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Abstract— Tactile receptive fields (RFs) are similar to visual
receptive fields, while there is a subtle difference. Our previous
work showed that tactile RFs have advantage in texture
boundary detection tasks compared to visual RFs. Our working
hypothesis was that tactile RFs are better in texture tasks since
texture is basically a surface property, more intimately linked
with touch than with vision. From an information processing
point of view, touch and vision are very similar (i.e., two-
dimensional sensory surface). Then, the question is what drives
the two types of RFs to become different? In this paper, we
investigated the possibility that tactile RF and visual RF emerge
based on an identical cortical learning process, where the only
difference is in the input type, natural-scene-like vs. texture-
like. We trained a self-organizing map model of the cortex (the
LISSOM model) on two different kinds of input, (1) natural
scene and (2) texture, and compared the resulting RFs. The
main result is that RFs trained on natural scenes have RFs
resembling visual RFs, while those trained on texture resemble
tactile RFs. These results suggest that the type of input most
commonly stimulating the sensory modality (natural scene for
vision and texture for touch), and not the intrinsic organization
of the sensors or the developmental process in the cortex,
determine the RF property. We expect these results to shed
new light on the differences and similarities between touch and
vision.

I. INTRODUCTION

Sensory neurons in the primary sensory cortices in the
brain preferentially respond to specific patterns of input. For
example, neurons in the primary visual cortex (area 17, V1)
have oriented Gabor-like receptive fields (RFs) [1] (Fig. 1).
Interestingly, neurons in the somatosensory area 3b exhibit
similar RF properties, with a subtle difference [2], [3], [4].
In area 3b, neurons respond to tactile input from the finger
tip, and just like in the visual cortex, they only respond to
a specific pattern of input. However, there is a difference
between the tactile receptive fields and visual receptive fields.
Instead of an excitation/inhibition pair as in Gabor patterns,
there is an extra third component that is inhibitory, where the
position of that component dynamically changes depending
on the direction of scan of the tactile patch (Fig. 2). Given
that the two sensory modalities (vision and touch) have the
same basic spatial organization (i.e., a 2D sensory surface),
and that the cortex is a fairly uniform medium, it is curious
as to why the two RF types show this kind of difference.

One obvious reason could be that the types of input
stimulating the two modalities differ in their statistical
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Fig. 1. Visual Receptive Fields (VRFs). Visual cortical receptive fields have
a Gabor-like pattern, with different orientation, phase, and spatial frequency.
Shown here are oriented Gabor patterns with the same phase and spatial
frequency (dark represents inhibitory region and bright excitatory region).

characteristics. Vision is exposed more to natural scenes
containing various objects and backgrounds that do not repeat
over space (on a large scale), while touch is exposed more
to surface texture with a regular repetition of pattern in all
directions. In other words, visual RFs could have adapted to
deal with natural scenes, while tactile RFs adapted to handle
textures.

Texture is basically a surface property, so it may be
more intimately related to touch, thus tactile RFs would be
better for texture processing than visual RFs. Our previous
experiment on texture boundary detection indicates that this
could be the case. In [5], we showed that preprocessing
with tactile RFs gives better texture boundary detection
performance compared to visual RFs (see the Background
section for details).

In this paper, we investigate the possibility that tactile
RFs and visual RFs emerge based on an identical cortical
learning process, where the only difference is in the input
type: natural scene vs. texture. We trained a self-organizing
map model of the cortex (the LISSOM model [6]) on two
different kinds of input, (1) natural scene and (2) texture,
and compared the resulting RFs. The main result is that
RFs trained on natural scenes have RFs resembling visual
RFs, while those trained on texture resemble tactile RFs.
These results suggest that the type of input most commonly
stimulating the sensory modality (natural scene for vision
and texture for touch), not the intrinsic organization or
developmental process, determine the RF property in the
primary sensory cortices.

The rest of this paper is organized as follows. First, we will
provide some background on visual and tactile processing
in the brain (Sec. II). Next, we will present the LISSOM
self-organizing map algorithm (Sec. III), explain in detail
our experimental design, and present our results (Sec. IV).
Finally, we will talk about interesting perspectives and issues
regarding our results (Sec. V), followed by the conclusion
(Sec. VI).

II. BACKGROUND

Visual cortical receptive fields resemble Gabor patterns
[1], [7], [8], [9], with specific tuning for orientation, phase,
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Fig. 2. Tactile Receptive Fields (TRFs). Tactile receptive fields are similar
to visual receptive fields (marked C1 and C2, representing inhibitory and
excitatory blobs) but there is an added dynamic inhibitory component
(marked C3). An interesting feature of this extra inhibitory component is
that its position relative to the fixed components C1 and C2 change, centered
at “X”, depending on the direction of scan of the tactile surface (e.g., the
tip of the index finger). The dynamic component’s shift in position is in
the opposite direction of the scan direction. The five groups of figures to
the right show how scan direction alters the tactile receptive field property.
In each group, the arrow on the finger tip shows the scan direction; the
box with a solid outline shows how the dynamic inhibitory component is
shifted (white arrow) in the opposite direction of the scan; and the box with
the dotted outline shows the resulting tactile receptive field shape. Adapted
from [5] (also see [2]).

and spatial frequency. Fig. 1 shows an example of Gabor
RF models of varying orientation. In addition to these
static features, visual cortical neurons are also sensitive to
dynamic features such as the direction of motion of the
stimuli [10], [11], [12], [13]. Fig. 3 shows an example of
a direction-selective RF in the cat primary visual cortex
[10]. Instantaneous RFs in the two-dimensional visual space
at times 20, 60, 100, and 120 ms are shown on top, and
a continuous integration of the RFs along the vertical is
drawn in the bottom plane. The neuron’s spatial preferences
change systematically over time, giving it a spatiotemporal
preference for a dark vertical line moving horizontally to the
right.

As briefly discussed in the introduction, tactile RFs have
similar properties as the visual counterpart (Fig. 2), since they
are based on the on-off Gabor pattern. However, there is a
dynamic component that curiously depends on the direction
of scan of the skin patch (e.g., a finger tip). Fig. 4 shows
examples of the tactile RFs estimated from the cortical area
3b of an alert monkey and the model predictions [2]. In
these plots, dark represents an inhibitory region and bright
an excitatory region. Each row in the figure shows the
RF estimated from the raw data (left) measured through

Fig. 3. Spatiotemporal Receptive Fields in Cat. Primary visual cortical
neurons show direction (of motion) selectivity in addition to orientation
selectivity. The figure shows the spatiotemporal pattern that optimally
stimulates a visual cortical neuron in a cat. Here, we can see the dark
region of a vertical Gabor pattern moving to the right. Adapted from [10]
(as rendered in [6]).

Fig. 4. Tactile Receptive Fields in Monkey Area 3b. RFs resulting
from four different scanning directions on the finger tip of a monkey is
shown. Each row shows, from the left to the right, (1) the actual measured
RF (bright=excitation, dark=inhibition), (2) the three-component model by
[2], and (3) the outline of the three-component model. Given the same
excitation–inhibition pair, a third (inhibitory) component shows up, and the
center of that component shifts its position in the opposite direction of the
scan. For example, the top row corresponds to a downward scan, thus the
third component shifts up. See Fig. 2 for a detailed explanation. Adapted
from [2] (grayscale was inverted to show excitation in white and inhibition
in black).



microelectrode recording in area 3b of the alert monkey, the
RF predicted by a three-component model (middle), and the
positions of the Gaussian components in the model (right).
Three ellipses in right panels represent fixed excitatory (thick
oval), fixed inhibitory (dashed oval), and lagged inhibitory
(thin oval) lobe moving in the opposite direction of the
scanning direction (arrow). Depending on the direction of
scan, the dark blob (lagged inhibitory region) moves around,
altering the final shape of the RF. The resulting RFs, even
though they are based on a Gabor pattern, show patterns
distinct from visual RFs, such as a donut or a curve.

In brief, visual and tactile RFs share common features
but they also have subtle differences. The similarity may be
driven by the fact that the visual and tactile sensory surfaces
have the same structure (i.e., a 2D sheet), and that they are
stimulated by the same underlying spatial environment.

However, two questions remain to be answered: (1) what
could account for the difference in the two RF types?, and (2)
what could be the functional benefit of such a specialization?
It turns out that we can gain a lot of insight by answering
the second question first. In [5], we tested the hypothesis
that tactile RFs could be better than visual RFs in texture
segmentation, even when the task itself is a vision task.
The hypothesis was based on the insight that texture (even
visual texture) may be more intimately linked to touch, since
texture is basically a surface property. (This insight was also
shared in our earlier work on comparing texture segmentation
performance on tasks defined in 2D vs. 3D [14], [15] (cf.
[16]).)

We used either the oriented Gabor RF models (visual)
or DiCarlo and Johnson’s three-component RF model (tac-
tile) as a preprocessing stage in texture segmentation. This
allowed us to test how such distinct properties in tactile
receptive fields can affect texture segmentation performance.
Our results showed that tactile RFs have a consistently higher
performance over visual RFs. Fig. 5 shows the results from
our previous experiment [5], where six texture sets (a mix of
natural and synthetic textures) were used in texture segmenta-
tion tasks. Fig. 5 shows the comparison of classification rate
for the six texture sets. Upsetting the common assumption in
most current approaches that texture segmentation is a vision
problem, tactile RFs showed superior performance in texture
boundary detection compared to their visual counterpart (t-
test: n=1920, p <0.03 in all, except for texture set 1, p=0.27)
[5].

These early results suggest that the unique characteristics
in the tactile RFs are functionally capable of dealing with
textures in general, including visual texture, i.e., not just
tactile surface textures. This leads to an interesting possibility
that tactile RFs diverge from visual RFs just because they are
exposed to more texture-like inputs rather than natural-scene-
like inputs.

Another important observation is that the sensory cortical
RFs adapt and develop over time to reflect the input statistics.
Researchers have repeatedly shown that sensory cortical or-
ganization can dramatically change if the input environment
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Fig. 5. Comparison of Tactile RF and Visual RF Performance on Texture
Boundary Detection Tasks. In all except the first of the six texture sets,
the texture boundary detection accuracy with tactile RFs (TRFs, white bars)
was significantly better than those with visual RFs (VRFs, black bars). Error
bars indicate the standard deviation. Adapted from [5].

is altered [9], [17], [18], and RF properties can change if
the input is altered [19], [20] (see [21], [6] for modeling
results). Furthermore, the cerebral cortex is quite uniform,
where different sensory cortices basically have the same
structure and organization [22]. A tour de force in cortical
plasticity experiment also showed that such uniformity can
support any form of sensory input thrown at the cortex. By
plugging in visual signal into the auditory cortex, Sharma
et al. showed that the auditory cortex can be transformed
to have an organization similar to that of the visual cortex,
with orientation-tuned neurons and an overall orientation
map layout [23].

With all the pieces of the puzzle in place, we can now for-
mulate an approach: Train a self-organizing model of visual
cortical development with different types of input, natural
scenes or textures, and observe the RFs that emerge from
the process. The expectation is that the model trained with
natural scenes will develop visual RFs and those exposed to
textures will develop tactile RFs.

III. THE LISSOM MODEL AND SELF-ORGANIZATION

In order to investigate the possibility that tactile RFs and
visual RFs emerge based on an identical learning process,
we trained LISSOM (Laterally Interconnected Synergetically
Self-Organizing Map), a self-organizing map model of the
visual cortex [6].

LISSOM was originally developed to model the visual
cortex, but it is actually a more general model of how
the cortex organizes to represent correlations in the sensory
input. Thus, LISSOM should work equally well in modeling
the development of non-visual sensory modalities, as demon-
strated by [24], where somatosensory cortical development
(of the barrel cortex in rodents) was successfully modeled
using LISSOM.

Since tactile RFs have a dynamic component, we adopted
a variant of LISSOM that can handle dynamically changing
input, i.e., LISSOM model of combined orientation and
direction map formation. The resulting RFs in the model
would have a spatiotemporal pattern.



Fig. 6 shows the LISSOM architecture for orien-
tation and direction selectivity. The description below
closely follows [6]. We mainly used the Topograph-
ica neural map simulator package for the experiments
(http://topographica.org), developed by Bednar et
al. [6]. The model is similar to a general LISSOM model
consisting of two-dimensional sheet of neural units, roughly
corresponding to the retina at the input level, ON- and OFF-
LGN (Lateral Geniculate Nucleus) channels at the interme-
diate level, and V1 neurons at the cortical level. LGN units
have four sheets with different time delays for each ON and
OFF channel so that V1 neurons can use these time-varying
inputs to develop spatiotemporal receptive fields.
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Fig. 6. LISSOM Model of Orientation and Direction Selectivity. Moving
input patterns are drawn on the retina in discrete time steps, like frames
of a movie. At each time step, the input pattern (or the gaze) is moved
slightly on the retina and LGN cells with time step index 3, 2, 1, and 0
each compute their activity with varying delay from the retina. Once all
LGN cells have been activated, the initial V1 response is computed based
on the responses on the eight LGN sheets. The activity then spreads laterally
within V1 through excitatory (small dotted circle in V1) and inhibitory (large
dashed circle in V1) connections. Adapted from [6].

An input consists of four sequential frames of an image,
moving across the retina at a certain location and direction.
At each time step t, the frame t is presented on the retina,
and the activities of two LGN ON/OFF cells with time t
are calculated. The fixed weights for the LGN ON units are
computed as:
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where Lxy,ab is the weight from the retinal receptor (x, y) in
the receptive field to an LGN ON neuron (a, b) with center

(xc, yc), and σc defines the width of the central Gaussian
and σs the width of the surround Gaussian. We set the
size of the central Gaussian to 0.07385 and the size of the
surround Gaussian to 0.29540. The OFF neuron weights are
the negative of the ON weights.

After receiving input from the retina, the LGN units
compute their responses as a squashed weighted sum of the
total received activation:

ξab = σ

(
γL

∑
xy

χxyLxy,ab

)
, (2)

where ξab is the response of the LGN ON/OFF unit (a, b),
χxy is the activation of retinal unit (x, y) within the receptive
field of (a, b), Lxy,ab is the afferent weight from (x, y) to
(a, b), and γL is a constant scaling factor for LGN’s afferent
weight. To produce activity for low-contrast inputs of images,
we set γL to 4.7 which is double that of the Gaussian width.
Here, σ is a piecewise-linear approximation of the sigmoid
activation function:

σ(s) =

 0, s ≤ θl

(s− θl)/(θu − θl), θl < s < θu

1, s ≥ θu

, (3)

where s is the activation level of the neuron, θl is the
lower bound and θu is the upper bound. While we used the
default value for the initial upper bound (θu = 0.038) in the
Topographica package, the initial sigmoid lower bound was
set to a lower value (θl = 0.076) than the default value to
allow responses to low-contrast stimuli. Both of them are
gradually adjusted during self-organization to enhance the
performance.

Fig. 7 shows typical inputs, and Fig. 8 shows how the
inputs are sampled, to be fed into the LGN layers. Moving
input patterns following a scanning direction are drawn on
the retina in discrete time steps, like frames of a movie. At
each time step, LGN cells compute their activities based on
the moving input pattern on the retina.

After all four frames are drawn on the retina, one after
another, the LGN sheets are activated in sequence, with the
prescribed time delay. Then, each V1 neuron computes its
initial response projected from the activation on all eight
LGN ON/OFF sheets. The initial response of V1 neurons is
computed as a weighted sum of activation received from the
LGN and then passed through a sigmoid activation function:

sij = γA

( ∑
ab∈ON

ξabAab,ij +
∑

ab∈OFF

ξabAab,ij

)
(4)

ηij(0) = σ(sij), (5)

where ηij(0) is the initial response of V1 neuron (i, j),
sij is the afferent activation of V1 neuron (i, j), ξab is the
activation of LGN ON/OFF neuron (a, b) in the receptive
field of V1 neuron (i, j), Aab,ij is the afferent weight, and
γA is a constant scaling factor for the afferent weight. We set
the γA to 1 which is a default value for LISSOM simulations
in Topographica.



After the initial computation, V1 calculate lateral excita-
tory and inhibitory contributions to settle the activity:

ηnew
ij (t) = σ(sij + γE

∑
kl

ηpre
kl (t− 1)Ekl,ij

−γI

∑
kl

ηpre
kl (t− 1)Ikl,ij), (6)

where ηpre
kl (t−1) is the activity of the neighbor the V1 neuron

(k, l) in the previous time step, Ekl,ij is the excitatory lateral
connection weight connecting neuron (i, j) and (k, l), Ikl,ij

is the inhibitory lateral connection weight, and γE and γI

are scaling factors that determine the strength of excitatory
and inhibitory lateral interactions.

Because image patterns have significant long-range corre-
lations, and inhibitory weights spread over a larger area, the
lateral interaction strength γE and γI were set to 0.9 and
-0.9 to keep the balance between excitatory and inhibitory
lateral weights approximately constant.

After the activity settles, the afferent and lateral connection
weights of V1 neurons are modified according to the Hebbian
learning rule:

W new
pq,ij =

wcur
pq,ij + αXpqηij∑

uv(wuv,ij + αXuvηij)
, (7)

where wcur
pq,ij is the current connection weight from neuron

(p, q) to (i, j), wnew
pq,ij is the new connection weight, α is

the learning rate for each type of connection, Xpq is the
presynaptic activity after settling, and ηij is the activity of
neuron (i, j) after settling.

To enhance the resulting self-organization of the lateral
inhibitory weights into long range regions, the lateral in-
hibitory learning rate α was updated over time; 0.090365 at
first, 0.090365×2 at 1,000 iterations, 0.090365×3 at 2,000
iterations, and 0.090365×5 at 5,000 iterations.

IV. EXPERIMENTS AND RESULTS

The main experiment we did was to test the possibility
that tactile RFs and visual RFs emerge base on an identical
learning process, where the only difference is in the input
environment, natural scene vs. texture. We used the self-
organizing map model of the cortex (the LISSOM model)
on two different kinds of input, (1) natural scene and (2)
texture, and analyzed the spatiotemporal properties of the
resulting RFs. Fig. 7 shows the two types of input patterns.

Fig. 7. Sample Input Patterns. The top row shows natural scenes and the
bottom row textures used in our experiments. Note that the texture set have
texture elements are varying scales.

Fig. 8. Generation of Dynamic Input by Scanning the Gaze on an Image.
Given a large image, a small region the size of the retina in the LISSOM
model is attended to. Motion of the gaze window results in a sequence of
inputs being generated on the LISSOM retina, which in turn activates the
LGN ON/OFF sheets, one by one depending on the sheet’s built-in delay.

We used a variant of the LISSOM that can learn both the
orientation and the direction of the visual stimuli. Given an
image, we randomly picked an initial location and moved the
gaze window in a random direction along a straight line at a
fixed interval as shown in Fig. 8. Each gaze location gave a
48× 48 image patch that was the same size as the retina in
the LISSOM simulation. All four images in each image type
were used to generate the input sequence for each simulation.
All the LGN sheets were 24× 24 in size, and the single V1
sheet was 48× 48 in size.

All simulations in this work were based on the same set of
default parameters in the Topographica package, with small
modifications described in the previous section. Specifically,
we set the speed of the input pattern (i.e., the number of
retinal units the pattern moves between time steps) to 4
pixels/time step. This value was determined experimentally,
as neurons showed the best selectivity for direction of motion
at that speed. After training for several thousand iterations
(usually between 10,000 to 20,000 iterations), the network
developed patterned afferent and lateral connections for
retina to LGN, LGN to V1 and V1 to V1. We focused on
the projection from LGN to V1 because they represent the
spatiotemporal character of the RF.

Fig. 9 shows the self-organized RFs of six representative
neurons trained with natural scenes. Nearly all neurons devel-
oped spatiotemporal RFs strongly selective for both direction
and orientation. That is, each neuron is highly responsive to
a line with a particular orientation moving in a direction
perpendicular to that orientation. The receptive fields consist
of white (excitatory) and black (inhibitory) lobes according
to the preferred orientations and direction of the neuron,



Fig. 9. RFs Resulting from Self-Organization on the Natural Scene Input
Set. Six spatiotemporal RFs from the natural scene experiment are shown.
Each column corresponds to an individual neuron’s RF, and each row
represents the different time-lag. Within each column, we can see that the
pattern moves in a direction perpendicular to the orientation preference.

Fig. 10. RFs Resulting from Self-Organization on the Natural Scene Input
Set. From the 48× 48 cortex, only 15× 15 are plotted (roughly every 3rd
RF) for a detailed view of the RFs. The RFs mostly resemble visual RFs.

showing spatiotemporal preference. Such properties of the
receptive fields are similar to those of the receptive fields of
neurons found experimentally in the visual cortex [10] (cf.
Fig. 3).

The overall layout of the RFs developed in this simulation,
trained with four natural scenes, are shown in Fig. 10 by
plotting roughly every 3rd neuron horizontally and vertically.
A number of two-lobed RFs can be seen with strong orienta-
tion preferences except some neurons which have nonlinear-
shape and respond to all directions. This figure only shows
the first frame among the total of four (note that these are
spatiotemporal RFs).

The self-organized RFs produced from LISSOM after
20,000 training iterations with the texture input set are visual-
ized in Fig. 11. The neurons developed spatiotemporal RFs
strongly resembling tactile RFs found in the experimental

Fig. 11. RFs Resulting from Self-Organization on the Texture Input Set. Six
spatiotemporal RFs from the texture experiment are shown. Each column
corresponds to an individual neuron’s RF, and each row represents the
different time-lag. The RF shapes resemble the ring-like shape of tactile
RFs found in the experimental literature [2].

Fig. 12. RFs Resulting from Self-Organization on the Texture Input Set.
From the 48× 48 cortex, only 15× 15 are plotted (roughly every 3rd RF)
for a detailed view of the RFs. The RFs mostly resemble tactile RFs.

literature (e.g. Fig. 4). Excitatory and inhibitory components
of each neuron consists of ring and blob-like features as
found in [2]. For example, the first three column in Fig.
11 closely resemble the RFs in Fig. 4. Note that these RF
shapes arise not because circular texture elements dominate
the texture input set we used. On closer observation, the
texture input set we used show texture elements at varying
scales, and also, the size of the receptive field (15 × 15) is
usually smaller than the round or oval objects in the texture
input set. There are interesting variations (last three columns
in Fig. 11) where the polarity is reversed, i.e., instead of an
excitatory region in the middle and inhibitory region in the
surround, these RFs have an inhibitory region in the middle
and the excitatory region in the surround. Fig. 12 shows the
overall organization of the cortical map (roughly every 3rd
neuron’s RF is shown).



(a) Natural-scene-based (b) Texture-based

Fig. 13. Orientation Maps. The orientation maps resulting from (a) the
natural scene experiment and (b) the texture experiment are shown. The
color-key for the orientation is shown in the middle.

The results show that exposure to different kinds of input
can drive an identical underlying cortical learning model to
develop two different kinds of RFs, tactile or visual. RFs
trained on natural scenes resemble visual RFs, while those
trained on texture resemble tactile RFs. These results suggest
that the type of input most commonly stimulating the sensory
modality (natural scene for vision and texture for touch),
and not the intrinsic organization or developmental process,
determine the RF property.

Our experiments also turned up interesting preliminary
results. The global organization of the RFs can be visualized
just like for biological orientation maps, by labeling each
neuron by the preferred angle. Fig. 13 shows the overall
organization of the two maps. The orientation map developed
with natural scene input shows similar characteristics as those
found in the visual cortex, with smooth transition across
neighboring orientation domains. The map also has more
red and cyan than other colors, which means high selectivity
for near horizontal and vertical orientation, which is also
observed in experiments. It is interesting to note that the
map trained on textures (i.e., those that develop tactile RFs)
also has a rough orientation map. Note that in the tactile
map case, the concept of orientation is less well defined
than the visual map case, since not all RFs have a clear
orientation preference. Thus, the selectivity may be low. Such
a prediction (orientation map, and low selectivity) can be
verified experimentally in area 3b, using optical imaging
techniques.

V. DISCUSSION

The main contribution of this work is to have shown
what drives a virtually identical learning medium (the cere-
bral cortex) to specialize and diverge, to represent different
sensory modalities, visual vs. tactile. By comparing two
structurally similar modalities of touch and vision, along
with the assumption that texture (whether visual or tactile) is
basically a surface property, we have shown that it is the input
statistics (natural-scene-like or texture-like) that determine
the learned RF type, not the direct sensory modality. These
and our earlier results [14], [15], [5] show an intricate
relationship among touch, texture, and surface property in
3D.
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Fig. 14. Power-law vs. Baseline Gaussian Distribution. The response dis-
tribution h(E), where E is the activation level, and the matching Gaussian
distribution g(E) that has the same standard deviation is illustrated. When
the two curves intersect at the point marked L2, the probability of the
response distribution becomes higher than the baseline Gaussian distribution.
This point has been shown to play an important role in saliency thresholding
[25], [26]. Note that the shaded part in (a) is only for illustrative purposes
(to show the peakedness of h(E)), since the response E is always positive.
Adapted from [25].

In the background section, we raised two questions, re-
garding (1) the functional role and (2) the developmental
origin of tactile RFs. There are some more interesting
properties of the tactile RF that can link to its functionality.
In an earlier work, we have shown that the power-law-
like response distribution in a visual cortical neuron model
can help subsequent stages in the cortical processing to
easily extract salient features in the input, such as edges
and contours [25], [26] (cf. [27]). The basic idea was that
the heavy-tail part in the power-law distribution, compared
to a Gaussian baseline, can accurately predict the response
threshold (Fig. 14).

Interestingly, the response distribution of the tactile map
also shows a power-law property, even though the spa-
tiotemporal structure of the RF is different from the visual
RFs (Figs. 15 and 16). However, we should note that the
input statistics was different, natural-scene-like vs. texture-
like. Thus, we can speculate that one goal of early sensory
processing is to generate RF coding that maps the specific
input distribution into a canonical response distribution that
can be easily utilized by a similar second stage of processing,
regardless of the modality. These observations raise the
interesting possibility that later stages in multi-modal sensory
processing may share a common, integrated mechanism,
thanks to the customized encoding done at the early stages
of processing. (In a similar spirit, [28] and [29] show how
requirements in subsequent stages of cortical processing can
dictate initial sensory encoding strategy.)

The observations above can lead to interesting future
research. For example, we can check if response distribution
of tactile maps responding to natural scene inputs maintain
the power-law property. Our prediction is that the power-
law property will not be maintained in such a case. A dual
experiment with visual maps can also be done. We can also
extend the saliency thresholding approach we developed in
[26] to the tactile domain, exploiting the power-law response
distribution.



(a) Natural-scene-based

(b) Texture-based

Fig. 15. Cortical Response. Cortical responses of (a) the natural-scene-
based cortex and (b) the texture-based cortex are shown (bright represents
high and dark represents low activity). Both show a sparse activation profile.
See Fig. 16 for the response histogram.
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(a) Natural-scene-based (b) Texture-based

Fig. 16. Response Distribution. The response histogram of (a) the natural-
scene-based RFs and (b) the texture-based RFs are shown, in a log-log scale.
The histograms were calculated from the response matrix in Fig. 15. Both
show a power-law distribution. (Note that the first and the last bin are not
plotted, because those values were artificially exaggerated due to the use of
the piece-wise linear activation function that had a hard lower and upper
bound [Eq. 3].)

VI. CONCLUSION

The main finding of this work is that a common cortical
development framework (LISSOM) can develop two differ-
ent RF types, just based on the type of input presented during
training. The results suggest that texture in general, whether
it is tactile or visual in origin, contributes to the emergence of
the unique properties similar to those observed in tactile RFs
in area 3b of the somatosensory cortex. This is an interesting
result that helps us better understand the intimate relationship
among texture, surface, and touch, and further strengthens
our earlier finding that tactile RFs can outperform visual RFs
in texture segmentation tasks. We expect our new tactile-
oriented approach to texture segmentation to complement
the traditional visually oriented approach, and help us better
understand the nature of texture.
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