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What is available to developmental programs in autonomous mental development, and
what should be learned at the very early stages of mental development? Our observation
is that sensory and motor primitives are the most basic components present at the begin-
ning, and what developmental agents need to learn from these resources is what their
internal sensory states stand for. In this paper, we investigate the question in the con-
text of a simple biologically motivated visuomotor agent. We observe and acknowledge,
as many other researchers do, that action plays a key role in providing content to the
sensory state. We propose a simple, yet powerful learning criterion, that of invariance,
where invariance simply means that the internal state does not change over time. We
show that after reinforcement learning based on the invariance criterion, the property
of action sequence based on an internal sensory state accurately reflects the property of
the stimulus that triggered that internal state. That way, the meaning of the internal
sensory state can be firmly grounded on the property of that particular action sequence.
We expect the framing of the problem and the proposed solution presented in this paper
to help shed new light on autonomous understanding in developmental agents such as
humanoid robots.
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1. Introduction

In the emerging field of autonomous mental development (AMD),! and in develop-
mental robotics in general,? incremental learning is a central issue. In incremental
learning, new skills need to be acquired based on acquired skills. One question
that arises here is, what forms the minimal basis upon which further learning can
bootstrap from? In traditional approaches, domain specific, task specific learning
algorithms are used, so new skill acquisition may not be possible at all. In con-
trast, under AMD (and in developmental robotics), the sensorimotor apparatus
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(the robotic body) and a developmental program are all that is needed to form the
very basis.!’?

However, both of those requirements in themselves pose significant challenges.
First, we need to design sensorimotor apparatus that exploit the dynamical prop-
erties of the physical world,*® and furthermore, make sure that the capabilities
of those apparatus match the ecological task demands® (see Ref. 7 for a review).
Second, rather than a list of procedural instructions that the agent can merely
follow, the developmental program needs to be based on a small number of non-
ad hoc (and, desirably, biologically grounded) principles which can spontaneously
and autonomously give rise to models and goals within the agent, subsequently
leading to meaningful behavior.?

In this paper, we will focus on problems associated with developmental pro-
graming. More specifically, we will look at the very early stage of development (e.g.
shortly after birth of infants or at “switch-on” time of AMD robots). We will begin
by first considering what is available to developmental programs at that early stage.
Then, we will investigate what can (and should) be learned, and what principles
should guide such a learning/developmental process.

In order to determine what is minimally available at that early stage of develop-
ment, we will turn to biology. As mentioned above, agents are born with their senso-
rimotor apparatus, and that is an absolute minimum requirement. The real question
is, what degree of sophistication should these apparatus exhibit? There could be
raw sensory arrays and actuators such as photoreceptor arrays and bundles of mus-
cle fibers; or there could be some rudimentary, initial, built-in processes, such as
low-level sensory filters and stereotypical motor primitives. In fact, the latter turns
out to be the case. Sensorimotor apparatus at birth already contain rudimentary
low-level processes, such as center-surround filters in the retinal ganglion cells and
the lateral geniculate nucleus, or orientation-sensitive receptive fields in the pri-
mary visual cortex (see Refs. 8-10 for reviews); and motor primitives in the central
pattern generator (CPG).!! Note that CPGs can generate these motor patterns in
the absence of any sensory input.'? (Pierce and Kuipers'® provided some insights
on how raw sensors and actuators can be organized into such initial primitives.)
Determining how sophisticated the low-level sensorimotor primitives are at birth
greatly affects how we should think about developmental programs.

Once we have determined that sensorimotor apparatus and their basic primi-
tives are all that is present at the beginning, it is natural to think of developmental
programs being grounded on these existing resources. That is, the first thing devel-
opmental programs should do is to learn how to utilize their given sensorimotor
apparatus and their primitives to gain understanding of their body and the envi-
ronment. In fact, research in developmental psychology led to the same conclusion,
that development of cognition begins with the sensorimotor stage!? (also see the
related schema theory!'®). The two main questions we will address in this paper
are, (i) what can (and should) be learned from the sensorimotor primitives, and (ii)
what principles should guide the learning process.
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(a) External observer. (b) Internal observer.

Fig. 1. External versus internal observer. The problem of decoding internal sensory state is seen
from (a) the outside, and (b) from the inside of a perceptual agent. The sensory primitive imple-
mented by a neuron inside the brain performs a transformation from input I to sensory repre-
sentation s using the function f. The function f is supposed to be a complex one, and deeply
embedded in the agent (i.e. it is not at the immediate sensory transduction stage such as the
retinal photoreceptors). The task is to find out the property of the input I given the internal state
s. (a) With full access to the input I and the state s (as shown as a measuring electrode), what s
stands for can be inferred. (b) However, with the lack of that knowledge (the grayed-out area is
not known to the second neuron receiving s), such an inference may be impossible. How can the
internal observer understand what s means, without peaking outside the skull? (Adapted from
Ref. 23.)

Since the sensory input is the main source of information that agents receive
(both from their body and from the environment), let us look at what developmental
programs can learn, in principle, from these sensory inputs. Let us assume that
developmental programs receive input from the sensory primitives, that is, the out-
put from various low-level sensory filters as justified above. One immediate issue
with such a setup is that the output from the sensory primitives are encoded. For
example, we can imagine a visual agent as shown in Fig. 1. The agent receives
input I, and its sensory filter f transforms that input into an internal representa-
tion s. For example, f could be neurons in the early visual pathway, such as the
orientation-tuned neurons in the primary visual cortex, and s the spikes generated
by those neurons. The question then is, how can the developmental program know
what s stands for? In other words, what is the content of the spikes? The question
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becomes one of semantics about internal representations/dynamics, or one of

grounding.?0:2!

For the developmental program to know what s conveys, it either needs to
peek outside of the box (as an external observer), look directly at I, and some-
how correlate that input to the spike s, as in stimulus reconstruction methods in
neuroscience?? [Fig. 1(a)]. Another way is to know a priori the detailed mechanism
of the sensory filter f. However, in biology, neither is the case: subsequent stages
in the visual pathway receive only the spikes s from the preceding sensory filters
[Fig. 1(b)]. The point here is that without any knowledge of the direct input I
nor of the low-level sensory primitives f (when output from sensory filters, not raw
input, constitutes the first information provided to the developmental program), it
is impossible for a developmental program to understand what s represents solely
on the basis of s. Without any understanding of its own internal state in such a
most basic way, how can autonomous mental development even commence?
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One may realize by this point that we have largely left out from our discussion
above the other primitive that exists at birth — the motor primitives. In this
paper, we will show that in fact these motor primitives are central in providing
behaviorally meaningful content to the output of the sensory primitives, and thus
solve the problem posed in the previous paragraph and in Fig. 1(b). Also, we will
propose a simple yet powerful learning criterion for the developmental program —
maintained invariance in internal sensory state — which will allow for a meaningful
linkage between sensory and motor primitives.

In the next section (Sec. 2), we will provide motivation for our proposed approach
and give a sketch of how motor primitives can provide behaviorally meaningful
content to sensory primitives. The section thereafter (Sec. 3) will provide details
about our learning algorithm, followed by experiments and results (Sec. 4). Finally,
we will discuss important issues arising from this work in Sec. 5, and conclude the
paper, with a brief outlook (Sec. 6).

2. Learning Behaviorally Relevant Content for Sensory Primitives

In order to see how a developmental program can infer what the internal state
of the agent stands for while confined within the agent, let us examine a simple
sensorimotor agent with sensory and motor primitives (Fig. 2). The agent has a
limited visual field, and the incoming visual signal is transformed via orientation
filters (mimicking primary visual cortical neurons) into a spike pattern in the sensory
array. As discussed in the introduction, let us assume that the sensory array forms
the sensory primitive, thus the agent does not have direct access to the raw input
I, and furthermore the property of the filter f is unavailable to the agent. The task
of the agent then is to attach behaviorally meaningful content to its own sensory
array activity, i.e. to come to an understanding that each sensor represents a certain
oriented visual input which can be interacted with in a linear, slanted motion of the
visual field.

Imagine we are inside this agent, isolated from the world outside the box, sitting
near the 7 symbol in the middle. It is questionable then whether we will ever be able
to associate an orientated visual input stimulus with the spikes generated in the
sensor array because we cannot peek outside, and we do not know the particular
mechanism of the filters (as discussed in the introduction). Thus, if we view the
problem to be the same as Fig. 1(b), there seems to be no solution. However, if we
include motor primitives, as in Fig. 2, then there is hope. Why this is the case, we
will discuss next.

In Fig. 2, the agent has motor primitives, which basically allows the agent to
move its gaze in the direction of the different action vectors. (We discussed earlier
that there is reason to believe that such motor primitives exist at birth.) This new
addition turns out to be critical. By relating the sensor activity and the motor
command that was just generated, certain aspects of the sensor property can be
inferred. A crucial insight that occurred to us at this point was that certain kinds of
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Fig. 2. A sensorimotor agent. An illustration of a simple sensorimotor agent is shown. The agent
has a limited visual field where part of the input from the environment (I) is projected. A set of
orientation-tuned units f (sensory primitives) receive that input and transform it to generate a
pattern of activity in the sensory array s (black marks active). In the example shown here, the
45° unit is turned on by the input. Based on the sensory array pattern, a mapping 7 to motor
action vector a is determined, resulting in the movement of the visual field in that direction, and
then a new input is projected to the agent. Note that the agent is assumed to be aware of only its
internal sensory state s, thus it has no knowledge of I, nor that of f. (Adapted from Ref. 23.)

action tend to keep the sensory activity pattern to remain unchanged (i.e. invariant)
during on-going movement, and the property of that action exactly reflects the
property of the sensory stimulus. Note that by invariant, we simply mean that
the internal state is unchanging. So, it should not be confused with other uses of
the word invariant, as in translation, rotation, and scaling invariance in perceptual
invariance.

For example, consider the state of the agent as shown in Fig. 3, where a
45° input is presented, and the corresponding sensor is activated in the sensory
array. Now imagine we move the visual field according to the motor action vec-
tor sequence , ", ", /., , which corresponds to a back-and-forth movement
along the 45° diagonal (along the slanted input). Such an action will keep only
the 45° sensor turned on during the motor act, i.e. the sensory array will stay
invariant over time. We can see that this motion, generated while trying to keep
the sensor array unchanged, has led the agent to perform an act, the property
of which reflects that of the stimulus. Thus, we are led to conclude that associ-
ating sensory spikes with this kind of sensory-invariance driven action itself can
potentially serve as the meaning for each sensory neuron. That is, there is a cor-
respondence between (i) the property of the stimulus I triggering a particular sen-
sory state s, and (ii) the property of the action a that maintains invariance in the
sensory state s. Thus, a behaviorally meaningful content (the action itself) can
be attached to each encoded sensory state, providing a solution to the problem
in Fig. 1(b).
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time

Fig. 3. Invariance in internal state during gaze movement. The internal state of the agent is shown
while it is traversing the diagonal input. The internal state does not change over time (i.e. it is
invariant) as its gaze moves, and we can observe that the property of the gaze movement (diagonal)
is congruent with the property of the input signaled by the internal state. (Adapted from Ref. 23.)

Note that the above scheme can be extended so that invariance is enforced in
a spatial pattern (for example, population activity in neurons) or a spatiotemporal
pattern, rather than invariance in a single sensory primitive. For example, a sequence
of complex actions that give rise to a temporally repeating pattern of activity on
the internal state, in which case the two can be correlated. Also, we must clarify
that we are not claiming that our approach applies to all sensory modalities. For
example, our approach may not work for sensory modalities such as olfaction or
taste, where the property of the stimulus (smell) does not easily map to a particular
kind of action that also has that kind of property. Certain actions can correlate with
stimulus intensity in olfaction or taste, but the associated actions themselves do not
possess discriminating characteristics for different odors or tastes. However, our idea
can apply well in modalities such as touch. We will discuss more about these points
in the discussion section (Sec. 5).

Based on the above insight, we propose that understanding one’s own internal
state in terms of one’s own action is one (possibly among several) important prin-
ciple that developmental programs can abide by, and internal state invariance can
serve as a simple, yet powerful criterion for implementing the principle. To test the
insight developed in this section, we implemented a learning agent based on inter-
nal state invariance. The following sections describe the methods and experimental
results in detail.

3. Methods

Consider the agent described above (Fig. 2). First, we will describe how input
preprocessing was done, and then explain how sensory responses are generated.
Next, we define a simple learning rule based on our idea of sensory-invariance driven
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action that will allow the agent to learn a mapping from sensory state to meaningful
action.

3.1. Input preprocessing

As a first step, the input image was convolved with a difference-of-Gaussian (DoG)
filter?* to simulate the processing done in the lateral geniculate nucleus in the
thalamus. The DoG filter D was defined as:

D(z,y) = go2(2,y) — 9o (,y), (1)
where
gb(ﬂf, y) — exp <_ (x - xc) ;; (y - yc) ) (2)

is a Gaussian function with width b, (z, y) the pixel location in the filter, and (z., y.)
the center location of the Gaussian peak. For a filter of size k x k, o was % (for
all experiments, k was 15), and . = y. = 8. The original raw input image Iy
(640 x 480 in size) was convolved with the DoG filter to generate the input Ip:

ID = IR*D, (3)

where “*” is the convolution operator. The input Ip was then subtracted by its

pixel-wise mean, and then normalized (divided) by its maximum absolute value so
that each element lies within —1 and 1.
In(z,y) — pp

(4)

I =
D(‘xv y) max,, ., |ID ('LL, ’U)| )

where (z,y) is the pixel location, and pp the mean of all I'n(z,y). Figure 4 shows an
example of Iy and Ip. The final input to the agent (/) was sampled from a 31 x 31
square area in Ip centered at the agent’s gaze location.

3.2. Internal sensory state and action repertoire

In order to determine the sensory state, we used oriented Gabor filters. (Gabor
filters are known to resemble the receptive fields in the primary visual cortex of
mammals.?®) The Gabor filter G is defined as:

x/2+ 12
Go.prco (,9) = exp (—Ty) (2mwa’ +9), (5)

where 6 is the orientation, ¢ the phase, o the standard deviation (width) of the
Gaussian envelope, w the spatial frequency, (z,y) the location, and 2’ and y’ defined
as:

!
T

x cos(f) + ysin(6), (6)
y' = —xsin(f) + ycos(h). (7)

The formulas above closely follow Ref. 26. Every m x m filter G; (m = 31) had the
same width (o = %), phase (¢ = —7F), and spatial frequency (w = %), while the
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Fig. 4. Synthetic input and difference-of-Gaussian-filtered response. A 640 x 480 synthetic input
image consisting of intersecting lines and its Difference-of-Gaussian (DoG) filtered response are
shown. A 15 x 15 kernel was used for the DoG filtering. The DoG response was normalized by
subtracting its mean and dividing by the maximum absolute response (black represents negative
min and white positive max). See the text for details.

(a) 0°

(b) 22° (c) 45° (d) 67° (e) 90° (f) 112° (g) 135°  (h) 157°
Fig. 5. Oriented gabor filters. The oriented Gabor filters used in the simulations are shown (black
represents negative min and white positive max). Each filter was 31 x 31 in size.

orientation 6 varied over the index ¢ (§ = | (i — 1)m/n|, where n is the number of
filters). Figure 5 show eight Gabor filters G; (i = 1,...,n, where n = 8). (Note that
we will use radian and degree interchangeably depending on the context.)

With the definition above, we can now define the orientation filter response. The
filter response is a column vector r where each element r; (¢ = 1,...,n, where n is
the number of filters) corresponds to the sum of the input times the oriented Gabor
filter:

T :ZGi(xay)I($>y)’ (8)

where (,y) is the location in the two matrices. (The value r; is simply the vectorized
dot-product of G; and I.) The vector r is then normalized with its /2-norm ||r|[:

pi= 9)

x|
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Fig. 6. Reward probability table. The reward probability function R(s,a) is shown. The rows
represent the sensory state (orientation), and the columns motion directions. In this example, four
sensory states and eight motion directions are shown. Under ideal conditions, one sensory state
would have two best motion directions [thus R(s,a) = 0.5 in the two diagonals]. (Adapted from
Ref. 23.)

Finally, based on the filter response r, a scalar value representing the sensory
state s was calculated as:

§ = argmaxr;, (10)
i=1,...,n

where each value of s corresponds to a unique orientation 6 = |(i — 1)w/n] for i =
1,...,n. In this way, given the current input I at the gaze location, s is determined
(s = f(I), in the agent: Fig. 2). The set of all possible s values constitutes the set
of sensory states S.

For each orientation, there were two matching directions of motion (Fig. 6). For
example, for 6 of 0°, the two directions were 0° and 180°. Thus, the set of actions
A had 2n movement-direction vectors as members (for example, see Fig. 2):

A= {(dcos(@),dsin(@)) 0= w, for i = 1,...,2n}, (11)

where d is the distance of each movement (fixed to a value of 7), 6 the direc-
tion of motion, and n the number of orientation filters. Execution of each action
vector (az,a,) € A directs the agent’s gaze from the current location (z,y) to
(x + ag,y + ay).

3.3. Learning algorithm

Given a particular sensory state s; at time ¢, taking an action a; takes the agent
into sensory state s;y1. The state transition depends on the particular edge feature
in the visual scene, thus it is probabilistic. The reward is simply the degree of
sensory-invariance achieved across states s; and s;y1. Let us call this immediate
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reward p;y1. One way to measure the degree of invariance py41 is to calculate the
dot-product across the successive sensory filter responses:

Pt+1 =Tt - Tiqq, (12)

where r; is the filter response vector at time step ¢ [Eq. (8)], and “” represents
the dot-product. With this formula, when the previous filter response is the same
as the current, the reward becomes maximized (p, = 1) and in the opposite case
minimized (p; = —1). The benefit of using the vector r instead of directly comparing
the scalar values s is that a graded measure of invariance can be obtained instead
of a hard invariant or not-invariant.

The task of the agent is to learn a state-to-action mapping so that it maximizes
the reward p; at time t. However, because of the probabilistic nature of the state
transition (which heavily depends on the edge features in the input image), a deter-
ministic state-to-action mapping is not easy to learn. Given the current state s,
we can think of the conditional probability P(a¢|s;) so that if we choose action a;
according to this probability, the probability of the next state s;+1 being the same
as s¢ is maximized. Given an estimate of P(a¢|s:), which we will call the reward
probability function R(s¢, at), we let the agent execute the following policy 7 at each
time step ¢:

(i) Given the current state s; € S, randomly pick action a; € A.
(i) If a; equals argmax, 4 R(s¢, a),

(a) then perform action a,
(b) else perform action a; with probability R(s¢,az).

(iii) Repeat steps (i) to (iii) until exactly one action is performed.

To reflect the fact that eye movements follow a fairly straight to slightly curved
trajectories between targets,?” the policy above was augmented with a momentum
mechanism where, with a 30% chance, the action from the previous time step t — 1
was repeated bypassing the steps above. The momentum term’s functional role
was to aid in the initial stages of training. However, during the final stages of
training, the reward probability functions become distinct between preferred and
unpreferred directions, thus the momentum term’s effect is mostly shadowed by the
tendency of moving along the direction signaled by the internal state. Furthermore,
the momentum term resulting in a long straight gaze is low: the probability of
a straight 6-step gaze is less than 0.14% (= 0.3°). So, at best, the effect of the
momentum is short-lived. In practice, for step ii(b) above, the action was performed
if a random draw from [0,...,1] was less than cR(s;, a;), where the parameter ¢
controls the strictness of this check (we used ¢ = 1.55 during training to relax
the check a bit). [Note that, in principle, the entire step (i) can be replaced by
step ii(b): we did test runs with that approach and found that the results were
comparable but the simulation was generally slower, especially near the beginning.|
When the location of gaze reached the image boundary in Ip, the movement was
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wrapped around and continued on the opposite edge of the input. Note that the
policy requires the agent to move its gaze every iteration, so a trivial solution of
“do nothing” to maintain invariance is avoided. The momentum term also plays a
minor role in preventing short, periodic oscillations (<, —, «, —, - - - ) that trap the
gaze in a small local region in the visual environment.

The remaining question is how can R(s¢,a:) be learned? For that, we used a
simple update rule:

Riy1(8t,a¢) = Re(s¢,at) + o pey, (13)

where Ry11(+,+) is the reward probability function at time ¢+ 1, and « the learning
rate parameter (o = 0.002). Finally, all Ryy1(s¢,a) values were normalized by their
sum so that their sum equals 1:

Rit1(st,a)
a’'€A Rt+1(8t, a ) ’

Rii1(st,a) := for all a. (14)
2

The empirical algorithm above takes elements from reinforcement learning,?®
especially the TD()) algorithm (in the extreme case where A = 1, i.e. identical to
the Widrow—Hoff delta rule).? (In fact, a test run with the delta rule Ry 1 (s, a¢) :=
Ri(st,at) + apie1 — Rey1(se, ar)), without the divisive normalization, resulted in
similar results.) The use of the reward probability function R(s,a) (for s € S
and a € A) is similar to the Q-learning algorithm where the action-value function
Q(s,a) is estimated and used to construct a policy.3’ (Also, see our earlier work
using Q-learning.?®) Thus, the main novelty of the algorithm lies in the choice of
the reward p. The above learning rule converged under all experimental conditions
in our simulations (see the next section). One matter of concern here is the use of
a small number of quantized states to represent orientation. This concern is related
to the fact that we are doing the argmax on the response vector r, rather than
using the full information provided by the response vector. This was a compromise
we had to take in order to make the learning algorithm simple and efficient. More
orientations may be used to alleviate this problem. Furthermore, we are not totally
ignoring the full information present in the response vector, since the whole vector
is used in measuring invariance p, thus the learning rule [Eq. (13)] utilizes the full
information.

4. Experiments and Results

In order to test the effectiveness of the invariance criterion in autonomous under-
standing of internal sensory states, we conducted three sets of experiments. The
first was a proof-of-concept experiment with synthetic images with regular grids
and diagonal lines as input (Sec. 4.1). The second experiment was with a set of nat-
ural images, to show that the criterion is effective in more complex cases (Sec. 4.2).
Finally, the learning algorithm was implemented on a pan/tilt web camera, and the
results reported in Sec. 4.3.
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4.1. Training and testing on synthetic input

The first experiment was conducted on a synthetic input with regular straight-
line features (Fig. 4). For this experiment, we used four filters (n = 4) to match the
number of main orientation features in the input image. Consequently, we used eight
corresponding motion directions. All other parameters were the same as given in the
previous section (Sec. 3). The learning algorithm was executed for 200,000 iterations,
during which the reward probability function R(s,a) was gradually updated.

Figure 7 shows the initial, learned, and ideal R(s,a) functions. Initially, for each
state s, the R(s, a) values for different a’s do not have a particular dominance over
others. However, after training, the R(s,a) values are maximized for the direction
of motion that exactly reflect the orientation of the input that triggered the sensory
state s. For example, for state 0°, the 0° and 180° directions have the highest R(s, a)
value. To emphasize, the important point here is that movement in the horizontal
direction based on such an R(s,a) value would have the same property as that of
the input giving rise to the sensory state s (i.e. both of them are oriented along the
0° axis). The results are close to the “ideal” case shown in the same figure.

For a measure of the performance, we calculated two quantities. First, we calcu-
lated the root mean-squared error in the reward probability function R(s,a) com-
pared to its ideal counterpart (Fig. 8). The error value from each iteration is plotted
in Fig. 8(a). The error gradually decreases until around 180,000 iterations when it
starts to level off. Next, the running average of r; was calculated and plotted in
Fig. 8(b). The running average was calculated as follows:

pe = (1 —a)re + o p1, (15)
where 11 was initialized to r1, and the window-size parameter « set to 0.999. For the

average reward, we can see that the slope quickly reaches a plateau around 10,000
iterations. Both measures show empirically that the algorithm reaches convergence.

(a) Initial. (b) Final. (c) Ideal.

Fig. 7. Reward probability function R(s,a) for each state. The reward probability function values
of the four possible sensory states (0°, 45°, 90°, and 135°) are shown. See Fig. 6 for plotting
conventions (black represents the minimum and white the maximum value). (a) Initially, the
rewards are randomly assigned for each direction of motion for each sensory state and normalized so
that the sum equals one. The plot shows a “typical” initial condition. (b) After the agent is trained,
the reward values become maximal for the movement along the orientations that correspond to
that of the input that gives rise to the sensory state. (c) The ideal case shows a diagonal structure,
as in Fig. 6.
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Fig. 8. Root mean-squared error in R(s,a) and average reward. (a) The root mean-squared error
in R(s,a) and (b) the running average of the immediate reward values are shown. The z-axis
represents simulation iteration. The error gradually decreases until it levels off (a), while the
average reward rapidly increases to reach a plateau (b).
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Fig. 9. Initial and final distribution of reward values. The distributions of (a) immediate reward
values in the first 10,000 iterations and (b) the last 10,000 iterations are shown. Initially, both
positive and negative rewards show a peak (a), but near the end only the positive reward maintains
a peak (b).

Since the window-size parameter for the running average was fairly large, it will
help to look at the actual distribution of reward values near the beginning and
near the end of training. Figure 9 shows the histogram of reward r; for (a) the first
10,000 and (b) the last 10,000 iterations. Initially, there are two peaks, one at the
negative end and the other at the positive end of the z-axis. However, toward the
end of training, positive reward dominates. This implies that the policy 7 (Sec. 3.3)
based on the learned probability R(s,a) successfully maintains invariance.

The final test is to observe the gazing behavior of the agent after training. For
this test, the learning rate n was set to zero, and the policy m was executed using
the learned R(s,a) function. Figure 10 shows example gaze trajectories. As the
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(a) Initial.

Fig. 10. Gaze trajectory before and after training. The gaze trajectories of an agent before and
after training are shown for 2,000 time steps each. The trajectory is color-coded so that passage of
time is visible (black to gray to white, repeating the whole sequence every 768 steps). (a) Initially,
the trajectory resembles a random walk. (b) However, after training, the trajectory shows longer,
straighter trajectories that align with the underlying image structure. Note that the important
point here is not that the input edges are tracked: What is important is that the resulting gaze
behavior is congruent with the sensory property conveyed by the internal state at each moment.

trajectories show, when the agent’s internal sensory state is triggered by a particular
oriented feature in the input, the agent executes motion whose property exactly
reflects that of the current input feature.

4.2. Training and testing on natural-itmage input

Even though the learning algorithm works well under idealistic conditions, it is
unknown at this point whether the behavior will generalize to more complex real-
world situations. To check if that is the case, we conducted experiments on nat-
ural images (Fig. 11). All parameters and experimental setups were the same as
before (Sec. 4.1), with the exception that we used 8 sensory filters (and thus 16
motion-direction vectors). The purpose of such a choice was two-fold: (i) to allow
a finer-resolution representation of orientation to match the variety of orientations
encountered in natural scenes, and (ii) to test whether the algorithm is scalable.

The results are reported in the same format as in the previous section (Sec. 4.1).
Figure 11 shows the natural-image inputs used in the training of the agent. Each
image was used separately in its own training simulation. The learned R(s,t) func-
tion is reported in Fig. 12. Due to the irregularities in edge features in the input
and differences across input images, the results are not as clear-cut as before (e.g.
state 112° in “Ducks” and a number of errors in state 157°). However, in general,
the results are comparable to that in the previous section, and in line with the ideal
case [Fig. 12(b)].

The RMS error (Fig. 13) and the average reward (Fig. 14) show similar results as
before. There is a small variation in RMS error across inputs, which was expected,
but the same convergence behavior is exhibited in all cases. As for the average
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Input Image

DoG-Filtered

(a) Flowers. (b) Ducks. (c) Plant (d) Oleander.

Fig. 11. Natural images and initial preprocessing. Natural images (top row) and their DoG-filtered
versions (bottom row) used in the training simulations are shown. Each image was 640 x 480 in size,
and the DoG filter used to produce the bottom row was 15 X 15 in size. The plotting conventions
are the same as Fig. 4. Photo credits: (a)—(c) were taken by Y. Choe, and (d) by James A. Bednar.

(a) Initial. ) Ideal. ) Flowers.
) Ducks. ) Plant. ) Oleander.

Fig. 12. Reward probability function R(s,a) for natural image inputs. The initial (a), ideal (b),
and the learned reward probability function R(s,a) are shown for the 4 natural-image inputs (c)—
(f). The plotting conventions are the same as Fig. 7. For the natural images, 8 orientation sensors
and 16 motion directions were used, thus 8 rows and 16 columns are shown. The learned motion
directions along which R(s,a) values are high closely match the orientation preference of their
corresponding sensory state.

reward, convergence to a stable value is slower (again, as expected), and the stable-
state reward is lower than that in the synthetic input experiment. Such a result
reflects the fact that in natural images invariance cannot be maintained for a very
long stretch of time. That is, even though there are many elongated edge features
in natural images, they are generally shorter than ideal situations where the edges
are very long and straight. The reward distributions (Fig. 15) are also comparable
to those from the synthetic input experiment. One distinguishing feature in the
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Fig. 13. Root Mean-Squared Error in R(s,a) for Natural-Image Experiments. The root mean-
squared error in the reward probability function R(s,a) is shown for 4 training sessions using
natural-image inputs. As in Fig. 8(a), the error gradually decreases and levels off, but there are
small differences across trials.
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Fig. 14. Running average of immediate reward values for natural-image experiments. The running
average of immediate reward values is shown for the 4 natural-image training sessions. Reflecting
the fact that straight regular features are less probable in natural images compared to synthetic
images, the slope of the increase is slower than that in Fig. 8(b).
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Fig. 15. Initial and final distribution of reward values for natural-image experiments. The distribu-
tions of immediate reward values in the first 10,000 iterations (top row, labeled “Initial”) and the
last 10,000 iterations (bottom row, marked “Final”) are shown for the 4 different training inputs.
Compared to the initial distribution for the synthetic input (Fig. 9), the peak in the negative
reward is more prominent (top row). Consistent with results from the synthetic input, the final
distributions have a peak only in the positive reward side (bottom row).
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Fig. 15. (Continued)

histograms is that the distribution is smoother and more gradually changing. Even
so, the two initial peaks and the sole final peak in the positive end is the same as
before. An interesting observation is that the peak in the final stages of training
is sharper for natural image inputs that have more, longer edge features (such as
the inputs “Plant” and “Oleander”). The gaze trajectories in Fig. 16 are less well
organized than the results in the previous section (Sec. 4.1). This is partly due
to the curvy and noisy nature of edges in natural images: the gaze starts off in a
certain direction on a curved edge, and as soon as the gaze (which tends to travel
straight based on the invariance criterion) goes beyond the point where the gaze is
no longer on the edge, then it starts to drift off. Another factor giving rise to this
behavior is the fixed step size in which the gaze is shifted (d = 7 in Sec. 3). If the
step size is greater than the straight local edge then most likely invariance cannot
be maintained. On the other hand, if the step size is too small, successive inputs will
look almost the same so any action direction will result in invariance, thus rendering
the invariance criterion transparent (functionally ineffective). Despite these caveats,
on closer inspection, we can see that the behavior in the natural input simulations
are locally consistent with that of the synthetic input case. For example, if the
natural-image-learned R(s,a) values were used to drive the motor policy on the
synthetic grid input, behavior similar to that shown in Fig. 10 would result.3!
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(c) Plant. (d) Oleander.

Fig. 16. Gaze trajectory before and after training with natural images. The gaze trajectory of an
agent trained with natural images is shown for 2,000 steps each. The plotting conventions are the
same as that in Fig. 10. The results are comparable to those based on synthetic images (Fig. 10),

where the initial trajectories mostly resemble random walk, while final trajectories consist of longer
and straighter segments, aligned on the underlying image structure.
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In sum, the same invariance-based learning rule allows for the agent to learn
to generate behavior whose property closely reflect that represented by its cur-
rent internal sensory state. The learned behavior subtly varies based on the feature
statistics in the natural image, but it maintains an overall uniform qualitative char-
acteristic regardless of the variation in the input.

4.3. Implementation on a pan/tilt camera

In order to test the algorithm in a realistic environment, we implemented the learn-
ing algorithm on a Pan/Tilt camera (Logitech Orbit Webcam). We used the full
189° pan and 102° tilt range, and grabbed 320 x 240 images at 30 frames per second.
During this step, the entire image was refreshed based on the current gaze direction.
Only a fraction of these captured sequence of images were used, since movement of
gaze takes some time and we only needed the images before and after the movement
was completed. All training and testing took place on-line.

Figure 17 shows the basic setup (a), (b), and a screen shot of the display win-
dow showing the central region as a DoG-filtered gray-scale image (c¢). The cam-
era was positioned in an office environment, but a house plant was put in front
of it to emulate the natural environment. The scene did not contain any moving
objects. All simulation parameters were similar to those in the experiments reported
above.

The main results are shown in Fig. 18. The learned R(s, a) values show the char-
acteristic diagonal pattern [Fig. 18(a)]. Since the image was refreshed every time the
pan/tilt was adjusted, visualizing the gaze trajectory directly is somewhat difficult,
so we recorded the pan/tilt angle, translated it back to image coordinates, and plot-
ted it on the initial image took by the web cam. The results are shown in Figs. 18(a)
and 18(b). Initial gaze trajectory looks like random walk [Fig. 18(b)], while the final

(a) Camera’s view. (b) Pan/tilt camera. (c) Camera’s center of gaze.

Fig. 17. Pan/tilt camera. The pan/tilt web camera (Logitech Orbit!™) and its operating environ-
ment are shown. (a) The camera (the black object near the bottom) and its visual environment
is seen from behind the camera. (b) The pan/tilt camera (black) is viewed from its front. (c) A
320 x 240 window is displaying an image captured by the camera (screen shot). The program shows
the center of gaze as a DoG-filtered gray-scale image.



Autonomous Semantics Through Motor Exploration 231

(a) Learned R(s,a). (b) Initial gaze trajectory. (c¢) Final gaze trajectory.

Fig. 18. Results from a pan/tilt camera implementation. The results from running the sensory-
invariance driven action learning algorithm are shown. (a) The learned R(s, a) is close to the ideal
case, with the strong diagonal components. The (b) initial and the (c¢) final gaze trajectory are
shown. Similar to software-only experiments above, the initial gaze looks like a random walk, while
the learned gaze looks more organized, where the action direction provides information about the
encoded stimulus property signaled by the internal state.

trajectory shows movement corresponding to the internal state [Fig. 18(c)] at each
instant.

4.4. Summary of results

In summary, the learning algorithm based on internal state invariance allowed the
agent to provide behaviorally meaningful content to its internal sensory state, where
the property of the action and the property of the stimulus represented by the
sensory state closely aligned. The same algorithm was shown to work very well
under diverse input conditions and system configurations. These results support
our argument that the invariance criterion can be used to link behaviorally mean-
ingful action with internal sensory states. This way, developmental programs can
infer environmental properties from sensory primitives, through action. Further-
more, as the results using the pan/tilt camera shows, the algorithm can be success-
fully implemented in hardware, and thus can be incorporated into humanoid robot
architecture.

5. Discussion

The main contribution of our work is that it showed how a sensorimotor agent can
learn behaviorally meaningful action that reflects the property of its internal state,
based on an initial set of sensory and motor primitives. Furthermore, a simple, yet
powerful criterion of invariance was shown to be effective in linking the agent’s
internal state with meaningful action. Thus, our work provides insight on what
and how developmental programs should learn in the very early stages of mental
development: it puts an emphasis on semantic grounding through sensorimotor
coordination as one of the first tasks a developmental agent should achieve. In the
remainder of this section, we will discuss work that are related to our approach,
and various potential issues arising from our work.
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5.1. Related work

Different Views of Invariance: Invariance, as simple as it seems, has several dif-
ferent meanings. Invariance is an important concept in physics, where a certain
measure (such as distance) does not change as the description of a system changes
(such as the coordinate frame).?? In that sense, invariance refers to some kind of
property that does not change across transformations or the choice of viewpoints.
This is the usual sense of the word when it is applied to perceptual sciences. For
example, in object recognition and categorization, properties that are translation,
rotation, scaling invariant are sought after.33:3% Also, there is a tradition in ecolog-
ical psychology where invariants play an important role. In contrast to the above-
mentioned perceptual invariants where an extensive processing may be necessary
to extract the invariant properties, the ecological approach asserts that certain
invariant properties are readily measurable, directly from the environment3® (also,
see Ref. 6).

In our case, invariance simply means some internal pattern that does not change
over time, thus it can be much easier to detect and maintain. This view contrasts
with the usual view of invariance outlined above. Both of the approaches above
require direct manipulation of the raw sensory input (i.e. invariance exists outside
of the agent), unlike our approach based on sensory primitives and internal repre-
sentations. The theory by O’Regan and Noé is close in spirit to our idea.?¢ They
pay attention to invariance within the agent (neural state, in their case). For exam-
ple, they observe that the internal pattern of activity would not change when an
agent is gazing back and forth along a line that stretches infinitely. That obser-
vation is basically the same as ours in Sec. 2. However, O’Regan and Noé do not
make explicit that the property of the back and forth movement exactly reflect

[43

...shape in
9 36

that of the straight-line input. They go on to say as much as follows:
the world can be sensed by the laws obeyed by sensorimotor contingencies.. .
O’Regan, along with Philipona and colleagues, extended upon the above idea in
Refs. 37 and 38. There, they introduce the concept of “compensability.” For exam-
ple, there is an exact correspondence between certain environmental change and
certain action that can undo that change. Thus, they are able to assert that a
specific environmental-motion/self-motion pair is related through invariance that
results from their complementary nature. Such an assertion is getting very close to
our own proposal, but there is a subtle difference, because in our case, the internal
state maintains invariance even during motion.

In terms of theoretical merits of the invariance criterion, Bell*” posed a relevant
question regarding perception-action cycles. To quote, “What quantity should a
perception-action-cycle system maximize, as a feed-forward channel might maximize
its capacity?” This is an important question, and we believe our reward criterion
of maximizing on-going internal state invariance (or, to be more relevant to the
context of Bell’s question, maximizing the degree of understanding of own internal
sensory state) can serve as one potential answer.

139
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Invariance in the sense that we use it is also known to be effective in coordinating
competing motor control laws. For example, Platt et al.*° showed that several com-
peting control laws (which can separately maximize performance criteria in grasping
tasks) can be integrated using the concept of “nullspace.” They demonstrated that
it is possible to execute one control law while change in the performance crite-
ria associated with other control laws remain invariant (the nullspace). However,
how such an executed motion and the property of a different invariant performance
measure are related in a meaningful way is not made explicit in their paper. For

141 discussed methods to stabilize the end effector, based

example, Tevatia and Schaa
on an approach that tries to drive the gradient on the nullspace of the Jacobian of
a forward kinematic model. This results in the robot stabilizing one of its motor
apparatus, so it conflicts with our algorithm’s requirement for patterned motion. On
the other hand, their work suggests that invariance as unchanging internal pattern
may have a broader applicability than what we proposed in this paper.

Lastly, we wish to emphasize that invariance per se should not be equated with
content or meaning of the internal sensory state. Invariance should be viewed as
a simple enough criterion to follow which will eventually lead to the linkage of
internal sensory state and behaviorally meaningful action, and that very action
is what constitutes the content or meaning. Invariance itself is not a goal but a
criterion. Rather, maximization of understanding is the goal (or principle).

The Role of Action in Sensory Understanding: There are many previous works
that recognize the importance of voluntary action in sensory understanding. These
works help strengthen our argument that behaviorally meaningful action provides
content for internal sensory states. For example, Held and Hein*? showed that ani-
mals reared to receive identical visual input greatly differed in their development of
visual capabilities depending on whether the animal was passively receiving input
or actively interacting with the environment. Another good evidence that action
provides perceptual content is the tactile-vision sensory substitution (T'VSS) exper-
iment by Bach-y-Rita and colleagues.*3:4* In their experiments, blind subjects were
able to partially gain visual function through a tactile array which conveyed signal
from a video camera. One crucial component in making that work was voluntary
action. Under passive viewing conditions, vision-like perception did not occur in
the subjects. Applying our analysis to the two examples above, we can explain why
this should be the case. Passive viewing only stimulates the sensory primitives, thus
no content can be associated to it. However, once one starts to move, the sensory
primitives can be linked to a particular mode of action, through the invariance
criterion.

The field of behavior-based robotics by Brooks and colleagues is also quite rel-
evant in this context.?'4°:46 The robotic architecture in these works build up from
a reactive to a progressively contemplative “layers” in control architecture. At this
stage, our work is mostly at the reactive stage (no memory), but with some amount
of memory, more complex behavior-based semantics can be learned (see Sec. 5.2 for
a discussion on this point).
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There are also notable efforts to identify different principles underlying learning
and development in robotics. Edsinger and Kemp*” showed how the concept of
controllability can be used to pick perceptual categories that are more relevant to
the robot’s actions. Contingency has also been suggested as a possible principle
to guide learning, as in the work of Gold and Scassellati.*® The basic idea is to
distinguish between sensory signal caused by the robot itself versus those by other
agents in the environment by analyzing the delay between action generation and
sensory feedback.

Several other efforts are more closely linked to the work we presented here. Cohen
and Beal proposed an approach similar to ours in spirit where they put emphasis on
action in developing “natural semantics.”*? Their work is also inspired by questions
in infant development: what is initially available and what should be learned. Their
concept of “image schemas,” borrowed from Mandler (Ref. 50, as cited in Ref. 49)
is in fact very close to the idea that action should be integrated into the content of
sensory states. However, they do not provide an explicit link between the properties
of sensory input and action, nor a simple, biologically implementable criterion (such
as invariance). Pierce and Kuipers also looked into developmental issues, but they
went deeper than us and asked what if the sensorimotor primitives did not exist and
the agent only had raw sensors and actuators.’!:°? They used statistical methods
to form the sensory and motor primitives, but again, they did not make an explicit
link between the two. (The work by Bowling et al. on “Action Respecting Embed-
ding” shows how the motor system can constrain sensory primitive development.®?)
However, from their work, we can gain insight on how sensorimotor primitives them-
selves can evolve or develop. The work by Singh et al.>* may be a good direction to

1.54 showed

expand our work with the layered architecture in Brooks et al. Singh et a
how intrinsic reward (such as saliency) can be used along with environmental cues
to construct a hierarchy of action skills. Note that in this work, they emphasized the
intrinsicness just as we did, while they used a different criterion, that of salience,
rather than invariance. This way, their learning agent can relate its internal states
signaling salient events with action that can directly trigger those salient events.
So, in this sense, those triggering actions somehow provide meaning to the internal
states.

Finally, the work on self-organization of primary sensory areas, such as the

10,55 and early

visual cortex, provides similar insights on sensory primitive formation,
results show that these approaches can be integrated with the approach presented
in this paper®® (Fig. 19). This is a potentially productive future direction, and we

are actively working on related issues.

5.2. Potential issues

Dealing with Complez Internal States: The model presented here is decidedly simple
to convey the essence of the problem at hand, and as such, it can be extended in
several directions. We would like to note that internal-state invariance does not
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(a) Learned receptive fields. (b) Learned R(s,a).

Fig. 19. Results from co-development of receptive fields and R(s, a). Preliminary results from co-
development of visual receptive fields and the motor policy (R(s,a)) are shown. The receptive
fields were ordered so that they show 0° to 180° orientation at a fixed interval. The rows in R(s, a)
were reordered in the same manner so that an interpretation identical to Fig. 6 is possible. The
receptive fields were trained based on a combined Hebbian/invariance criterion, and R(s,a) was
trained as usual. The receptive fields developed into Gabor-like orientation-tuned shapes, and the
reward table R(s,a), although not perfect, shows the characteristic diagonal component. This is
more pronounced on the right half shaded gray than the left half shaded gray (the area marked
with the arrow is not strongly represented). These are encouraging results, but more work needs
to be done, which we leave for future work. (Adapted from Choe and Yang.5%)

always have to be defined on a single neuron’s activity. Any kind of pattern, be that
spatial or temporal, can be attempted to be maintained invariant while performing
an action. Thus, meaning based on action can also be ascribed to a repeating pattern
of activity, not just to a single spike. Also, invariance can be maintained in only one
part of the global pattern, which can be seen as a relaxed version of the invariance

T may be necessary for this purpose. We believe

criterion. Attentional mechanisms
investigating in this direction will be most fruitful, and in fact we are currently
steering our effort into this problem (see e.g. Ref. 58).

Action as Content: One criticism against our approach can be that our model
implicitly assumes that knowledge of one’s own action is immediate (see Ref. 59,
pp. 60-61, for some insights on this issue). Such an attack does not take into account
that all we are claiming is that behaviorally meaningful action gets associated with a
particular sensory state. What is important is that that action is behaviorally mean-
ingful, because the property of that action and the property of the corresponding
sensory state closely match. Also, such an action allows the agent to interact with
the sensory input in a meaningful way. In that sense, that action directly serves as
content, or meaning for the sensory state. Thus, it is not necessary to possess a
meta-level knowledge about the action itself; “you just need to know how to act.”°
Understanding of something, in the most primitive sense, can be defined as acting
out in a manner which is relevant to that something which is understood, since
possessing some kind of knowledge is not useful unless it is eventually expressed
in some form of behavior. Some may feel that all the above is too behavioristic,
depending too much on automatic reflexes. The simulations of our model are in
fact largely reflexive, but they do not need to be. More cognitive (or contempla-
tive) operations can be grounded on the same principle we advocated in this paper.
What makes behavior less immediate depends on complex issues such as emergence
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of goals, attention, motivation, etc. within agents (see Ref. 61). However, discussing
those would go far beyond our initial goal of investigating the very early stages of
mental development, thus we will leave that topic as future work.

Applicability to Other Sensory Modalities: Can our approach be extended into
other sensory modalities such as audition, touch, olfaction, etc.? Our approach is
general enough to be easily extended into certain modalities such as touch (see
e.g. Ref. 62), but it cannot work very well in domains where there is not much
correlation between action and the perceived sensory state, e.g. olfaction. There
is however some evidence that the act of sniffing can alter the perceived sense of
smell,%® which indicates that our approach may also be applicable, although in a
limited way, in the olfactory domain. Another domain where our approach cannot be
effective is color vision. The reason is that no patterned action correlate with shades
of color in a lawful way. On the other hand, there are interesting experimental results
that show artificially altering the sensorimotor law regarding color can change the
subjective experience of color.* Whether sensory and motor primitives can be
found that can be matched to maintain invariance in color is an interesting open
question.

Here, it would be useful to mention a different kind of content, those that are
related to reinforcement signals such as gustatory rewards. For example, Rolls pro-
posed in Ref. 65 that semantics of brain states can be either related to (i) sensori-
motor skills (as we also proposed) or to (ii) environmental reinforcement. Olfaction,
gustation, and other such sensory modalities convey signals that are highly related
to survival values, and thus they may take on the latter kind of meaning.

Applicability to Different Levels and Configurations of Internal State: Another
criticism we anticipate is that if the agent had a rich array of sensors, such as a 2D
matrix of RGB pixels, then the properties of the visual environment can be easily
recovered within the agent through unsupervised learning even without direct access
to the outside world. However, this does not help solve the problem, because such a
rich information is only available at the very first stage of sensory processing. The
next stage, and the stages following that, etc. only receive a more and more encoded
version (the output from the unsupervised learning algorithm) from the previous
stage, just like the sensory array in our agent which receives only encoded spikes
from the orientation-tuned filters. In artificial agents, a detailed photographic input
will also lead to problems, because in that case, the problem of visual understanding
becomes too complex. In fact, the problem faced by the agent becomes the same as
that of computer vision, which is not a trivial one by any means.

Another related criticism may be that the learning criterion we proposed may not
be applicable to all stages of sensory processing. For example, the retinal ganglion
cells and the lateral geniculate nucleus (LGN) in the early visual pathway show a
center-surround receptive field property. It is not easy to imagine any kind of action
sequence that would possibly keep these neurons’ activities invariant. Our response
to this is that sensorimotor coupling may not exist at such an early stage of sensory
processing (see e.g. Ref. 66), and thus we do not claim that our approach will work
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in this stage. A corollary to this observation is that at these low levels, invariance
anchored on action may not be observed.

On a similar note, one can argue that meaningful stimulus properties can be
extracted from a population of signals even when they are highly encoded. For
example, instead of looking at a single orientation filter output, what if we got many
such outputs? Could it be possible to infer the stimulus properties that gave rise
to such a pattern of activity, solely on the basis of that sensory filter response? For
example, co-occurrence statistics of internal state activity can be analyzed to infer
stimulus properties. In our view, such an inference will require unnecessary prior
knowledge, such as: (i) the orientation filters are laid out in a topology-preserving
manner that reflects the spatial structure of the input space, and (ii) filter activ-
ity aligned along a straight line in the internal state space indicates that those
individual filters represent collinear orientations in the input space. Thus, such an
approach cannot work under conditions allowed in our agent model.

Using different kinds of encoding, such as firing rate or interspike interval instead
of spikes, does not help either, again if the analysis is to be based on the sensory
filter response alone. That is because in whatever form they are, the signals convey
encoded sensory information. Thus the problem associated with decoding remains
the same.

Biological Plausibility and Predictions: In this paper, we mostly dwelled in a
rather abstract level when discussing developmental programs and the principles
they should go by, even though we talked about visual receptive fields and often
times used the metaphor of neurons. For example, we did not mention at all where
the motor primitives may reside, nor at what level in brain organization does invari-
ance get enforced. In our view, there is no single place or level where invariance is
maintained. According to Fuster, there is potentially sensorimotor linkage at all
levels of brain organization, except for the very low levels such as immediate sen-
66 (see Ref. 45 for similar views in robotics). Thus, it is reasonable to
assume that the invariance criterion can be employed at multiple levels of sensori-

sory surfaces

motor organization.

One example is the recently discovered “mirror neurons” where the property of a
particular articulated action that trigger activity in the neuron almost exactly aligns
with visually perceived gesture that activates the same neuron.6”-6% An intriguing
point here is that such a sensorimotor linkage happens at a single-neuron level.
From a developmental point of view, it may be interesting to see how the action—
gesture linkage develops in the mirror system. Our prediction is that the invariance
criterion may play an important role in this system.®® The first thing to test is
whether the mirror property exists at birth. If it does it would refute our idea,
since we predict that the mirror property develops over time after birth using the
invariance criterion.

Testing whether the invariance criterion is in use is a much more trickier issue.
One way to indirectly test this idea is with the tactile sensory substitution system
by Bach-y-Rita and colleagues.”™ In their most recent setup, they used electrotactile
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arrays on the tongue to convey diverse sensory modalities, such as vestibular infor-
mation. Two different electrotactile representations can be provided to the subject.
In the first case the property of the encoded signal is to be easily correlated to
particular mode of action so that it is easy to maintain invariance in the electrotac-
tile input. For the control case, the electrotactile representation is to be generated
based on some other principle, such as information maximization. Our model pre-
dicts that performance will be much higher in the former case. Another alternative
is to mix different representations based on different principles in the same elec-
trotactile representation, and measure which part of the mixed representation gets
utilized. Again, the prediction is that the part of the representation that is amenable
to the invariance criterion will get selective attention.

Finally, we can ask what is the biological basis of the internal-state invari-
ance criterion itself (i.e. the reward used in the learning algorithm). One possi-
” much developed in
cybernetics and systems theory (see Ref. 71 for a review). Homeostasis is widely
observed in organisms and organismal function, and its evolutionary value is clear,
because homeostasis gives an organism persistence over time. Interestingly, these
processes also seem to exist in the nervous system, and can be observed at the
level of synapses as shown by Turrigiano and colleagues™ ™ (
de Sa™ for a computational model). Although these homeostatic properties do
not exactly map to the internal-state invariance in our framework, it is notable
that the general property of persistence is prevalent in biology, including the neural
system.

bility is to relate the criterion to the concept of “homeostasis,

see Sullivan and

6. Conclusion

In this paper, we analyzed potential problems associated with the very early stages
in autonomous mental development (AMD), and laid a foundation upon which
subsequent stages of development can bootstrap from. We proposed understanding
of own internal sensory state as a principle to be employed by AMD, and identified
internal-state invariance as an easy-to-implement criterion that can be used toward
that end. We expect our approach, in the long run, to provide new insights on how
agents such as humanoid robots can acquire “natural semantics” in an autonomous
manner, in terms of their own sensorimotor apparatus.
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