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Abstract
In this paper, we will review a novel microscopy modality

called Knife-Edge Scanning Microscopy (KESM) that we
have developed over the past twelve years (since 1999) and
discuss its relevance to connectomics and neural networks
research. The operational principle of KESM is to simulta-
neously section and image small animal brains embedded in
hard polymer resin so that a near-isotropic, sub-micrometer
voxel size of 0.6 µm × 0.7 µm × 1.0 µm can be achieved
over ∼1 cm3 volume of tissue which is enough to hold an
entire mouse brain. At this resolution, morphological details
such as dendrites, dendritic spines, and axons are visible
(for sparse stains like Golgi). KESM has been successfully
used to scan whole mouse brains stained in Golgi (neuronal
morphology), Nissl (somata), and India ink (vasculature),
providing unprecedented insights into the system-level archi-
tectural layout of microstructures within the mouse brain. In
this paper, we will present whole-brain-scale data sets from
KESM and discuss challenges and opportunities posed to
connectomics and neural networks research by such detailed
yet system-level data.

I. INTRODUCTION

In the past few years, a new term connectomics emerged
in neuroscience. Connectomics is the study of connectomes,
where connectome means the full connection matrix of the
brain [1]. The basic idea behind connectomics is that by
knowing the full architectural circuit diagram of the brain,
we can start understanding the function of the brain. One can
even say that brain function is largely determined by how it
is wired (to quote Sebastian Seung [MIT] during his TED
talk, “I am my connectome”).

This surge of interest in connectomics has been enabled
by a confluence of multiple technological advances including
high-performance computing, Diffusion MRI (magnetic res-
onance imaging), and a number of new physical sectioning
microscopy techniques (see [2], [3] for an extensive review).
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Diffusion MRI is based on magnetic resonance imaging
of water molecule movement (diffusion) patterns that are
restricted by neural tracts to infer fiber direction (see [4], [5]
for a review). Diffusion MRI has been used successfully to
map large-scale inter-area neural tracts in large animal brains
such as the human brain, however, the voxel resolution is
on the order of several hundred µms (e.g., a high-resolution
approach gives 156 µm in-plane resolution [6]), thus detailed
circuits based on individual fibers cannot be reconstructed.

Major advances have been made on the microscopy
side, with high-volume, high-resolution methods that employ
physical sectioning, as opposed to optical sectioning (see [3]
for a review). 3D volume imaging in microscopy has been
dominated by optical sectioning methods such as confocal
microscopy or two- or multi-photon imaging [7], [8], [9].
However, these approaches can only image as deep as
several hundred micrometers since beyond that point the
signal-to-noise ratio becomes too high. Furthermore, the
point spread function in the z-direction (depth direction)
is significantly worse than x and y, thus details can be
lost in the z direction. An emerging alternative to optical
sectioning is physical sectioning. These approaches include
Knife-Edge Scanning Microscopy (KESM) [10], [11], [3],
[12] (cf. [13] that adopted the same principles as KESM),
Array Tomography [14], and All-Optical Histology [15]
that use light microscopy (LM) or fluorescence imaging
(see [16] for a general overview of LM), while Serial
Block-Face Scanning Electron Microscopy (SBF-SEM) [17],
Automatic Tape-Collecting Lathe Ultramicrotome (ATLUM)
[18], and Focused Ion Beam Scanning Electron Microscopy
(FIB/SEM) [19] utilize electron microscopy (EM) for the
actual imaging. Note that Array Tomography also supports
electron microscopy. The typical linear dimension of the
imaged volume is on the order of 1 cm for LM and 100
µm for EM. Note that ATLUM can potentially section much
larger volumes quickly, but subsequent EM imaging time
is a major bottleneck. The respective voxel size (linear
dimension) is on the order of 0.5 µm (LM) and 10 nm (EM).
These high-volume, high-resolution microscopy techniques
enable the imaging of neural circuits in whole small animal
brains such as that of the mouse. This kind of data can give
us unprecedented insights into the wiring of the brain, and
in turn the function of the brain.

In this paper, we will first give a brief overview of
KESM, and then showcase our whole-brain-scale data at sub-
micrometer resolution, obtained from the C57BL/6 mouse.
We will then present how our data can be utilized in
connectomics (and computational neuroscience) research,



and discuss current limitations and future directions of the
burgeoning field of connectomics.

II. KNIFE-EDGE SCANNING MICROSCOPY

Fig. 1 shows a photo of the KESM with its major
components: (1) high-speed line-scan camera, (2) microscope
objective, (3) diamond knife assembly and light collimator,
(4) specimen tank (for water immersion imaging), (5) three-
axis precision air-bearing stage, (6) white-light microscope
illuminator, (7) water pump (in the back) for the removal of
sectioned tissue, (8) PC server for stage control and image
acquisition, (9) granite base, and (10) granite bridge. See
[10], [20] for technical details.

Fig. 1. The Knife-Edge Scanning Microscope (KESM). Adapted from
[10], [3].

The imaging principle of KESM is shown in Fig. 2. The
objective and the knife is held in place, while the specimen
affixed on the positioning stage moves, and gets scraped
against the diamond knife, generating a thin section flowing
over the knife. Line-scan imaging is done near the very tip
of the knife where the distortion is minimal. Illumination is
provided through the diamond knife (green beam indicates
the light path).
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Fig. 2. Tissue Sectioning and Imaging in KESM. Adapted from [10],
[3].

In the above configuration, KESM performs transmission
imaging, However, a beam-splitter is installed in the optic
train (Fig. 1(2)) so that reflective imaging is also possible

[11] (note: [13] employs this configuration). In this case, the
light path comes from the back of the granite bridge, through
a hole bored through the bridge. The beam splitter can also
hold excitation filters for fluorescence imaging.

Fig. 3. Lateral Sectioning. Adapted from [21].

Due to the limited field of view of the microscope ob-
jective and the width of the knife, the whole block face
(typically 1 cm2) cannot be scanned in one sweep. We use
a lateral sectioning approach to overcome this limitation
(Fig. 3). In the figure, L is the length, D is the height of
the specimen block, w is the cutting width (tissue section
width), and d is the depth of one plank. Each plank is a
collection of multiple tissue sections (numbered 0 to 17 to the
right: the thickness of the tissue section is exaggerated). The
cutting proceeds in the numbered order. Typically, each plank
consists of 10 to 20 images (10 µm to 20 µm in thickness).
With about 10 lateral columns, the maximum difference in
the shallowest and the deepest part of the exposed tissue
block is 100 µm to 200 µm. The boundaries between vertical
columns are torn rather than cut, but the damage in this
region is usually <∼5 µm wide. Please refer to [22], [21]
where we discuss these issues in detail. An in-house custom
control software is used to coordinate the lateral sectioning
and imaging process [21]. Imaging time for a 1 cm3 cube at
0.6 µm × 0.7 µm × 1.0 µm is ∼100 hours.

III. KESM MOUSE BRAIN DATA

Using KESM, we have been able to obtain whole-brain-
scale data from the mouse. Our earliest data were from
Golgi-stained (neuronal morphology) and India ink-stained
(vasculature) mouse brains. These scans were completed in
2008, and subsequently reported in [24], [23]. Due to a frame
buffer limit, the top 1/3 of the anterior part of the Golgi brain
was not imaged, although the entire brain was sectioned. On
the other hand, the India ink data set spanned the whole
brain. In early 2010, we also scanned a whole mouse brain
stained with Nissl, to reveal the cell body distribution across
the entire mouse brain [25]. A full Golgi brain was imaged
later in 2010 (data not published yet). In all cases, the voxel
resolution was 0.6 µm × 0.7 µm × 1.0 µm.

Fig. 4 shows KESM data from a Golgi-stained mouse brain
(horizontal sections). Each plate is an overlay of 20 images
(each image is 1 µm thin), taken at an interval of 3 sections
thus representing a 60 µm-thick tissue block. A web-based
rendering approach was used for the visualization [26], which
utilizes the Google Maps API for layering multiple images.



(1) z = 501 µm (6) z = 3001 µm

(2) z = 1001 µm (7) z = 3501 µm

(3) z = 1501 µm (8) z = 4001 µm

(4) z = 2001 µm (9) z = 4501 µm

(5) z = 2501 µm (10) z = 5081 µm

Detailed view of (3), z = 1501 µm

Fig. 4. KESM Golgi Data Set (Horizontal Sections). A different
visualization of data set acquired in 2008 and previously reported in [23],
[24] is shown. Each image is an overlay of 20 images (each 1 µm thin) at
an interval of 3 sections (60 µm-thick volume). Scale bar = 1mm. Voxel
size = 0.6 µm × 0.7 µm × 1.0 µm. (Images were inverted for easier view.)

The upper right corner is anterior, and the lower left corner
is posterior. Each image is made up of nine lateral columns,
and consists of an overlay of twenty 1 µm-thick sections.
The number below each image shows the depth within the
data volume. These are data acquired in 2008, and reported
in [24], [23]. To our knowledge, this is the first data set of its
kind: mouse brain Golgi data at the whole brain scale, at sub-
micrometer resolution. Our techniques have been adopted
and validated by other labs to produce similar results at
a slightly higher resolution of 0.33 µm × 0.33 µm × 1.0
µm/voxel [13].

Each image in the 3D image stack is 1 µm thin. A single
image (a very small part of it) would look like Fig. 5a, so
it is hard to get any insight about neuronal morphology or
circuitry by going through such individual images one at a
time. We found that overlaying several images helps reveal
the intricate details of neuronal circuits (Fig. 5b–c, Fig. 6).

(a) Single image (1 µm-thick) (b) 20-image overlay (20 µm-thick)

(c) Zoomed-out view of (b), marked with the arrowhead. 20-image overlay at an interval of 3 (60 µm-thick volume).

Fig. 5. KESM Golgi Data (Hippocampus). Different visualization of
data set previously reported in [24], [23]. (a) is a single image, and (b) is
an overlay of 20 images (with depth attenuation) from the same region as
in (a). This is part of the dentate gyrus in the hippocampus. (c) The curved
structure of the dentate gyrus is more prominently visible in this zoomed-
out view (overlay of 20 images at an interval of 3 sections = 60 µm-thick
volume). The arrowhead marks where (a) and (b) are located. Scale bar =
100 µm.

Fig. 6 shows a close-up view of the visual cortex from
the same Golgi data set, using minimum intensity pro-
jection (MIP). Again, the image shown is an overlay of
200 successive sections (total thickness = 200 µm). At this
resolution, fine details like dendritic spines can be observed.
Several pyramidal cells (upper left) and their apical dendrites
(diagonally stretching toward the lower right), and a couple
of spiny stellate cells can be seen (upper right).

Fig. 6. KESM Golgi Data (Cortex). Minimum intensity projection of a
stack of 20 images is shown. From data previously reported in [23].



IV. 3D ASPECT OF THE KESM DATA

With visualizations like Fig. 4–6, it is easy to neglect the
fact that KESM data sets are fundamentally 3D. With a voxel
resolution of a near-isotropic 0.6 µm × 0.7 µm × 1.0 µm, a
full 3D exploration and analysis is possible. In this section,
we present some 3D visualizations of the KESM data sets
to emphasize the above point.

Fig. 7 shows a tiny subset of the same Golgi data set
presented above. The raw data are basically an image stack
that looks like Fig. 7a. Simple thresholding gives Fig. 7b,
revealing the intricate structure within the data volume.

(a) (b)

Fig. 7. 3D Aspect of KESM Data (Golgi). Data block width = 360 µm,
height = 80 µm.

Fig. 8 also shows the 3D-nature of the KESM data set.
In this figure, cerebellar Purkinje cells are shows, with their
planar dendritic trees. Again, the data volume shown can
be explored in full 3D. However, since the microstructures
stained with Golgi are tiny (on the order of µm’s) it is hard
to see anything if zoomed out to view the whole brain. We
will discuss visualization and analysis strategies to overcome
this issue in Sec. IX.

(a) (b)

Fig. 8. KESM Golgi Data (Volume Visualization). Volume visualization
of cerebellar Purkinje cells is shown (using MeVisLab). Width (a) ∼ 500
µm, (b) ∼ 100 µm. Adapted from [23].

To appreciate the whole-brain scope of KESM data sets in
3D, we can look at the India ink data set that shows the full
vascular network in the mouse brain. Although not directly
involved in neural computation, the vascular network plays
in important role in support of computation. Also, certain
measures like BOLD (Blood-oxygen-level dependent) signals
from fMRI (functional Magnetic Resonance Imaging) scans
are used as an indicator of regional activity in the brain.
Finally, the vascular network can also provide necessary
scaffolding for neuronal migration. For example, [27] found
that blood vessels in the olfactory bulb guide the migration
of neuroblasts.

(a) Raw data volume (b) Initial thresholding of (a). See (c).

(c) Sagittal view (←: Anterior,→: Posterior) (d) Coronal view (↑: Dorsal, ↓: Ventral)

(e) Horizontal view (←: Anterior,→: Posterior) (f ) Close-up

(g) Single image (scale bar = 100 µm) (h) 20-image overlay (scale bar = 100 µm)

(i) Large-scale view (coronal, thin slab)

Fig. 9. KESM Vasculature Data. Different visualization of data
previously reported in [24], [23]. (c)–(e) adapted from [23] (scale bar =
100 µm). See text for details.

Fig. 9 presents various visualizations of the vascular
network data set. The data set presented here was obtained in
2008, and reported in [24], [23]. In Fig. 9, (a) shows the raw
data block in a sagittal view. (b) shows a lightly thresholded
version of (a) so that the boundary of the raw data block and
the content within can be seen at the same time. (c) is a fully
thresholded version of (a) and (b). (d)–(e) show the coronal
and horizontal views, respectively. We can clearly see the
shape of the brain, thanks to the thick blood vessels that are
distributed across the entire brain. (f ) shows the intricate
details within an 1.5 mm-wide block. (g) shows a single
image, and (h) an overlay of 20 images (depth attenuation).
(i) shows a large-scale view of a thin slab (coronal section).



V. EXPLORING THE 3D GOLGI DATA

Unlike the vascular network data, Golgi data are hard to
visualize at the whole-brain scale. Figs. 10a–b show this
difficulty, where a 2.88 mm-wide block from [24], [23] is
shown. In this view, most of the thin fibrous structures are
washed out. To observe the local circuits, we need to view
a thin slab at a time. As shown in Fig. 10c–e, a sweep
through the depth of the block (perpendicular to the screen,
away from the reader) from Fig. 10b can reveal intricate
circuits across a large region in the brain. Since the data
block is fully 3D, this kind of sweep can be done in any
direction, as shown in Fig. 10f , which shows a sagittal view.
Furthermore, instead of going in a one-directional sweep,
the sweep direction can be dynamically adjusted to inspect a
specific region of interest. Other approaches for visualizing
densely packed fibers like this are also emerging [28].

(a) Profile view (b) Horizontal view

(c) A thin slab from (b) (d) A thin slab from (b)

(e) A thin slab from (b) (f ) A thin slab from sagittal section of (b)

Fig. 10. 3D View of the KESM Golgi Data Set. KESM Golgi data from
[23], [24]. Block width = 2.88 mm.

VI. FROM RAW DATA TO STRUCTURE:
RECONSTRUCTION

Once the volume data are obtained, the next step is to
extract the complete geometric structure from the raw data.
Fig. 11 summarizes this process, called reconstruction.

The image forming process can be summarized as g ◦ f ,
a composition of g and f . On the other hand, the task of

Data Volume

g  −1 f   −1

Image StackMicrostructure

gf
I VVM M

ReconstructionKESM, Digital Phantom

^ ^

Est. Data Volume Est. Microstructure

^ ^

Fig. 11. Microstructure-to-image Mapping and Reconstruction.

recovering the structural descriptions from the image data
is basically the inverse: f̂−1 ◦ ĝ−1, a composition of the
segmentation (ĝ−1) and the 3D reconstruction process (f̂−1).
(The “̂ ” symbol indicates that these functions are estimates.)

Reconstruction is one of the major initial challenges in
connectomics, with no existing solution yet in view. Current
approaches for reconstruction include [29], [30], [31], [32],
[33], [34], [35], [36], [37] (these include methods for EM as
well as LM data). There are tools for manual reconstruction
as well [38], and commercial packages [39], [40]. Neural-
network-based approaches are also being explored [41], [42].

There are two main issues with reconstruction: (1) accu-
racy, and (2) computational demand. Typical accuracy of
current approaches is around 95% (see e.g., [41]), which
is not sufficient enough. Furthermore, even among human
experts, there can be variation [43]. Computational demand
is also high. For example, tracing a 128 × 128 × 128
voxel cube may take ∼ 200 seconds (on a Pentium 4,
2.4GHz processor) [44]. Considering that KESM data size
is typically about 2 TB per brain, a simple calculation gives
2207 days, or just over 6 years. Compare that to the ∼100-
hour KESM scanning time for a single mouse brain. (For
EM, assuming a conservative voxel size of 30 nm × 30 nm
× 30 nm, compared to the KESM voxel size of 0.6 µm ×
0.7 µm × 1.0 µm, we get 15,556×6 years on a single-CPU
machine [note that this is based on a simplistic calculation:
using a detailed reconstruction algorithm custom-made for
EM data may take even longer].) Currently, the only fully
reconstructed connectome is that of the nematode C. elegans
[45], a small worm the size of ∼1 mm.

VII. FROM STRUCTURE TO FUNCTION

Once the connectome is reconstructed, where do we go
from there? We need to infer the function from the structure.
This is not a trivial task, and there can be several dramatically
different approaches.

Graph theoretical analysis: With a full connectivity ma-
trix, we can use standard graph theoretic measures such as
in-degree, out-degree, clustering index, etc. [46], [47], [48]
and look for motifs [49].

Basic circuit analysis: Stereotypical patterns of local cir-
cuits are a hallmark of brain architecture. These patterns are
called basic circuits, and using these as a building block,
large-scale circuit analysis can be conducted [50].



Dynamic analysis: Certain dynamic parameters such as
conduction delay can be estimated based on axon length
and diameter. Simply calculating the delay distribution can
already provide great insights into brain function. For exam-
ple, [51] showed that the complexity of network dynamics
critically depends on the delay distribution. Also see [52] on
the relationship between neuroanatomy and brain dynamics.

Connectivity estimation: Data based on LM typically show
only a fraction (∼ 1% for Golgi) of the entire population of
neurons. That is, the data is sparse. In this case, we need to
estimate connectivity. Methods like those proposed by [53]
can be used for this purpose. Also, a systematic simulation
study can be conducted with a full synthetic circuit, by
dropping a certain proportion of connections and observing
the resulting change in behavior. The degree of redundancy
in the connections (both for real and synthetic circuits) will
play an important role here.

Linking with gene expression data: The connectome is
fundamentally a static structure. How can the physiological
properties be inferred from just the structure? [54] shows a
possibly powerful solution to this: Use gene expression data.
They found that gene expression and electrophysiological
properties are closely correlated. The availability of very
large gene expression atlases such as the Allen Brain Atlas
[55] (22,000 genes), and imaging modalities such as Array
Tomography that support molecular as well as EM imaging
[14] are great resources for this kind of approach (see, e.g.,
[56]).

Inter- and intra-specimen variability estimation: Simply
measuring the morphological variability among the same
class of neurons can provide valuable insights into how
redundant or specialized the functions are (Gerald Edelman,
personal communication, 2009; see [57] for an existing mor-
phological database). Even when connectivity is not known,
just examining the dendritic trees can give deep insights into
neural computation [58], [59].

Brute-force parameter search and simulation: Of course
a straight-forward yet potentially valuable approach is
to start with computational simulation based on detailed
neuronal morphology (cf. the Blue Brain Project [56]).
The reconstructed geometry can be used to construct
multi-compartment models (see e.g. [60]). Appropriate pa-
rameters such as channel conductance, capacitance, etc.
need to be figured out. Tools like NEURON, GENE-
SIS, neuroConstruct, and NeuGEN can be used for multi-
compartment simulation and parametrized synthetic circuit
generation/simulation/analysis [61], [62], [63], [64], [65],
[66], [67]. Data from the KESM can help narrow down on
the range of various parameters for these simulations (see
[68] for parameter constraining procedures).

Investigate the effect of link fidelity: A great matter of
debate in connectomics is whether individual connections
matter (detailed EM info needed), or whether they can be
averaged (diffusion MRI is enough). Some results suggest

that dropping even a single spike in the initial condition can
have a global effect on the entire cortex within 0.5 second
(see [69]’s large-scale simulation study of the thalamocortical
system based on Diffusion Tensor Imaging data). However,
considering that the brain in a normal operating environment
is always anchored to the present input stimulus, constantly
resetting the initial condition, this may not be a serious
issue. Issues like these can be studied based on circuit data
estimated from the KESM data sets.

Direct simulation on raw data: A rather far-fetched idea
is to skip the reconstruction step and directly simulate based
on the raw data (some image processing may be necessary
to remove noise). The idea is simple: for each voxel, (1)
assign a probability of excitation based on its gray-scale
value, and (2) introduce a refractory period once activated.
Each voxel will be initially off, and upon being stimulated,
it will become active, and enter a short refractory period.
The relative excitation dynamics can be weighted by linking
to gene expression atlas data. A local activation rule will be
used to activate adjacent regions, following the excitation
probability assigned to each voxel. Due to the refractory
period, activation can propagate with a directionality.

VIII. DISCUSSION

The main contribution of the KESM is the ability to
rapidly section and image large volumes of biological data
at a submicrometer resolution. The main limitation is that
it uses LM, so the resolution is diffraction limited. An
associated problem is that dense stains cannot be used (such
as those used for EM) so at present traditional histological
stains like Golgi are used, which reveals only 1% of the
entire neuronal population. Furthermore, Golgi does not stain
thin axons very reliably. A combination of Golgi and tracers
such as biocytin, or the use of fluorescence labeling will help
address these issues.

KESM has the potential to open up connectomics research
for small animal species other than the mouse. It does not
need to be a vertebrate species either. We have done pilot
scans of the octopus (Octopus vulgaris) brain (subesophageal
mass and optic lobe) with encouraging results [70]. As these
results suggest, the applicability of KESM is quite broad.

The kind of brain volume data generated by KESM and
similar microscopy techniques can greatly benefit neural
networks research. Neural networks can play an important
role at multiple stages of connectomics research. First, neural
networks can be used for tasks such as image processing,
reconstruction, and cell detection (see, e.g., [41], [42]). Also,
once a sufficiently large volume of circuitry data becomes
available, the data can be used to (1) validate existing neural
network models and theories, (2) construct anatomically
correct neural network models for functional simulation,
and/or (3) data-mine for principles of neural computation.

Finally, there are many open-ended questions. For exam-
ple, is it possible that we can have a high-fidelity simulation



of the brain but cannot understand what is going on in
the simulation? This is a possibility. Based on this, some
even might argue that modeling and simulation does not
give you any additional understanding about the phenomena
that you are studying. However, we need to consider that
simulations give us two important tools: (1) full access to the
system state (read-out) and (2) full control over the system
state (intervention). With a fully replicated simulation, we
can conduct a full battery of experiments, and also have a
unique opportunity to selectively damage or turn off parts of
the system, which is an important requirement for inferring
causality (see [71] for the importance of intervention). An-
other important question is about the role of theory in the
analysis of connectomics data. Do we need good theory to
make progress in connectomics research? A premature theory
may only mislead, but theories based on broader perspectives,
such as the importance of the sensorimotor loop [72], the
role of time in neural networks [73], evolutionary perspective
on brain function [74], etc. can help guide our exploration
through the vast connectomics data.

IX. CONCLUSION

In this paper, we reviewed recent technological advances
that enable connectomics research, and presented whole-
brain-scale, submicrometer data from the Knife-Edge Scan-
ning Microscope (KESM). Rich brain anatomy data from
instruments like the KESM can open up many opportunities
for neural networks research to advance our understanding of
the central nervous system. We expect data like those from
the KESM to help us rethink neural network models of the
brain, and lead to major breakthroughs in emulating the brain
function and behavior.

* For high-resolution images/videos visit http://kesm.org.
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