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Abstract

Thestaticnatureof representations(or symbols)makesthem
requirean active interpretational(or computational) mech-
anism to renderthem useful or meaningful. To avoid the
problemsof infinite hierarchyof interpreters,more active
approaches have been proposed. Theseare called active
representations(Hofstadter1985; Mitchell 2001) or active
schemas(Narayanan1999),andneuronscanperformanalog-
ical or metaphoricaltasks.Surprisingly, suchactive unitsare
very muchalike the neurons in our brains,andthey canin-
deedperformanalogicaltasks.In thispaper, adetailedneural
mechanismthatmaybeimplementingsucha functionis pro-
posed,andthe implicationsof this new connection between
analogyandtheneuralsubstratein building intelligentagents
andin understandingthebrainfunctionwill bediscussed.

Introduction
The static nature of representations (or symbols) makes
themrequire a separate,active interpretational(or compu-
tational)mechanism to renderthemuseful or meaningful.
Thedifficulty that is causedin sucha framework is thatof
aninfinite regressof higherandhigherinterpretationalunits.
However, if anactive role is assignedto therepresentations,
an emergent behavior native to the systemof representa-
tionscanarisenotrequiring aninfinite hierarchy (Hofstadter
1985; Mitchell 2001). A relatedapproachwith distributed
active schemasresultedin a similar behavior (Narayanan
1999). Central to the function of theseactive units is
the ability to find relations acrossdifferent domains, often
termedanalogy (Hofstadter1995) or metaphor (Narayanan
1999). In fact,analogy andmetaphorarehighly inter-related
in that they refer to similarities in relationsandattributes,
but metaphor encompassesa broader spectrumthan anal-
ogy (Gentner 1989). However, in this paper, I will usethe
termanalogy to focusmoreon sharedrelationsthanshared
attributes(Edelman1998; Shepard andChipman1970).

What is interestingis thatsuchactive representationsare
very muchalike theneuronsin our brains. It turnsout that
theseactiveneuronsasacollectioncanindeedperformana-
logical tasksif certainconditions aremet. In fact, an ex-
actcircuit thatmaybeimplementing sucha conditional re-
quirement exists in the brain. Cortico-cortical connections
together with thethalamo-corticalloopin thebrainareideal
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for implementing sucha constraint. In this paper, I will fo-
cusondescribing how theneuronscanperform rudimentary
analogical tasksand what is the role of the thalamusand
cortical connectionsin theprocess.

Analogy is commonly attributedto highercognitive fac-
ulties only, but it does not always have to be the case
asChalmerset al. (1992) suggested.If this is true,analogy
maybepartof a largersetof humanbrainfunctionincluding
perceptionandmotor function, aswell ascognition. With
this new framework of active representationsandanalogi-
calprocess,wecanstartto takea morefocusedapproachin
building intelligent agentsandin understandingthe nature
of brainfunction.

Neurons as Active Representations
Adopting the active approach for representations, we can
think aboutwhatkind of unit in thebraincanembody such
a functionality. It turnsout that theneuronscanimplement
suchactive representations.Insteadof focusingon under-
standing what kind of information the neurons encode and
process,we canaskwhat action is taken whenthey sense
a certainfeaturein the incoming input, be that temporal or
spatial.Theactionperformedby neuronsis simply invoking
activity in otherneurons(figure1). In thisway, neuronsrep-
resenta certaininput feature, andtake immediate actionby
invoking otherneuronsoncethe featureis detected. Thus,
in this framework, which neurons are invoked by a single
neuron becomesasimportantaswhatfeaturesit encodesor
is sensitive to.

The questionthen is what kind of general principle can
suchactive neurons implement? Sucha unit alonecannot
achieve much,neithercana serialchainof suchunits. The
truepower of this simpleunit is revealedwhenit is usedin
a massively parallelway. This may be an obvious line of
thought becausethat is what our brainsseemto do. How-
ever, it turns out that the collective effort of thesesimple
unitscanembody asimpleyetpowerful functionalprinciple
of analogy.

We have to simplify mattersto seehow analogy canbe
processedby suchneurons.Let usassumetherearesix neu-
rons in an imaginary creature’s brain inhabiting the world
of fruits (figure 2). After allowing the fruit brain to expe-
rience the world of fruits, it will learn the co-occurrences
betweenfeaturesandestablishrelationalarrowsasshown in
the figure (arcswith arrows). Also suppose that the brain
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Figure 1: Active Role of Neurons. A simplified diagram
shows how neurons representfeaturesin the world and actively
invoke otherneurons.Suchinvocationsestablisha relationalcon-
text amongneurons, andthusrepresentrelationsbetweenobjects
andeventsin theworld.

is partitioned into several specializedmapareas(or parti-
tions), just like in the real brain. Now, suppose � apple � ,
� orange� , and � word-red� werepresentedto thecreature
simultaneously. If we track the activation, we canseethat
thesedetectors will turnon: appledetector, orangedetector,
color-reddetector, color-orange detector, andfinally, word-
red detector. Theseactivationsare input-driven. Because
theneuronsareactive, assoonasthey detectwhat they are
familiar with, they sendout signalsthrough the relational
arrowshorizontally acrossthecortex. As aresultof thissec-
ondorderactivation,theword-orangedetectorturnson,even
without input. Now, hereis thecrucialmoment.We canask
this question: which neuron’s firing waspurely cortically-
driven?. Notethatthis questioncanbeviewedasa filtering
process. Theresultof thefiltering is then � word-orange� .
The significance of this observation is that this processis
very similar to solvinganalogicalproblems. Theinput pre-
sentedto thecreaturecanbeviewedasananalogical query:
� apple � : � orange� = � word-red� : � ?� . Thefilteredcor-
tical response� word-orange� can then be the answerto
thisquery.1 Thus,activerelationscanperform ananalogical
function whentheresponsesarefilteredproperly.

However, thingscangetcomplicatedwhencombinations
of objectsare usedas a query. Let us extend the crea-
ture’s feature detectors to includeconceptsof smallandbig
(not shown in the figure). Thenwe canallow the creature
to learn the relations again. We can thenpresentan ana-
logical querylike this: � big ��� apple� : � small��� apple�
= � big��� orange� : � ?� . However, in this case,if we fol-
low the samestepsas above, we comeacrossa problem.
Becausetheanswerweexpect( � small��� orange� ) already
appearedin thequery (i.e. they areinput-driven), if we look
for purely cortically-driven activations, the answerwill be
� word-red��� word-orange� . However, this problem can
beovercomeif we ask: whatare themostcortically-driven
activities in each partition of the brain? Because� big �
and � apple � appear in the input twice but � small� and
� orange� appearonly once,the latter two canbeselected,

1Thereis an issueof how thepresenceof � word-red� canaf-
fect theoutcomeat all. This problemwill bediscussedlaterin the
discussionsection.
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Figure 2: World of Fruits. A brain with fruit andcolor detec-
tor neuronsis shown. Thesix neuronseachrespondto theseinput
featuresas labeledabove. At the bottom is the fruit world, and
the thick vertical arrows represent afferent input. The horizontal
arcsaretherelationalarrowsthatpoint to theirmostfrequentlyco-
occurringcounterpartsthathave beenlearnedthrough experience.
The gray vertical barsrepresent the partitioningof the brain into
separatemapareas(from the left to right, objectmap,color map,
andword map). Note that for simplicity, the word-orangedetec-
tor connectsonly to the color-orangedetector, but not the orange
detector, i.e. it is a word-color-orangedetector, not a word-object-
orangedetector.

aswell asthepurely corticallydrivenactivities listedabove.
Thus,evenfor derivedactivities thatareinput-driven, those
thatarelessinput-driven cansurviveandthecorrectanalog-
ical responsecanstill be found amongsuchactivities that
aremore cortically-driven within eachpartition. Note that
� color-orange� alsosurvivesthefiltering,but whatis more
importanthereis thatasimplefiltering processasdescribed
abovecanprovidepotentialanswersto analogical queries.

In this section,I have shown thatactive neuronsthaten-
code input featuresand relationalcontext can collectively
perform rudimentaryanalogical functions.2 But doesthe
brain function in sucha way? In fact,an exact circuit that
canservesucha functionexistsin thebrain.

Neural Basis of Analogical Completion and
Filtering

Two basicneural mechanismsareneededto account for the
proposedanalogical function: completion andfiltering. Be-
low, I will discusshow thecortico-corticalconnectionsand
thalamo-corticalloopcanimplement thesetwo mechanisms.

Thecompletion maybeaccomplishedby the long-range
cortico-cortical connections (Mumford 1992). As men-
tionedearlier, synapsesarestrengthenedwhenthepresynap-
tic activity precedepostsynapticactivity (Song et al. 2000),
thustheconnectionscanimplement causalrelations.Also,
specificpatterns of connectionsobservedin animals(e.g.in
the primary visual cortex of monkeys; Blasdel1992) show
how suchpatterns canimplement specificcompletion func-
tions. Computational modelsalso showed how suchcon-
nectivity patternscanencodefeatureco-occurrenceandhow
they canaffect the performanceof the model (Bednarand
Miikk ulainen2000; Choe2001; Geisleret al. 2001).

In the thalamo-cortical loop, thereexistsa massive feed-
backfromthecortex to thethalamusandaninhibition mech-
anismwithin the nucleus reticularis thalami (nRt) on the

2Analogical taskscan become much more complex than the
onesshown here.
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Figure3: Analogical Filtering in the Thalamus. The diagramshows a simplified thalamo-corticalloop that canperformanalogical
completionandselection,andpropagatetheselectionbackto thecortex. I1 andI2 areinputfibers,T1 andT2 arethalamicrelaycells,R1and
R2 areinhibitory nRt cells,andC1,C2,C3,andC4 arecorticalneurons(neurons in multiple layersof thecortex areshown asa singleunit).
The neuronsareeitherexcitatory (+) or inhibitory (–), andthearrows areaxons(pointing in the directionof actionpotentialpropagation).
Thenumberedlabelson eacharcshow theactivity beingcarried.Black solid arrows areascendingfibersto thecortex andcortico-cortical
connections (relationalarrows), andgray solid arrows arecortico-thalamicfeedbacks. Dashedarrows areinhibitory. The diagramshows a
scenariowheninputwaspresentedto C1,whichexcitesC2,andin turngeneratesthefeedbackfrom C2to T2, thenretransmittedto thecortex
asa new query(ascending thick blackarrow). Theselectiondecisionfor furtherpropagationto thecortex dependson therelative excitation
andinhibition T1(T2) receive from C1(C2)andR1(R2). On the right of C2 (dotted)in the cortex is the subsequent cascadeof analogical
completions.Notethatto avoid clutter, reciprocalconnectionsin thecortex, aswell asdisinhibitingconnectionswithin thenRt layerarenot
shown. All connectionsshown arebasedon known anatomyof thethalamusandthecortex (Mumford 1995).

surfaceof the thalamus (Mumford 1995). This particular
architecture has beenthought to be involved in the anal-
ysis and synthesisof new memories (MacKay 1956), ac-
tive blackboard (Harthet al. 1987; Mumford 1991), global
workspace(Newmanet al. 1997), andfinally, generatingat-
tentionandconsciousness(Crick andKoch1990).

It turns out that thesefeedforwardandfeedback connec-
tionsfromnRtto thecortex togetherwith thenRtinhibitions
can filter feedbacks from the cortex to promote the most
cortically-driven feedback, i.e. the analogical completions.
Let usfirst seehow thepurely cortically-driven activitiesare
selected(figure3). In thethalamus, ascending fibers(T1 to
C1) branchout andexcite theinhibitory nRt neuron R1 (T1
to R1). Whenthe feedback from C1 to T1 comesback,it
branchesandstimulatesR1. As a result,if the descending
feedbackhadamatchingascendingsignal,theinhibition T1
receivesis twiceashighasotherneuronsin thethalamusthat
areactivatedby purely cortically-drivenfeedbackthatcame
around thefirst time(T2). If thesynapticweightsareappro-
priate(i.e. ���! #"%$ and ���'&(")� )3, at T1 the feedback

3Here, *,+�- is thesynapticconnectionstrengthfrom neuronX
to neuronY.

will becanceledout,but at T2 thefeedbackwill survive the
inhibition andberetransmittedto thecortex (thenew query
arrow). Sucha surviving cortical feedback, togetherwith
theinputstimulusat thenext moment form anew analogical
query to thecortex, andthesameprocessis repeated. That
is, C2 elicits activities in C3, and in turn C4 through the
thalamo-corticalloop(note thatthey canbequitefaraway).
For theselectionof themostcortically driven feedback,the
mutual inhibitionsin thenRt layer(e.g.betweenR1andR2)
canbeusedto disinhibit (inhibiting aninhibitory neuronre-
sults in lessnet inhibition) eachotherandallow the more
cortically driven feedback to go back to the cortex, even
whentherearepairedinputsto all current corticalactivity.

Discussion
Theneural mechanismsdescribedin this papercanonly ac-
count for simple kinds of analogies, and in somecaseit
can even seemas simple patterncompletion. For exam-
ple, � orange� = ? will resultin the sameanswer� word-
orange� asin theActiveNeurons:... section.How canthe
term � word-red� in the original queryaffect the outcome
at all? For this, I believe that amongmany possiblecom-
pletions, thegeneral maparea(i.e. thepartitionsin figure 2)



thatareactivatedby input getshigherpreference.In thisex-
ample,. thefruit-map,word-mapandcolor-mapwill turnon,
thuspurely cortical activationsin othergeneral maps(say
odor-map, etc.) will not be as salientas that of � word-
orange� . Thus, in this way, the presenceof � word-red�
can indeedaffect the outcomeof the analogical query. A
more preciseneural mechanismfor this kind of selection
needsto beinvestigatedfurther.

Researchersregard analogical capacitiesas the crux of
high-level cognition (see Gentneret al. 2001 for a col-
lection of current work on analogy). However, analogy
doesnot needto be limited to high-level cognition. Re-
centresultssuggestthatanalogy maybeneeded in percep-
tion as well (Davis and Goel 2001; Morrison 1998), and
may even be a crucial requirement for cognitive develop-
ment(Chalmers et al. 1992). Thenit is not unthinkablethat
themotor functionsalsoobey thegeneralprinciple of anal-
ogyin asimilarmanner, thuswecanthenstartto understand
perception, cognition, andmotorfunctions undertheunify-
ing framework of analogy insteadof trying to understand
thoseasembodyingseparatefunctionalprinciples.

How cansucha diversefunctionality beintegratedunder
thegeneral principleof analogical processing?Massivecon-
nections exist within andacrossdifferentfunctionalareasin
thebrain,andthesensory/motormapsaretopologically or-
ganized, i.e. nearbyneuronsare responsive to nearbyfea-
turesin the input space(Kohonen 1982;von der Malsburg
1973). Within eachmap,the feature detectors andcortico-
cortical connections learn to encode the relations (Choe
2001; Siroshet al. 1996). It is possiblethatcognitive maps
also have a topological organization where nearbyareas
learnto encode similar concepts, suchassemanticmapsor
episodicmemory maps (Miikkulainen1993), or even tem-
poral sequences (Jamesand Miikkulainen 1995). When
the sensory, cognitive, and motor mapsare connectedin
an orderly way preserving their local topology, analogies
within and(more importantly)acrossdifferentdomainscan
bedrawn.

Within this huge number of mapsspecializingin dif-
ferent tasks,a cascadeof multiple analogicalcompletions
canbe going on in parallel,synchronizedat eachmoment
by the 40Hz rhythm to hold an instantaneously coherent
state(Mumford 1995). Such statecan then poseas an-
otheranalogical query, andthat processcanrepeat. When
that cascadereachesa motor area,behavior will be gener-
ated.Memorycontent canalsoentertheanalogical cascade,
and this quasi-staticcontribution can prevent the continu-
ouslychanginginput streamfrom causingrandomcascades,
thereby maintaining a moregoal-directedandstablebehav-
ior. Specificmechanisms of how the memory contenten-
ter thethalamo-cortical loop,andhow completedanalogies
arearchived in memory through the interactions with sub-
corticalcenterssuchasthehippocampus shouldbestudied
further.

Such an integrative view of perception, cognition, and
motor function under the general principle of analogy can
become a powerful tool in building intelligent agents. In
fact, the virtual agentdeveloped by Morrison (1998) is a
concreteexample of suchan idea. Morrisonshowedthat a

virtual agentwith integrated perceptual, cognitive, andmo-
tor functionswasableto embody a rich structurein thevir-
tualenvironment, usinganalogical primitives.Whatis more
interestingis thathe showedthat the representationsin the
agent canbecomemorecomplex if theenvironmentis made
more complex. It is possiblethat if suchan agent is phys-
ically implemented,it could learnmorecomplex relations
in the environment andshow muchmorecomplex behav-
ior. Thus,a promisingdirectionfor the future is to employ
theanalogicalframework in embodiedroboticsresearch.In-
steadof directmapping from sensorto motor, wecanputan
intermediatestage(cognition) anddesignthebasicfunctions
according to theanalogical framework.

Neuroscienceresearchhasrevealedalot about perception
andmotorabilities in thebrain,but understandingthecog-
nitive facultystill remains elusive. Investigationinto cogni-
tive functionscanbedone under theanalogical framework,
where we caninfer the functionality of thehigher areasby
backtrackingtheconnectionsto theperceptualandmotor ar-
easandstudytheir topology andanalogical links. Specific
predictionsregardingthelayout of thehighercenterscanbe
made basedon the topology of the lower centersandcon-
nection structurebetweenthetwo,andexperimentscanthen
focus onverifying thesepredictions. For example, thereare
orientationmapswith smoothly changing orientation prefer-
encein V1 (primary visualcortex; Blasdel1992), andthere
areobjectmapsin TE (temporal areaE; Tanaka1996) that
alsochangesmoothly(for example, rotationof a head). My
theory predictsthat therewill bea mapping from V1 to TE
thatpreserve suchlocal topology acrossdifferentrepresen-
tationspaces.4 Similarmappingsmayexist betweensensory
andcognitive areas,andif sucha mapping is found, we can
startto understandtheabstractcognitive functionsbasedon
concreteperceptual architecture.Theadvantageof this the-
ory is that it enables us to relateperceptual, cognitive, and
motor functions in a unified framework. By encompassing
all aspectsof brainfunctionunderananalogical framework,
morefocusedexperimentscanbedesigned to revealspecific
analogicalcapacities,andthiswill helpusbetterunderstand
thebrain function andthecognitive process.In turn, these
new understandings can be utilized in building intelligent
agents.

Conclusion
In this paper, I adopted the view of active representations,
and observed that our neurons are no different, and they
should beunderstoodin a moreactivecontext. It turnedout
that collectively they can perform an analogical function.
Specificcircuits in thebrainwasfoundto besuitablefor im-
plementing sucha function, thusproviding further support
for analogy asageneral computationalprinciplein thebrain.
In this new framework, thespecifictargetstheneurons ex-
citebecomeasimportant ashow they interpret incoming in-
put. This new framework canhelpus take a morefocused
approachin building intelligentagentsandin understanding

4Although thepathway from V1 to TE is not direct, involving
V2, V4, andTEO areas,but successive mappings within this path
canrevealhow V1 andTE aretopologically mapped.



thenatureof brainfunction.
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