds, Y.

Sugiyama, C. E. G. Tutin, R. W. Wrangham, and C. Boesch, “Cultures in

chimpanzees,” Nature, vol. 399, no. 6737, pp. 682–685, 1999.

[2] C. Boesch and H. Boesch, “Tool use and tool making in wild chimpanzees,”

Folia Primatologicarimatologica, vol. 54, no. 1-2, pp. 86–99, 1990.

[3] P. Foerder, M. Galloway, T. Barthel, D. E. Moore, III, and D. Reiss,

“Insightful problem solving in an asian elephant,” PLoS ONE, vol. 6, no. 8,

p. e23251, 2011.

[4] G. R. Hunt and R. D. Gray, “The crafting of hook tools by wild new

caledonian crows,” Proceedings of the Royal Society of London B:

Biological Sciences, vol. 271, no. Suppl 3, pp. S88–S90, 2004.

[5] A. Streri and J. Feron, “The development of haptic abilities in very ´ young

infants: From perception to cognition,” Infant Behavior and Development,

vol. 28, no. 3, pp. 290–304, 2005.

[6] Shumaker, R. W., Walkup, K. R., & Beck, B. B. (2011). Animal tool

behavior: the use and manufacture of tools by animals. JHU Press.

[7] J. R. Chung and Y. Choe, “Emergence of memory in reactive agents

equipped with environmental markers,” Autonomous Mental Development,

IEEE Transactions on, vol. 3, no. 3, pp. 257–271, 2011.

[8] Q. Li, J. Yoo, and Y. Choe, “Emergence of tool use in an articulated limb

controlled by evolved neural circuits,” in Neural Networks (IJCNN), 2015

International Joint Conference on, July 2015, pp. 1–8.

[9] Michael Freitag and Yoonsuck Choe. Analysis of tool use strategies in

evolved neural circuits controlling an articulated limb. In Proceedings of the

International Joint Conference on Neural Networks, 2016.

[10] R. S. Amant and A. B. Wood, “Tool use for autonomous agents,” in

Proceedings of the 20th National Conference on Artificial Intelligence -

Volume 1. AAAI Press, 2005, pp. 184–189.

[11] R. R. Murphy, Introduction to AI robotics. MIT Press, 2000, vol. 108.

[12] D. Lee, H. Kunori, and Y. Nakamura, “Association of whole body motion

from tool knowledge for humanoid robots,” in 2008 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IROS, 2008, pp. 2867–2874.

[13] A. Arsenio, “Learning task sequences from scratch: applications to the

control of tools and toys by a humanoid robot,” in Control Applications,

2004. Proceedings of the 2004 IEEE International Conference on, vol. 1,

2004, pp. 400–405.

[14] R. Saegusa, G. Metta, G. Sandini, and L. Natale, “Developmental perception

of the self and action,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 25, no. 1, pp. 183–202, 2014.

[15] Y. Wu and Y. Demiris, “Learning Dynamical Representations of Tools for

Tool-Use Recognition,” in Proceedings of the 2011 IEEE International

Conference on Robotics and Biomimetics (ROBIO), 2011, pp. 2664–2669.

[16] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and

generalization of motor skills by learning from demonstration,” {IEEE}

International Conference on Robotics and Automation, 2009. {ICRA} ’09,

pp. 763–768, 2009.

[17] S. Nishide, J. Tani, T. Takahashi, H. G. Okuno, and T. Ogata, “Tool– Body

Assimilation of Humanoid Robot Using a Neurodynamical System,”

Autonomous Mental Development, IEEE Transactions on, vol. 4, no. 2, pp.

139–149, 2012.

[18] A. Stoytchev, “Behavior-grounded representation of tool affordances,”

Proceedings - IEEE International Conference on Robotics and Automation,

vol. 2005, no. April, pp. 3060–3065, 2005.

[19] D. Katz and O. Brock, “Manipulating articulated objects with interactive

perception,” IEEE International Conference on Robotics and Automation

(ICRA), pp. 272–277, 2008.

[20] B. Schafer, N. Bergfeldt, M. Riveiro Carballa, and T. Ziemke, “Evolution of

tool use behavior,” in Artificial Life, 2007. ALIFE ’07. IEEE Symposium on,

April 2007, pp. 31–38.

[21] K. Sims, “Evolving 3D Morphology and Behavior by Competition,”

Artificial Life, vol. 1, no. 4, pp. 353–372, 1994.

[22] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through

augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–

127, 2002.

[23] K. O. Stanley, B. Bryant, I. Karpov, and R. Miikkulainen, “Real-time

evolution of neural networks in the NERO video game,” Proceedings of the

Twenty-First National Conference on Articial Intelligence, pp. 1671–1674,

2006.

[24] J. Gauci and K. O. Stanley, “A Case Study on the Critical Role of Geometric

Regularity in Machine Learning.” Proceedings of the TwentyThird AAAI

Conference on Artificial Intelligence, pp. 628–633, 2008.

[25] T. Mann and Y. Choe, “Prenatal to postnatal transfer of motor skills through

motor-compatible sensory representations,” in Development and Learning

(ICDL), 2010 IEEE 9th International Conference on, Aug 2010, pp. 185–190.

[26] C. Yu and D. H. Ballard, “On the Integration of Grounding Language and

Learning Objects,” in Proceedings of the National Conference on Artificial

Intelligence, no. Quine, 2004, pp. 488–494.

[27] J. Modayil and B. Kuipers, “Autonomous development of a grounded object

ontology by a learning robot,” in Proceedings of the National Conference on

Artificial Intelligence, vol. 2, 2007, pp. 1095–1101.

[28] L. Johnson and D. H. Ballard, “Efficient codes for inverse dynamics during

walking,” in Twenty-Eighth AAAI Conference on Artificial Intelligence,

2014.

https://ieeexplore.ieee.org/abstract/document/7965913
http://faculty.cs.tamu.edu/choe/ftp/publications/freitag-ijcnn16.pdf
http://faculty.cs.tamu.edu/choe/ftp/publications/freitag-ijcnn16.pdf

