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Abstract— The corticothalamic feedback and the thalamic
reticular nucleus have gained much attention lately because of
their integrative and modulatory functions. A previous study by
the author suggested that this circuitry can process analogies (i.e.,
the analogy hypothesis). In this paper, the proposed model was
implemented as a network of leaky integrate-and-fire neurons
to test the analogy hypothesis. The previous proposal required
specific delay and temporal dynamics, and the implemented
network tuned accordingly functioned as predicted. Further-
more, these specific conditions turn out to be consistent with
experimental data, suggesting that a further investigation of the
thalamocortical circuit within the analogical frameworkmay be
worthwhile.

I. I NTRODUCTION

Understanding how cortical maps in the braininteract with
each other to generate complex behavior is an important
unsolved problem. Although we now know a lot more about
the anatomical connectivity and physiology of the cortical
maps than decades ago [2, 11], we still lack the understanding
of how these maps work as an integrated system.

One key insight, from recent advances in neuroscience, can
be gained from the thalamus. The thalamus is a centrally
located nucleus in the brain with a high degree of feedforward
and feedback connections to and from the cortex (see [23]
for a review). The thalamus was previously thought of as a
passive relay station for sensory-motor signals, however, this
explanation was not satisfactory because of the existence of
massive feedback from the cortex and a thin inhibitory network
covering the thalamus called the thalamic reticular nucleus
(TRN; see [6] for a review).

Previous work by the author suggested that the interplay
between the thalamus, TRN, and the cortex may be imple-
menting a function of analogy (theanalogy hypothesis; [3, 4]).
Analogy plays an important role in human perception and
cognition [10, 12, 13, 16, 20], and its ability to cross domain
boundaries may be critical in the integrative operation of corti-
cal maps. Experimental observations by Crabtree and Isaac [6]
nicely demonstrate the cross-modal nature of interaction in
the thalamus and in the TRN, and these results can provide
experimental grounds for the analogy hypothesis.

This paper presents the first computational implementation
of the hypothetical model by the author initially described
in [3, 4] and compare the results with the previous predictions.
The following sections will briefly summarize the analogy
hypothesis, then provide details of the implemented model,
together with the results. The paper will conclude with a
discussion about issues to be resolved, relevant related work,
and future directions.
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Fig. 1. Analogy Through Active Completion and Filtering. A simple
brain with 6 detector neurons is shown. Environmental input comes in from
the bottom (World of Fruits), and the neurons are linked with directed arcs
that show the learned association between the detectors. From (a) to (c)
shows the activation sequence of the brain in response to an analogy ques-
tion “apple:orange::word-red:? .” (a) Initial activation. (b) Active
completion across relational links. (c) Remaining activity after filtering out
input-driven cortical activity.

II. A NALOGY THROUGH ACTIVE COMPLETION AND

FILTERING

Neurons can be seen as processing information, i.e., produc-
ing output given a certain input. However, in this perspective,
the output generated by neurons ispassive, in the sense that
they need furtherinterpretationas all information or data does.
A slight change of perspective allows us to view neurons
as active elements, in the sense that neuronsactively invoke
other neurons. From this, it was shown that we can derive the
function of analogy [3, 4]. The previous papers showed that
completionandfiltering are necessary for such active elements
to implement the function of analogy. In the following, an
example will briefly illustrate the proposed mechanism.

Let us suppose we have a simple brain with active neurons
(or population of neurons) responding to specific inputs in the
environment (Fig. 1). The simple brain has detectors for differ-
ent input features including fruit objects (apple and orange),
colors (red and orange color), and spoken words (word-red
and word-orange). The neurons areactive, i.e., they invoke
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other neurons when they fire, and the invoking is done through
relational (or associative) links which are learned through
experience and embody frequently co-occurring events. For
example, the apple-object detector has a strong connection to
the color-red detector, etc.

Now consider the proportional analogy question
apple:orange::word-red:? . Fig. 1 shows an activation
sequence of the simple brain to the input question. Initially,
the first 5 neurons are activated in response to the input
(Fig. 1a). Next, through the relational links, other cortical
neurons are invoked (completion; Fig. 1b). Last, afterfiltering
for the purely cortex-driven activity in the cortex, only the
word-orange detector remains active (Fig. 1c). We can see
that word-orange is precisely the answer to the analogy
question we posed in the beginning, and completion and
filtering produced that answer.

However, simple filtering for only purely cortex-driven
activity is insufficient for analogy answers containing items
already present in the question. For example, consider the
analogy questionbig apple:small apple::big or-
ange:? . The answer issmall orange , but bothsmall
andorange appeared in the question, thus the simple filtering
as above will not work. In this case, relaxing the filtering
criteria allows us to get to the answer: findrelatively less
input-drivencortical activities [3, 4].

In summary, simple analogies can be processed by active
completion and filtering. In the next section, we will see how
such completion and filtering can be neurally implemented.

III. A CTIVE COMPLETION AND FILTERING IN THE

THALAMOCORTICAL LOOP

How can active completion and filtering be implemented in
the neural circuits of the brain? Previous work by the author
proposed that the thalamus, thalamic reticular nucleus (TRN),
and the cortex may be involved in completion and filtering [3,
4]. Fig. 2 shows a schematic diagram of the thalamocortical
circuit based on known anatomy and physiology [6, 21]. In
the following, we shall review how this circuit can carry out
completion and filtering.

Cortico-cortical connections linking different maps in the
cortex are ideally suited for active completion. However, a
more difficult issue is how can filtering be done, i.e., how
can input-driven cortical activity be distinguished from cortex-
driven cortical activity? As suggested in [3, 4], the TRN is a
promising location where such a filtering can occur.

The basic idea is that the reticular neurons receive both
ascending thalamic input and descending cortical feedback,
and reticular inhibition cancels out cortical feedback to the
thalamic relays when both ascending and descending spikes
are received at the TRN. On the other hand, when only
descending (i.e., corticothalamic) feedback is received, TRN’s
inhibition on the thalamic relay is weak, and the relay neuron
is allowed to fire in response to the cortical feedback, thus
invoking the cortical neuron for the second time around.

Fig. 3 shows a detailed activation sequence of this mech-
anism. The example shows a case where only one of the
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Fig. 2. The Thalamocortical Circuit. A schematic diagram of the
thalamocortical circuit is shown (see [21] for a review). Solid edges with
open arrows are excitatory connections, and dashed edges with closed arrows
are inhibitory connections. Two thalamocortical loops (T1-R1-C1 and T2-R2-
C2) are shown. The thalamus is a centrally located nucleus in the brain, and
the dorsal part of it is covered with an inhibitory network of neurons called the
Thalamic Reticular Nucleus (TRN). Ascending and descending connections
all branch out and stimulate reticular neurons, and the reticular neurons send
inhibitory connections to the thalamic relay neurons.

thalamocortical loops (loop1) received sensory input, thus
demonstrating howpurely cortex-drivenactivity can be singled
out: The cortical feedback to the thalamus that survives the
filtering is allowed to reactivate the cortex.

As for promoting therelatively less input-drivenactivity,
we can think of a case when loop1 receives a strong sensory
input and loop2 receives a weak sensory input. This time, both
reticular neurons R1 and R2 will be highly activated, but due
to the disinhibition1 between the two, R2, which is strongly
inhibited by R1, cannot cancel out cortical feedback from C2

to T2. On the other hand, R1, with its strong activity, will
cancel out feedback from C1 to T1.

A. Functional Requirements of the Proposed Circuit

There are specific assumptions that need to hold for the
scenario described above to work:

1) reticular neurons must have a slow dynamics (Fig. 3b–
d);

2) synaptic strength between TRN neurons must be strong
(Fig. 3d);

3) either the cortico-cortical connections must be very fast
or the corticothalamic feedback connections must be
slow (or both), compared to each other (Fig. 3c–d); and

4) interaction between reticular neurons must be fast
(Fig. 3d).

These conditions must hold due to the following functional
requirements (in the same order as above):

1) reticular neurons need to retain the ascending excitation
level to strongly inhibit the thalamic relay later when
the cortical feedback comes around (R1 in Fig. 3b–d);

1Inhibition of an inhibitory neuron results in net excitation at the target of
that neuron.
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Fig. 3. Analogical Completion and Filtering in the Thalamocortical
Circuit. An activation sequence of two thalamocortical loops (loop1 and
loop2) are shown. Active parts of the circuit at each step are highlighted. (a)
Initially, only T1 receives an afferent sensory input. (b) T1 invokes R1 and C1.
(c) The cortical neuron C1, through fast connections, invokes another cortical
neuron C2. C1 also sends out feedback to R1 and T1, but these connections
are slow and the spike can only travel a short distance in the same time.
Note that R1 retains the level of excitation because of its slow dynamics.
(d) Cortical feedback from both C1 and C2 arrives at the TRN, and adds
to the existing activity at TRN. Reticular neurons R1 and R2 inhibit each
other through fast connections. (e) At the time the cortical feedback arrives at
T1 and T2, the reticular neurons exert inhibition on the thalamic relays. R1,
driven by both afferent input and cortical feedback exerts strong inhibition
on T1, effectively canceling out the cortical feedback from C1. On the other
hand, R2 was only driven by the cortical feedback, and it is not enough to
cancel out feedback from C2 at the thalamic relay T2. Thus T2 is permitted
to fire again. As a result, C2 will be the only active neuron in the cortex in
the next iteration.

2) reticular neurons must inhibit each other strongly to
effectively disinhibit the thalamic relay for the weakly
input-driven case (R2 in Fig. 3d);

3) both input-driven cortical activity (C1) and cortical ac-
tivity (C2) driven by that input-driven cortical activity
must send feedback to the thalamus and TRN at ap-
proximately the same time (Fig. 3c–d); and

4) reticular neurons must rapidly adjust their activity level
before inhibiting the thalamic relays (R1 and R2 in
Fig. 3d).

Most of these conditions were described in [3, 4], but some
of those that were only implicit in the earlier description are
made more explicit here.

As it turns out, all of these conditions have experimental
support (in the same order as above):

1) reticular neurons activate and deactivate on a slow
timescale compared to thalamic relays [5, 14];

2) reticular neurons are harder to depolarize than thalamic
relays [14], which may be due to the strong mutual
inhibition between reticular neurons;

3) corticothalamic feedback connections are unmyelinated
(i.e., very slow) [25]; and

4) gap junctions have been found between reticular neu-
rons [18], suggesting that the interaction between retic-

ular neurons may be rapid.2

In the following, the conditions listed above will be tested
in a computational implementation of the model.

IV. M ODEL DESCRIPTION

A network of leaky integrate-and-fire neurons [9] was
constructed to test theanalogy hypothesissummarized in the
previous section.

Six neurons of three types (T: thalamic relay; R: thalamic
reticular neuron; C: cortical neuron) were connected according
to the diagram in Fig. 2 (with the additional connection from
C2 to C1). For each neuroni, the membrane potentialVi
evolved according to the following dynamic equation:

Ci
dVi
dt

= Ii(t)−
Vi
Ri
, (1)

whereCi is the membrane capacitance,Ri the resistance, and
Ii(t) the input contribution to neuroni at time t. When Vi
reaches a threshold valueθi, a spike is generated andVi is reset
to 0.0. A spike generated by a presynaptic neuronj results in
a postsynaptic potential (PSP)sij at a target neuroni, which
is set to 1.0 at the moment the spike is received and is decayed
over time as follows:

dsij
dt

= −sij
τi
, (2)

whereτi is the time constant of the PSP in the neuroni.
The input contributionIi(t) to the neuroni at time t is

defined as follows:

Ii(t) =
∑
j∈Ni

wijsij(t− δij), (3)

whereNi is the set of neurons sending spikes to neuroni (see
Fig. 2);wij is the connection weight from neuronj to i (the
sign is negative ifj is an inhibitory neuron); andsij(t− δij)
is the PSP generated in neuroni by a spike from neuronj
with a conduction delay ofδij . See Section V, Tables I and II
for the exact parameter values.

V. EXPERIMENTS AND RESULTS

Three experiments were conducted with the model described
above to test the assumptions and predictions in the hypotheti-
cal model (Fig. 2; [3, 4]). The experiments tested if the model
tuned according to the conditions listed in Section III-A can
filter out input-driven or less input-driven cortical activity and
just leave either the purely cortex-driven or relatively more
cortex-driven activity in the cortex.
A. General Experimental Setup

Tables I and II below list the neuron and connection parame-
ters (the units are arbitrary). The parameters are fairly uniform,
except for the figures inbold-type indicating a deviation from
the default parameters.

The deviations are not arbitrary, and are specifically required
as discussed in Section III-A (in the same order):

2It is controversial whether gap junctions can carry out disinhibition
as required in here. However, the existence of gap junctions shows that
reticular neurons need to communicate at a high speed, suggesting that other
connections between reticular neurons may have to be fast as well.



T

R

C

0 5 10 15 20

M
em

br
an

e 
V

ol
ta

ge

Time

T

C

Thalamic Relay

TRN

Cortex

R1

1

1

T

R

C

0 5 10 15 20

M
em

br
an

e 
V

ol
ta

ge

Time

(a) Thalamus-driven (b) Cortex-driven

Fig. 4. Thalamus- vs. Cortex-Driven Activity. Membrane potential traces for a thalamic relay (T), a reticular neuron (R), and a cortical neuron (C) in a
single loop are shown from bottom to top in each panel. The x-axis is time and the y-axis is the membrane potential. A depolarizing current of magnitude
1.0 and duration 1 was either injected in (a) the thalamic relay, emulating an input-driven condition, or in (b) the cortical neuron, emulating a cortex-driven
condition. Only for the cortex-driven case (b), the initial cortical burst of activity can reactivate the cortical neuron through the corticothalamic loop. Note that
the plot shows theVi trace (equation 1) with spikes added at the moment of threshold crossing. Note that (a) and (b) are from two independent experiments.

TABLE I

NEURON PARAMETERS

Parameter Thal. Relay (Ti) TRN (Ri) Cortex (Ci)

CapacitanceCi 0.3 0.6 0.3
ResistanceRi 3.0 3.0 3.0
Thresholdθi 0.25 0.25 0.25

PSP time constantτi 0.05 0.05 0.05

TABLE II

CONNECTION PARAMETERS

Weightwij Ti Ri Ci
Tj 1.0 1.0
Rj 2.0 10.0
Cj 1.0 1.0 0.9

Delay δij Ti Ri Ci
Tj 2.0 2.0
Rj 2.0 0.2
Cj 4.0 2.0 0.2

1) the membrane capacitanceCi of a reticular neuron Ri
must be large (= 0.6, twice the default value) so that
the membrane has slow dynamics;

2) the connection weight from Rj to Ri must be large
enough to have a disinhibitory effect (= 10.0, ten times
the default value);

3) the conduction delayδij from a cortical neuron Cj to a
thalamic relay Ti must be large (= 4.0, twice the default
value); the conduction delayδij from a cortical neuron
Cj to another cortical neuron Ci must be very small
(= 0.2, 1/10th the default value); and

4) the conduction delayδij from a reticular neuron Rj to
Ri must be small (= 0.2, 1/10th the default value).

There are two exception, one is (1) the connection weight Cj

to Ci, which was less than 0.0 to avoid hyperactivation through
a positive feedback loop; and the other is (2) the connection
weight from Ri to Ti, which needs to be strong enough to
suppress cortical feedback.

B. Experiment 1: Input-Driven vs. Cortex-Driven Activity in
a Single Loop

To independently test the function of asingle thalamocorti-
cal loop, depolarizing currents were injected at two different

sites of the loop in two separate experiments: (1) the thalamic
relay T and (2) the cortical neuron C. The thalamic injection
tested the input-driven condition, and the cortical injection the
cortex-driven condition. The results are shown in Fig. 4.

In the input-driven case (Fig. 4a), the cortex activates
at time t = 3 in response to the thalamic drive, but the
corticothalamic feedback at timet = 7 is canceled out (i.e.,
filtered out) by the reticular inhibition. As a result, the cortical
neuron fails to reactivate. In contrast, for the cortex-driven
case (Fig. 4b), the corticothalamic feedback to T at timet = 5
is strong enough to survive the weak reticular inhibition and
successfully reactivates the cortex at timet = 7.

C. Experiment 2: Input vs. No-Input Condition in a Pair of
Loops

In this experiment, a pair of thalamocortical loops was
simulated to test whetherpurely cortex-drivenactivity can be
singled out in the model. The two loops were connected as in
Fig 2 with an addition of reciprocal cortico-cortical connection
from C2 to C1. The parameters were the same as in Section V-
B, except for Ri to Ti weight which was increased to 5.0 to
counter the increased level of activity due to the recursive
corticocortical connection. Input current was only injected to
loop1 thalamic relay T1. The results are shown in Fig. 5.

For the initially input-driven loop (loop1; Fig. 5a), the
cortical burst of activity at timet = 3 is unable to reactivate
the cortex. However, for the initially cortex-driven loop (loop2;
Fig. 5b), the cortical burst at timet = 3 is able to reactivate
the cortex att = 10 through the corticothalamic feedback.
Thus, the model demonstrates selectivity for purely cortex-
driven activity.

D. Experiment 3: Strong- vs. Weak-Input Condition in a Pair
of Loops

The setup in this experiment was identical to Section V-
C, except for the input condition. For this experiment, loop1
thalamic relay T1 was injected with a depolarizing current of
magnitude 2.0, and T2 of loop2 was injected with a current, but
with a lower magnitude of 1.0. Thus, a strongly input-driven
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(a) Loop1: Input=1.0 (b) Loop2: Input=0.0

Fig. 5. Input vs. No-Input Condition. Membrane potential traces for neurons intwo connected thalamocortical loops are shown, one in (a) and the other
in (b). The two loops are wired as shown in Fig. 2, with the addition of a reciprocal cortico-cortical connection from C2 to C1. The voltage traces for the
neurons in the loops are numbered accordingly. (a) A depolarizing current of magnitude 1.0, duration 1 was injected in T1. (b) No current was injected
anywhere in the loop, thus all activities were initially driven by the cortico-cortical connection from C1 to C2 at time t = 3. Only the cortex-driven cortical
activity (C2) is able to reactivate the cortex through feedback to the thalamus (panelb, time t = 10). Note that the above are results from a single experiment.
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Fig. 6. Strong- vs. Weak-Input Condition. Membrane potential traces for two thalamocortical loops with an identical setup as in Fig. 5 is shown. The
only difference was the magnitude of depolarizing current injected in loops 1 and 2. (a) A depolarizing current of magnitude 2.0, duration 1 was injected in
T1. (b) A depolarizing current of magnitude 1.0, duration 1 was injected in T2. Thus, both loops were input-driven, but to a different degree. Only the less
input-driven cortical activity (C2) is able to reactivate the cortex through feedback to the thalamus (t = 10 in panelb).

vs. weakly input-driven condition was setup to test whether
relatively less input-drivencortical activity can be promoted
in the model. The results are shown in Fig. 6.

The results are similar to those in Section V-C. Cortical
activity in the more input-driven loop1 is unable to to reac-
tivate the cortex (Fig. 6a), but the less input-driven loop2 is
able to reactivate the cortex (t = 10; Fig 6b). Again, these
results show that the model has selectivity for less input-driven
cortical activity.

Note that in this case, disinhibition between reticular neu-
rons play an important role in allowing loop2 to reactivate the
cortex, despite the fact that loop2 was also input-driven: Loop1
reticular neuron R1 fires more strongly than R2 of loop2, and
when it fires, it inhibits R2 (t = 3 and beyond), thus abolishing
the inhibition exerted by R2 on T2 (compare T1 and T2 at
t = 7). Thus, the model demonstrates the ability to promote
relatively less input-driven cortical feedback.

E. Summary

In summary, the thalamocortical model functioned as pre-
dicted by theanalogy hypothesis, with a fixed set of parameters

derived from physiological considerations. The model was
successful in detecting and promoting (1) purely cortex-driven
cortical activity, and (2) relatively less input-driven cortical
activity, which are requirements for the processing of analogy.

VI. D ISCUSSION

Two major emphases of this paper areactivenessand the
integrative role ofanalogy in brain function. The two rather
abstract notions turn out to have a firm biological ground (i.e.,
the thalamocortical loop), and through this connection we can
begin to take a fresh look at how the diverse cortical maps can
interact to give rise to an integrated behavior. Action [1, 15],
analogy [10, 12, 13, 16, 20], and the attentive and integrative
role of the thalamocortical circuit [6, 17, 19, 21–23] are all
related in that respect, and a collective effort in understanding
the relationship between these areas will become necessary.

The current model can only address a limited range of
analogy problems [3, 4], and these issues need to be resolved.
The most prominent issues are that of structured analogy and
that of temporal or spatial order. Investigations into these
issues will inevitably involve the prefrontal cortex [8], which
is believed to be dealing with sequences of events.



Another issue not addressed in the previous papers [3, 4]
is that of synchrony [24, 26]. Thalamus plays an important
role in synchronization [19], and how analogical processes can
interact with synchronized populations of neurons will become
an important issue.

VII. C ONCLUSION

The current work computationally tested an earlier proposal
by the author that the thalamocortical circuit may be perform-
ing analogies across cortical maps. A network of integrate-
and-fire neurons was built and tuned based on functional and
physiological considerations. The results showed thatactive
completionand filtering for less input-driven activity, which
forms the basis of analogy, arise in the model. These re-
sults suggest that further investigation into the thalamocortical
mechanism of analogy may be worthwhile.
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