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Chapter 2

Knife-Edge Scanning Microscopy:
High-throughput Imaging and
Analysis of Massive Volumes of
Biological Microstructures

Recent advances in physical-sectioning microscopy have enabled high-throughput
imaging of massive volumes of biological microstructure at a very high resolution.
The Knife-Edge Scanning Microscope (KESM) we have developed is one of the
few that combines serial sectioning and imaging in an integrated process. The
KESM is capable of imaging biological tissue (about 1 cm3) at 300 nm × 300
nm × 500 nm resolution within 100 hours, generating data at a rate of 180 MB/s.
The resulting data per organ (e.g., a mouse brain) can easily exceed tens of ter-
abytes. High-performance computing methods are required at every stage in the
lifetime of the generated data set: (1) distributed storage and retrieval, (2) image
processing to remove noise and cutting artifacts, (3) image and texture segmenta-
tion, (4) three-dimensional tracking and reconstruction of microstructures, and (5)
interactive visualization. In this chapter, we will review the capabilities and latest
results from the KESM (Section 2.2); and discuss the computational challenges
arising from the massive amounts of data, along with a survey of our on-going
efforts to address these challenges (Section 2.3–2.5). We expect the integration
of high-throughput imaging and high-performance computing to lead to major
break-throughs in scientific discovery in biological sciences.
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2.1 Background
In this section, we will provide a brief review of high-throughput imaging and
analysis methods, to provide a proper context for the work we will discuss in the
remainder of the chapter.

2.1.1 High-Throughput, Physical-Sectioning Imaging
Currently, the standard approach for microscopic imaging of a volume of tissue
is confocal microscopy [1]. The basic idea is to change the depth of focus (focal
plane), and use a pinhole aperture to detect photons originating only from the
target depth. This is called “optical sectioning” where virtual, not actual, sections
are obtained. In conventional optical sectioning, the main limiting factor is not in
the resolution along the x-y plane (∼ 250 nm) but in that of the z direction (∼
700 nm) [2]. Although the resolution and imaging depth can be improved using
more advanced schemes such as multi-photon microscopy [3], optical sectioning
techniques are limited to the tissue surface and have limited z-axis resolution.
Slow imaging speed is another issue, for both confocal and multi-photon, such
that even in enhanced two-photon microscopy, the data rate is less than 8 MB/s
(512× 484 at 30 frames/s reported in [4], and about 1 frame/s in [3]).

Physical sectioning combined with microscopy is one alternative to overcome
the above issues, since z-axis resolution depends only on how thin the tissue can
be sectioned (it can go down to ∼ 30 nm using a vibrating microtome), and there
is virtually no depth limit on the tissue thickness.

The five most notable approaches in this direction are listed below:

1. All-Optical Histology [5].

2. Knife-Edge Scanning Microscopy (KESM) [6–10]

3. Array Tomography [11]

4. Serial-Block-Face Scanning Electron Microscopy (SBF-SEM) [12]

5. Automatic Tape-Collecting Lathe Ultramicrotome (ATLUM) [13]

All-Optical Histology

There are some efforts to eliminate the depth limit in optical sectioning microscopy.
For example, All-Optical Histology combines multi-photon microscopy with tis-
sue ablation to allow deeper imaging [5]. Imaging is performed using standard
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optical sectioning. Next, femtosecond laser pulses are used to ablate ∼150 µm-
thick sections on the top of the tissue block, exposing new tissue to be imaged.
The main advantage of All-Optical Histology is that it overcomes the tissue thick-
ness limit in confocal and multi-photon microscopy by ablating thick chunks of
tissue. However, since multi-photon microscope is used for imaging, it suffers
from the same vertical resolution limit and slow imaging speed.

Knife-Edge Scanning Microscopy

The Knife-Edge Scanning Microscope (KESM, US patent #6,744,572) has been
designed at Texas A&M University (TAMU) in recent years [6–10]. The instru-
ment, shown in Fig. 2.1, is capable of scanning a complete mouse brain (∼310
mm3) at 300 nm sampling resolution within 100 hours when scanning in full pro-
duction mode. The basic idea is to simultaneously cut and image thin sections of
embedded biological tissue. We will discuss KESM in more technical detail in
the following section (Section 2.2).

Array Tomography

Array Tomography uses an ultramicrotome to manually section embedded tis-
sue [11]. Adhesives on the edge of the embedded tissue block allow successive
sections to stick to each other. As sequential sections are cut, this forms an array
of ultrathin sections. The resulting tissue array is placed on a glass slide and can
be repeatedly washed, stained, and imaged using fluorescence microscopes and
scanning electron microscopes. Volume data are obtained by combining together
the imaged sections. The main advantages of Array Tomography is that it enables
the imaging of multiple molecular markers from the same slide, thus providing
perfect registration across different data modalities. However, there are some lim-
itations to this approach, such as limited imaging volume (order of magnitude less
than KESM in linear dimension) and semi-manual operation.

Serial Block-Face Scanning Electron Microscopy

Serial Block-Face Scanning Electron Microscopy (SBF-SEM), is capable of imag-
ing tissue volumes of approximately 500 µm in linear dimension at a resolution
on the order of 10 nm × 10 nm × 50 nm (exact values range from 12.7 nm to
13.4 nm for x and y; and 55 nm to 63 nm for z) [12]. The main advantage of
SBF-SEM is its extremely high resolution, where detailed cellular and subcellular
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ultrastructure can be imaged. However, the volume is limited to cubes of several
hundred µm, and scanning time can be prohibitive if sufficient signal-to-noise is
to be achieved (a 200 µm cube at the above resolution can take up to one year).
Improved staining methods to increase contrast can (theoretically) improve the
speed 400-fold. SBF-SEM development is in a mature stage, where production
models are now available from a commercial vendor (GATAN, Inc.).

Automatic Tape-Collecting Lathe Ultramicrotome

Automatic Tape-Collecting Lathe Ultramicrotome (ATLUM) is the latest devel-
opment in serial sectioning microscopy [13]. ATLUM is capable of collecting a
continuous ribbon sized 1 mm × 5 mm × 50 nm that get automatically pasted
on a continuously running tape. The tape is then cut and organized into a Ultra-
thin Section Library. The typical volume ATLUM can handle is about 10 mm3,
which is roughly a cube with a 2.15 mm linear dimension. One distinction in
ATLUM is that imaging (typically with SEM) is done only when needed, thus
a digitized library is not immediately available (according to the developers of
ATLUM, imaging such a volume would take hundreds of years). Thus, a more
reasonable approach is to have the Ultrathin Section Library containing the chips
to serve as the database itself. In the future, robotic random access SEM imaging
will be used to do on-demand imaging of objects of interest.

Summary and Comparison

Even though the methods above are unified under the common theme of physi-
cal sectioning, the resolution and the typical volume they can handle all differ,
putting them in a relatively complementary role with respect to each other. In
other words, these methods cannot be ranked on an absolute scale since there
are relative advantages and disadvantages to each method. Table 2.1 provides a
summary comparison of these microscopy methods.

Finally, we wish to emphasize that no matter what physical volume these
methods deal with (ranging from 1003 µm3 up to 1 cm3), the resulting volume
data can exceed several TBs. For example, KESM routinely generates 2 TB, and
it is projected that it can generate over 20 TB with a higher resolution objective
and thinner sections. Such volume of data poses serious challenges to compu-
tational analysis, and high-performance computing methods could help address
these challenges.
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Table 2.1: Summary Comparison.
Method Resol. (x&y) Resol. (z) Volume Modality Time

All-Optical Hist. 0.5 µm 1 µm 1 cm3 Fluorescence ∼900 hours
KESM 0.3–0.6 µm 0.5–1 µm 1 cm3 Bright field, ∼100 hours

Fluorescence∗

Array Tomography ∼0.2 µm 0.05–0.2 µm ∼1003 µm3 Fluorescence, N/A
EM†

SBF-SEM ∼0.01 µm ∼0.03 µm ∼5003 µm3 EM N/A
ATLUM ∼0.01 µm 0.05 µm ∼2.153 mm3 EM N/A

∗Expected in the near future. † EM: Electron Microscopy.

2.1.2 Volumetric Data Analysis Methods
Once the volume data are obtained from physical sectioning microscopy, the
next task is to extract objects of interest from the data set. This is a non-trivial
task due to distortions, noise, and artifacts resulting from the cutting process
(often due to vibrations known as chatter). Furthermore, the difficulty in au-
tomation for this kind of data is dramatically increased by the density and the
huge number of objects in the microscopy data. This is unlike volume data
from medical imaging (magnetic resonance [MR] imaging or computer-aided to-
mography [CT]) where object count and density are both low, for which various
automated methods exist (e.g., National Library of Medicine’s Insight Toolkit,
http://www.itk.org/). Note that medical imaging instumentation is also
makeing great advances, thus rendering existing algorithms insufficient (micro-
CT, diffusion tensor imaging, etc.).

In this section, we will review three main approaches taken in 3D reconstruc-
tion.

Image registration, segmentation, and reconstruction

A traditional approach for 3D reconstruction is to consider the volume data as a
stack of images, while processing one image at a time. This is often necessary
because the z-axis resolution is so much lower than the lateral resolution for most
imaging modalities. First, depending on the imaging modality, alignment (regis-
tration) of successive images in the image stack constituting the volume data may
be necessary. Next, the foreground objects and the background need to be seg-
mented. Finally, the segmented objects in individual images need to be stitched
together (reconstruction) to form a geometric representation of objects such as
neurons and vasculatures.
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The process is often times manual, and computer algorithms only play a sup-
portive role. For example, see the RECONSTRUCT package [14], and Neu-
ron Morpho [15]. There are some efforts to automate the entire process [16].
One disadvantage of the segment-then-reconstruct approach is that it is hard to
incorporate the 3D context in the process when there is ambiguity (foreground or
background? connect or not?) since the approach operates primarily in 2D. Fi-
nally, manual algorithms are far too time-consuming for the dense, high-frequency
structures found in high-throughput microscopy.

Convolutional neural networks

Jain et al. recently developed an alternative approach for 3D reconstruction, using
convolutional networks [17]. Convolutional networks is a special type of artificial
neural network that can be trained using supervised learning algorithms such as
backpropagation [18]. The input is a cubic volume of data, and the output is the
segmentation of the input volume. With an n × n × n voxel volume, connecting
to another n×n×n voxel volume in the hidden layers, the number of connection
weights (tunable parameters) can become prohibitive (for full connectivity, we
need n6). Convolutional networks avoid such an issue by sharing the connection
weights. So, for one connection bundle connecting two n× n× n voxel volumes
only n3 connection weights would be needed, instead of n6. In some sense, these
n3 connections work as a filter, performing a convolution operation in 3D. Thus,
the hierarchy in the neural network works as a series of 3D convolutions and
combinations of the results.

For the actual training, small cubic samples from the raw data volume are
plugged into the input, while manually labeled target values are plugged into the
output. A gradient-based backpropagation algorithm is the used to adjust the con-
nection weights. Thus, the learning process is basically converging to the most
effective 3D convolution kernels. One disadvantage of this approach is that, even
though the convolution strategy drastically reduces the number of tunable param-
eters, the training can be very slow, often lasting for weeks on modern parallel
computers. The slowness is partly due to the computationally demanding 3D con-
volution operation, and partly to the gradient-descent learning algorithm. The
advantage of the convolutional network approach is that fairly high levels of ac-
curacy can be reached based on a small amount of manually labeled ground truth.
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Vector tracking

The reconstruction methods discussed above (also see [19] for a review of tra-
ditional methods such as such as voxel-based skeletonization) have their own
advantages, but in many cases they are not efficient enough computationally to
be applied to large volume data sets, especially those with fiber-like structures
(see [20] for a review). Part of the problem is that each and every voxel has to be
visited (multiple times) during processing. One way to overcome this problem is
to visit only a subset of relevant voxels.

One of the latest approaches addressing the above issues is the vector tracking
algorithm [20, 21], where only local information around the object of interest is
examined, thus avoiding visiting every voxel in the volume data set. The basic
idea is to begin with a seed point, estimate the trajectory of a fiber by means of
template matching. Subsequently, small steps are taken along the fiber, continu-
ally adjusting the current position based on the estimated trajectory. Our group
at Texas A&M generalized the approach for more robust tracking [22], which we
will describe in detail in Sec. 2.3–2.4 (also see [23], which uses level sets).

2.2 Knife-Edge Scanning Microscopy
The instrument comprises four major subsystems: (1) precision positioning stage
(Aerotech), (2) microscope/knife assembly (Micro Star Technology), (3) image
capture system (Dalsa), and (4) cluster computer (Dell). The specimen, a whole
mouse brain, is embedded in a plastic block and mounted atop a three-axis preci-
sion stage. A custom diamond knife, rigidly mounted to a massive granite bridge
overhanging the three-axis stage, cuts consecutive thin serial sections from the
block. Unlike block face scanning, the KESM concurrently cuts and images (un-
der water) the tissue ribbon as it advances over the leading edge of the diamond
knife. A white light source illuminates the rear of the diamond knife, providing
illumination at the leading edge of the diamond knife with a strip of intense illu-
mination reflected from the beveled knife-edge, as illustrated in Fig. 2.2. Thus,
the diamond knife performs two distinct functions: as an optical prism in the col-
limation system, and as the tool for physically cutting thin serial sections. The
microscope objective, aligned perpendicular to the top facet of the knife, images
the transmitted light. A high-sensitivity line-scan camera repeatedly samples the
newly cut thin section at the knife-edge, prior to subsequent major deformation of
the tissue ribbon after imaging. The imaged stripe is a 20 µm-wide band locate
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at the bevel at the very tip of the diamond knife, spanning the entire width of the
knife. Finally, the digital video signal is passed through image acquisition boards
and stored for subsequent analysis in a small dedicated computing server. The
current server is a dual processor PC (3.2 GHz/2MB Cache, Xeon) with 6 GB of
memory, built-in 1 TB storage, connected to an archival RAID attachment. The
process of sectioning and imaging is fully automated with minimal human inter-
vention. Fig. 2.3 shows a screen-shot of the stage controller/imaging application
developed and maintained in our lab.

A quick calculation puts us in context, regarding the massiveness of the data
that KESM can produce. Consider the acquisition of volume data representing a
plastic-embedded mouse brain (15 mm Anterior-Posterior, 12 mm Medial-Lateral,
6 mm Dorsal-Ventral). A 40X objective has a field of view (knife width) of 0.625
mm. Sixteen strips (each 0.625 mm wide by 15 mm long) are cut for each z-axis
section (like plowing a field). For a (z-axis) block height of 6 mm, 12,000 sections
must be cut, each 0.5 µm thick. The integrated tissue ribbon length (15 mm/strip
× 16 strips/section × 12,000 sections/mouse brain) is 2.9 km. The tissue ribbon
is line-sampled at 300 nm resolution, near the Nyquist rate for an ideal optical
resolution of (0.77)(532 nm)=(0.80 NA) = 512 nm. Based on this, the total data
size (assuming one byte per voxel) comes out to 20 terabytes (TB) (at half the
resolution in each dimension, it would be ∼2.5 TB). The tissue ribbon can be
sampled at 11 mm/s by line sampling at 44 kHz (180 MB/s), the camera maximum
(Dalsa CT-F3-4096 pixels). Sampling the 2.9 km tissue ribbon requires 265,000 s
= 73 hr. Because mice brains are not cubical, stage return takes time, etc., we add
50% overhead, resulting in ∼100 hr.

Figs. 2.4 and 2.5 show typical data that can be obtained using the KESM [9].
Nissl staining dyes the RNA in the cytoplasm of all neurons and the DNA in cell
bodies in all cells. However, the dendritic arbors and axons remain unstained.
Thus, Nissl staining allows us to reconstruct the distribution of all cell bodies in
the mouse brain, and in particular their distribution within the six layers of the
cerebral cortex. Golgi staining, in contrast, reveals the entire structure of neurons,
as it stains just 1% of the neurons in the tissue. Individual neurons can be seen
clearly, permitting reconstruction. India ink enables high-contrast staining of the
entire vascular network. Fig. 2.6 shows a rendering of the data volume using
Amira [24].
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(9)
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Figure 2.1: The Knife-Edge Scanning Microscope (KESM). A photo of the
KESM is shown with its major components marked: (1) high-speed line-scan
camera, (2) microscope objective, (3) diamond knife assembly and light colli-
mator, (4) specimen tank (for water immersion imaging), (5) three-axis precision
air-bearing stage, (6) white-light microscope illuminator, (7) water pump (in the
back) for the removal of sectioned tissue, (8) PC server for stage control and image
acquisition, (9) granite base, and (10) granite bridge.
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Figure 2.2: Tissue Sectioning and Imaging in KESM. (a) A close-up of the
parts 2, 3, and 4 in Figure 2.1 is shown. To the left is the microscope objective,
and to the right the diamond knife and light collimator. Submerged under water
in the center is the plastic-embedded brain tissue held in a specimen ring. (b)
The principal of operation of KESM is illustrated. The objective and the knife
is held in place, while the specimen affixed on the positioning stage moves (ar-
row with solid line) at the resolution of 20 nm and travel speed of 1–5, and gets
scraped against the diamond knife (5 mm wide for 10X objective), generating a
thin section flowing over the knife (arrow with solid line). Line-scan imaging is
done near the very tip of the knife where the distortion is minimal (maximum 106
µm from the tip of the knife). Illumination if provided through the diamond knife
(arrow with dashed line indicates the light path). Note that the size of the knife is
exaggerated. Adapted from [9].
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Figure 2.3: KESM Automation Software. A screenshot of the automated stage
control and image capture application is shown.

2.3 Tracing in 2D
As we have seen in the previous section, the amount of data generated by high-
throughput microscopy instruments is staggering. Simply iterating through the
entire data set can take a long time. Thus, traditional image processing and 3D
reconstruction algorithms are not suitable for this kind of data, since they require
intense computation on every pixel/voxel in the data volume. Can et al. [21] and
Haris et al. [27] developed template-based methods to overcome this issue.

In this section, we will present an extended template-based 2D tracking algo-
rithm that can track fiber-like structures in biological volume data, such as neu-
ronal processes or vascular networks. The basic idea is shown in Fig. 2.7 and
2.8. A moving window template is generated around a seed point (the size of the
window is proportional to the fiber width), and the pixels along the circumference
of the moving window are sampled to construct an intensity profile. The intensity
profile is convolved with a Gaussian filter, and based on this fiber cross-sections
(FCSs) are identified, where the border of the window overlaps the underlying
object (Fig. 2.7). The current position is then moved to the center of the FCS,
and a Cubic Tangential Trace Spline (CTTS) is used to interpolate between the
current and the next seed point (or center point) (Fig. 2.8, left). CTTS is an in-
terpolation method we developed by combining Lagrange interpolation [28] and
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Figure 2.4: Nissl Data from KESM. Coronal section of mouse brain stem is
shown, with part of the cerebellum visible to the bottom half. Close-up of the
inserts are shown to the right. The pixel resolution of the images is 0.6 µm/pixel,
with a section thickness of 1 µm. Adapted from [9].
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Figure 2.5: Golgi Data from KESM. The stack of images generated by KESM
can be viewed from the side of the stack (resectioning). A single resectioned plane
is shown at the top. Golgi stain results in sparse data, so often times it is easier
to see familiar structures by overlaying multiple planes (middle). A single neuron
can be observed when approximately 300 planes are overlayed (bottom). Adapted
from [9].
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(a) Nissl (b) Golgi (c) India Ink
Figure 2.6: Volume Visualization of KESM Data. Volume visualizations of
KESM data using Amira [24] are shown. (a) Nissl-stained mouse cerebral cortex
(∼3003 µm3 cube). (b) Golgi-stained mouse cerebral cortex (∼3003 µm3 cube).
(c) India-ink-stained vasculature in mouse spinal cord (1.8 mm × 1.8 mm × 1.2
mm, adapted from [25, 26]). Voxel size ∼ 0.6 µm × 0.7 µm × 1 µm.

B-splines [29], for fast and accurate interpolation. When there is a branch, lin-
ear interpolation is used instead of the CTTS (Fig. 2.8, right). To make sure that
the interpolation line is over actual data, the pixels directly below the spline are
checked. All the other pixels in the moving window are safely ignored, greatly
reducing the amount of data to be inspected.

Our algorithm (MW-CTTS, for moving window with CTTS) improves upon
the previous approaches [21, 27] by adding robustness to noise, improved branch
handling, and longer tracked distance from a single seed point. We quantitatively
measured the noise-robustness of our algorithm using synthetic data with added
noise. Two types of fibers were generated (line-type and curve-type), with varying
fiber widths (20 to 50 pixels). We randomly generated 2,400 such synthetic inputs
and ran our algorithm against Can et al.’s and Harris et al.’s. Fig. 2.9 shows the
results. Our method was found to be more robust compared to these two methods.
We also ran our algorithm against the two algorithms above on a real vascular
data set (Fig. 2.10(a)). Can et al.’s method cannot handle branches (Fig. 2.10(b)),
and Haris et al’s can show limited coverage due to incorrect branch handling (Fig.
2.10(c)). On the other hand, our algorithm shows the longest tracked distance,
coupled with accurate traces (Fig. 2.10(d)). Our algorithm is also fast compared
to the two other methods. Tab. 2.2 summarizes the total distance tracked and the
speed of tracking.

The algorithm described above is efficient, requiring O(k) complexity (in the
number of pixels examined), where k is the length of the tracked fiber. The number
of pixels needed to be inspected depends on (1) the moving window’s side length,
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Figure 2.7: Identifying Cross-Section of Fiber Object and the Moving Win-
dow. An illustration of the method used to identify fiber segments (the “Y”-shaped
object in the background) that overlap with the circumference of the moving-
window template is shown (the blacksolid pixels). First, all the pixels are taken
from the moving window’s boundary, and convolution is done with a Gaussian
filter to obtain an intensity profile (bottom). The valleys in the intensity profile
are identified as fiber cross sections. This process helps deal with inherent noise
in biomedical images. Note that the actual algorithm extracts a “band” of pix-
els from the window border, and apply a small 2D Gaussian filter to extract the
intensity profile.
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ci+1 ci+1

ci

ci+2

step i step i+1
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1

2

Figure 2.8: Fiber Tracing with Moving Window Templates. An illustration of
the fiber tracing algorithm is shown. (Left) Given an initial seed point (or moving
window center from the previous step) ci, first we construct a moving window
of an appropriate size and identify fiber cross-sections (FCS) in the advancing
direction. By taking the center of the identified FCS, we can obtain the next center
point ci+1 (gray pixel). In this example, there is no branch within the moving
window. Once the target is found, a cubic tangential trace spline (CTTS) is used to
connect the two center points ci and ci+1, and pixels underneath the interpolation
line are checked to certify that the interpolation is over an existing fiber object.
(Right) Starting from the moving window center estimated from the previous step
(ci+1), another moving window is constructed and the candidate FCSs identified.
In this case we have two candidates, thus we generate two center points for the
continued trace (c1

i+2 and c2
i+2, marked as gray pixels). For cases like this including

branches, we used linear inerpolation. Note that the full grid is not shown, to avoid
clutter.
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Figure 2.9: Performance of MW-CTTS Tracing Algorithm on Synthetic Data.
The average performance of our MW-CTTS tracing algorithm on synthetic data
(linear or curvy objects) are shown (squares), compared with that of Can et al.
[21] (solid diamonds) and Haris et al. [27] (open diamonds). In both cases, our
algorithm showed superior performance (near zero error).

(2) the fiber width, (3) the size of the Gaussian filter, and (4) total number of
moving windows. With the fiber width n, moving window side length of 2nε (ε
is a small parameter between 1.1 and 1.5), a Gaussian filter size of 5 × 5, and
the total number of moving windows of k

2nε
, the number of pixels come out to

(2nε × 4) × (5 × 5) × k
2nε

= 100k, i.e., O(k). This calculation shows that our
algorithm can scale up quite well to large volumes of data. It also helps that
vascular and neural data are very sparse (< 6% for vascular and < 1–2% for
neural data).

In the next section, we will show how a similar approach can be extended into
3D.

2.4 Tracing in 3D
In this section, we discuss the extension of vector tracking techniques to three-
dimensional data sets like those found in high-throughput microscopy. In gen-
eral, 2D techniques have limited use since a single section contains a very limited
amount of data. One method of dealing with this would be to combine several
sections together, creating images similar to those in Fig. 2.10. Two-dimensional
tracking methods can then be used to trace filament data. However, this method
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(a) Vascular data (b) Can et al.

(c) Haris et al. (d) MW-CTTS

Figure 2.10: Tracing Results Using MW-CTTS Compared to Other Algo-
rithms. Tracing results on a vascular image is shown for three different algo-
rithms (scale bar = 20 µm, mouse cortex with vasculature stained with India ink
and cell nuclei stained with Nissl, imaged using conventional light microscope).
All three algorithms were initiated with the same single seed point in (a). Our
MW-CTTS algorithm exhibits the most extensive trace.
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Can et al. Haris et al. MW-CTTS
total dist. µsec/dist. total dist. µsec/dist. total dist. µsec/dist.

#1 68 px 50.21177 831 px 8.791092 936 px 6.705957
#2 25 px 100.6608 1826 px 16.84223 1912 px 12.57990
#3 76 px 85.74671 1473 px 22.86413 7845 px 9.974812
#4 272 px 14.07918 2190 px 12.16080 3712 px 11.60712
#5 196 px 16.77046 1461 px 14.55146 4045 px 10.91478
#6 216 px 20.83727 1449 px 16.10389 7731 px 11.80340

Table 2.2: Performance comparison using one seed point on 6 mouse cerebellum
data. The µm/pixel is 1.1. We performed the trace on a PC with Intel Pentium
4 (2.4 GHz) processor, 512MB of memory under Windows XP operating system.
C/C++ programming language and OpenGL library were used. Note that MW-
CTTS always has the largest number of traced distance within real-time.

causes a loss in resolution along the projected axis.
Instead, we employ tracking techniques that work completely in three dimen-

sions. One of the most basic techniques for segmentation in 2D and 3D data sets is
template matching [30, 31]. In this case, a template is created that has a structure
similar to the objects to be segmented. We then run the template across the image
(or volume), centering the template at each pixel (or voxel). We then compare the
local region with the template. Template matching has many advantages, the most
important of which is that it is robust in the presence of noise. In addition, the
operation is highly parallel and different regions can be tested for correlation to
the template simultaneously.

Although this works well for structures that have a fixed size and are rota-
tionally invariant, segmentation of varying structures, such as blood vessels, can
be time consuming. This is because the template must also be sampled at differ-
ent sizes and orientations, turning what was a 3D spatial problem into a seven-
dimensional problem; three spatial, three rotational, and one in scale-space. This
is particularly problematic when dealing with large data sets. Additional problems
arise when trying to discretize these other dimensions. While the spatial dimen-
sions of the image are already discrete, only a finite number of template sizes and
orientations can be tested.

We solve this problem by using the vector tracking methods described in Sec.
2.3 along with a heuristic-based approach to reduce the number of samples re-
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quired to identify a vascular or neuronal filament. By starting from an initial seed
point, we predict the path of the filament by taking samples of the cross section
along several directions (Fig. 2.11). These samples are then compared with a tem-
plate. The sample that provides the best response is selected as the trajectory of
the filament. We then take a small step along this direction, at which point we
take another series of samples (Fig. 2.12). Every step on the way, we need to
make small adjustments such as axis correction and estimation of the fiber radius.
These techniques can be used to limit sampling to the filament surface [32] and
cross section [33].

This kind of tracking allows us to reduce the required number of samples in
several ways:

• Similar to vector tracking, samples are only taken local to the filament.

• By understanding the curvature of the filament, we can sample a limited
number of orientations based on the orientation used in the previous step.

• Since filaments gradually change size, we can limit the number of samples
in the scale dimension to sizes local to the previous step.

Finally, we note that evaluating each sample is a highly parallel operation that
maps well to modern graphics processing units (GPUs). By implementing these
tracking methods completely on commodity GPUs, we are able to achieve even
greater speedup over standard template matching schemes (Fig. 2.14). See [33]
for details.

2.5 Interactive Visualization
Both the size and density of structures in high-throughput data sets poses several
problems in modeling and visualization. In this section, we discuss interactive
visualization techniques that we use to explore dense bundles of filaments in vol-
umetric networks such as neuronal trees and microvascular networks.

Direct volume visualization and isosurface construction are standard methods
used to visualize scalar volume data sets like those created using KESM. Unfortu-
nately, these methods require that a large data set or surface be stored in memory
during visualization, which is often impossible on the limited memory of current
graphics cards.

Streamline and stream tube methods [34] provide a means of limiting the
amount of active data by storing only the simplest representation of the filament
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Figure 2.11: Fast Fiber Tracing. The basic idea behind our fast fiber tracing
algorithm is shown. (a) Starting from a seed point (t = 1), the direction of the
fiber is estimated (t = 2 to t = 3). The next point in the fiber trajectory is
estimated using a template-based approach. Images are formed as interpolated
slices (computed via graphics hardware) through the data volume—sampling in
several directions around the current point. (Note that the distance between trace
points is exaggerated.) (b) A typical array of slices from the tangential planes
are shown. Only a small number of these resemble a circular cross-section of a
fiber (upper-right corner). The best matching one is selected as the next point
in the fiber trajectory. (c) An array of templates are shown. Using the graphics
processing unit (GPU), comparison of b and c can be done extremely fast, through
the texture rendering logic. Adapted from [26].

Figure 2.12: Tracing Process. An example of using the tracing algorithm to
track a sequence of fibers is shown. The small squares show the current trace
center point, and the white arrows indicate the prediction direction. Gray trailing
traces show the fibers that have been traced so far. Adapted from [26].
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Figure 2.13: Tracing Results. The tracing results on a vascular data set are
shown, with a slice of the actual data shown on the bottom. The fibers are colored
with different shades of gray to represent independent traces. Adapted from [26].

data. These methods are often used for visualization in Diffusion Tensor MRI to
display bundles fibers in white-matter regions of the brain. At the resolution of
high-throughput microscopy, however, filaments rarely travel in coherent groups.
Rendering high-throughput microscopy data using these techniques creates im-
ages that are cluttered and difficult to understand.

The techniques that we use are based on ideas demonstrated by streamlines.
We first segment a filament network, as described in Sec. 2.4. We then render
the filaments as a series of billboards that are always oriented towards the viewer
(Fig. 2.15). This eliminates the need to store large volumes, in the case of volume
rendering, or polygon meshes, in the case of surface representations. Instead, only
the series of line segments and radii are used to display the network (Fig. 2.16).

This allows a user to interactively explore the filament data but does little to
reduce the clutter produced by the dense network of filaments. Since we have the
positional information for each filament, we can selectively visualize parts of the
network based on the connectivity and trajectory of filaments [35]. By selecting an
orientation, we can highlight filaments that travel in the selected direction, looking
for trends in the data set. We call this orientation filtering and use it to understand
the flow of axons in a complex network as well as general trends in vascular flow
through different types of tissue.
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Figure 2.14: Fast Fiber Tracing Using the Graphics Processing Unit (GPU).
Performance figures demonstrate the speedup obtained by using GPU compu-
tation. The GPU version results (a) Computation time taken to trace the same
amount of data on different combinations of CPUs (single- or multi-core) and
GPUs are shown. The use of GPU gives an order-of-magnitude reduction in com-
putation time.(b) The speedup achieved by using the full capacity of GPUs as
compared to that of single-core CPU (diamond) or GPU sampling only (square)
is shown, as a speed-up ratio (Factor = comparison time/full GPU time). The re-
sults show an almost 20-fold speedup compared to single-core CPU-based runs.
Adapted from [26].

A

B

C

Figure 2.15: Self-Orienting Surfaces. The geometric data is replaced by a single
geometric object (such as a surface). This object (surface) is oriented to always
face the viewer. The object itself is also modified so that the appearance is correct
from any angle. Note that the orientation of the data (cylinder) is not changing
(small arrow head on top of the cylinders).
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(a) (b)

(c) (d)

Figure 2.16: Interactive Visualization of Fibrous and Thread-like Data. (a)
Self-orienting surfaces implemented on the GPU give high quality renderings of
neuron data viewed close up, and (b) allow large volumes to be viewed at interac-
tive rates. (c) Orientation filtering allows us to interactively explore orientation of
fibers, allowing us (d) to discover fiber bundle directions across larger data sets.
Adapted from [35].

25



2.6 Discussion
The main contribution of our work is three-fold: (1) high-throughput serial-sectioning
imaging of brain microstructures, (2) fast and accurate algorithms for 2D and 3D
reconstruction of neural and vascular morphology, and (3) interactive real-time
visualization of the reconstructed structures. These techniques are expected to
provide critical neuroanatomical data at a submicron-level for whole small animal
brains. There are several open issues that need to be addressed. In the following
sections, we will discuss validation and editing, as well as how to exploit paral-
lelism.

2.6.1 Validation and editing
Quality control becomes a critical issue for any automated data processing pro-
cedure, and our parallel 3D reconstruction algorithm is no exception. In medical
imaging, this process is called “validation” [36–38]. The challenge here is that
obtaining full ground truth for validation could require performing a reconstruc-
tion of the entire data set. Typically, two approaches are taken for validation: (1)
use of manually labeled data as ground truth, and (2) use of digital phantoms, i.e.,
synthetically generated data mimicking structures observed in a known ground
truth (see [38] for a review). The two approaches have their own limitations, but
they are complementary. We are currently looking into optimally combining these
two approaches for accurate, efficient, high-throughput validation.

For the first approach requiring ground truth, manual editing is critical. Man-
ual editing of small volumes, for example, a 300µm × 300µm × 300µm cube of
mouse brain would not take too long (about a week). Consider Fig. 2.17 which
illustrates the image acquisition and reconstruction process. Given the data vol-
ume (image stack I) obtained from KESM, domain experts can label the data to
provide the ground truth M̂e (note that the domain expert’s labeling is in itself
an estimation of the true ground truth M ). Concurrently with manual labeling,
the data volume I can be put through our segmentation and reconstruction algo-
rithms, producing the estimated microstructure M̂ . Validation can then be done by
comparing M̂e (by the domain expert) and M̂ (by the reconstruction algorithm).
Measures like mutual information can be used to quantitatively measure the dif-
ference. Furthermore, we can train validation functions using machine learning
techniques, and use the resulting validator for large-scale validation (see Chapter
7 by Yom-Tov on machine learning for large-scale datasets).

For the second approach, digital phantoms can be used. Digital phantoms
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Figure 2.17: Microstructure-to-image Mapping and Reconstruction. The
process by which a microstructure (real or synthetically generated) is turned into
a stack of images in KESM and how they are reconstructed is shown. Modeling
this process (g ◦ f , composition of g and f ) enables the generation of realistic
synthetic image data (digital phantoms). On the other hand, the task of recovering
the structural descriptions from the image data is basically the inverse: f̂−1 ◦ ĝ−1,
a composition of the segmentation (ĝ−1) and the 3D reconstruction process (f̂−1).
(The “̂” symbol indicates that these functions are estimates.) Validation can take
three approaches: (1) given I from KESM and M̂e from human labeling, generate
reconstruction M̂ from I and compare it with M̂e, (2) given a digital phantom I
with ground truth M , reconstruct M̂ from I and compare it with M , or (3) Given I
and its reconstruction M̂ , use the mapping g◦f to create Î and show the difference
image Î − I that can be accepted or rejected.

are synthetically generated, realistic data, produced from a known ground truth
model (see e.g., [39]). Given a known ground truth M , the 3D volume V is
generated in a straight-forward manner, and then image formation, distortion, and
noise models are used to produce the final product, the image stack I (Fig. 2.17).
The KESM imaging process can be modeled (as in [40]), and based on this, noisy
digital phantoms (I) can be generated from a synthetic ground truth (M ). The
reconstruction algorithm can then be executed on this digital phantom, and the
estimated microstructure M̂ compared to the ground truth (M ).

These two approaches will help perform large-scale validation of our auto-
mated algorithms.

2.6.2 Exploiting parallelism
With the advent of high-throughput microscopy instruments like KESM, data ac-
quisition is no longer a bottle neck: the reconstruction and computational analysis
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becomes a major bottle neck [16]. Fortunately, many tasks involved in reconstruc-
tion and analysis can be conducted locally, thus allowing straight-forward paral-
lelization (see, e.g., [41]). For example, the large data volume can be partitioned
into small unit cubes that can fit in several GB of memory, and the reconstruction
can be done within each cube on multiple computing nodes in parallel. The latest
techniques developed for parallel feature extraction and 3D reconstruction using
high-performance computing can be adapted easily for these tasks (see Chapter 6
by Rao and Cecchi and Chapter 8 by Cooper et al.).

Besides parallelizing by dividing our data set into multiple regions, each to
be handled by a single computing node, we can exploit the avaiable GPUs and
multi-cores on modern CPUs to run multiple processes simultaneously tracking
different fibers in the same unit cube. This will allow for larger memory blocks,
and thus fewer artificial boundaries across which fiber tracking is inherently more
difficult.

Even though these computations can be carried out locally, in the end, the
results of these computations need to be merged, since processes from neurons
(especially long axons) can project across the full span of the brain. After initial
unit cubes are processed, we must merge data from adjacent unit cubes. It may
also be necessary to modify our reconstruction in one unit cube based on the data
obtained from the boundary of an adjacent unit cube. Some ideas on how a similar
merger can be achieved is discussed in [42].

Another important observation is that the result from parallel reconstruction
and merging need to be stored. As morphological information from adjacent unit
cubes are combined, the fibers within each area must be merged. This can create
potential problems, as the merged fiber-like data loses the locality it previously
enjoyed. Furthermore, the data structure could become extremely complex (e.g.,
the entire vascular system could be one connected component); methods for rep-
resenting such complex structures hierarchically will be needed.

Once all the reconstructions are done and stored so that a network of connected
components emerges (e.g., neuronal or vascular networks), large-scale network
analysis needs to be conducted to extract principles that connect network structure
to function [43–47]. For such a task, parallel processing techniques developed for
computational biology applications could be utilized (see Chapter 4 by Wagner).

Finally, various visualization techniques may also require parallel and high-
performance computing capabilities. Machine learning techniques to visualize
relevant features in the input (Chapter 10 by Xiao et al.), and the use of new
high-performance computing paradigms (Chapter 13 by Singh et al.) show that
visualization also needs to tap into high-performance computing.
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2.7 Conclusion
Emerging high-throughput microscopy techniques such as the Knife-Edge Scan-
ning Microscopy are starting to generate immense volumes of high-quality, high-
resolution data from whole animal organs such as the mouse brain. Once these
data are made available, the real bottle neck becomes computational analysis.
Computational demand is very high at every stage of analysis, from image pro-
cessing, 3D reconstruction, up to validation and network analysis (e.g., for neu-
ronal and vascular networks). This challenges can be met effectively only through
a combination of (1) efficient and accurate algorithms and (2) high-performance
computing. In this chapter, we surveyed high-throughput microscopy techniques
with a focus on our own KESM, and efficient algorithms (MW-CTTS and template-
matching vector tracking) for morphological reconstruction. An extension of
these methods, coupled with high-performance computing paradigms, can open
the door to exciting new discoveries in biological sciences.
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dimensional microscopy using a confocal laser scanning microscope,” Op-
tics Letter, vol. 10, pp. 53–55, 1985.

[2] J. B. Pawley, Handbook of Biological Confocal Microscopy. New York:
Plenum Press, 1995.

[3] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning flu-
orescence microscopy,” Science, vol. 248, pp. 73–76, 1990.

[4] G. Y. Fan, H. Fujisaki, A. Miyawaki, R.-K. Tsay, R. Y. Tsien, and M. H. Elis-
man, “Video-rate scanning two-photon excitation fluorescence microscopy
and ratio imaging with cameleons,” Biophysical Journal, vol. 76, pp. 2412–
2420, 1999.

[5] P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram,
C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-
optical histology using ultrashort laser pulses,” Neuron, vol. 39, pp. 27–41,
2003.

[6] B. H. McCormick, “System and method for imaging an object,” 2004.
USPTO patent #US 6,744,572 (for Knife-Edge Scanning; 13 claims).

[7] B. H. McCormick, “The knife-edge scanning microscope,” tech. rep.,
Department of Computer Science, Texas A&M University, 2003.
http://research.cs.tamu.edu/bnl/.

[8] B. H. McCormick, L. C. Abbott, D. M. Mayerich, , J. Keyser, J. Kwon,
Z. Melek, and Y. Choe, “Full-scale submicron neuroanatomy of the mouse
brain,” in Society for Neuroscience Abstracts, Washington, DC: Society for
Neuroscience, 2006. Program No. 694.5. Online.

30



[9] D. Mayerich, L. C. Abbott, and B. H. McCormick, “Knife-edge scanning
microscopy for imaging and reconstruction of three-dimensional anatomical
structures of the mouse brain,” Journal of Microscopy, vol. 231, pp. 134–
143, 2008.

[10] B. H. McCormick and D. M. Mayerich, “Three-dimensional imaging using
Knife-Edge Scanning Microscope,” Microscopy and Microanalysis, vol. 10
(Suppl. 2), pp. 1466–1467, 2004.

[11] K. Micheva and S. J. Smith, “Array tomography: A new tool for imaging the
molecular architecture and ultrastructure of neural circuits,” Neuron, vol. 55,
pp. 25–36, 2007.

[12] W. Denk and H. Horstmann, “Serial block-face scanning electron mi-
croscopy to reconstruct three-dimensional tissue nanostructure,” PLoS Bi-
ology, vol. 19, p. e329, 2004.

[13] K. Hayworth and J. W. Lichtman, 2007. Automatic Tape-Collecting
Lathe Ultramicrotome (ATLUM), http://www.mcb.harvard.edu/
lichtman/ATLUM/ATLUM_web.htm.

[14] J. C. Fiala and K. M. Harris, “Extending unbiased stereology of brain ultra-
structure to three-dimensional volumes,” J. Am. Med. Inform. Assoc., vol. 8,
pp. 1–16, 2001.

[15] K. M. Brown, D. E. Donohue, G. D’Alessandro, and G. A. Ascoli, “A cross-
platform freeware tool for digital reconstruction of neuronal arborizations
from image stacks,” Neuroinformatics, vol. 3, pp. 343–359, 2007.

[16] D. Chklovskii, “From neuronal circuit reconstructions to principles of brain
design,” in Proceedings of the 5th Computational and Systems Neuroscience
Meeting (COSYNE 2008 Abstracts), p. 331, 2008.

[17] V. Jain, J. F. Murray, F. Roth, H. S. Seung, S. Turaga, K. Briggman, W. Denk,
and M. Helmstaedter, “Using machine learning to automate volume recon-
struction of neuronal shapes from nanoscale images,” in Society for Neuro-
science Abstracts, Washington, DC: Society for Neuroscience, 2007. Pro-
gram No. 534.7. Online.

31

http://www.mcb.harvard.edu/lichtman/ATLUM/ATLUM_web.htm
http://www.mcb.harvard.edu/lichtman/ATLUM/ATLUM_web.htm


[18] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural Computation, vol. 1, pp. 541–551, 1989.

[19] J. J. Capowski, ed., Computer Techniques in Neuroanatomy. Plenum, 1989.

[20] K. A. Al-Kofahi, S. Lasek, D. H. Szarowski, C. J. Pace, G. Nagy, J. N.
Turner, and B. Roysam, “Rapid automated three-dimensional tracing of neu-
rons from confocal image stacks,” IEEE Transactions on Information Tech-
nology in Biomedicine, vol. 6, pp. 171–187, 2002.

[21] A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Rapid
automated tracing and feature extraction from retinal fundus images using
direct exploratory algorithms,” IEEE Transactions on Information Technol-
ogy in Biomedicine, vol. 3, pp. 125–138, 1999.

[22] D. M. Mayerich, L. C. Abbott, and B. H. McCormick, “Imaging and recon-
struction of mouse brain vasculature and neighboring cells using knife-edge
scanning microscopy,” in Society for Neuroscience Abstracts, Washington,
DC: Society for Neuroscience, 2006. Program No. 694.4. Online.

[23] B. Busse, S. J. Smith, C. A. Taylor, and R. Y. Arakaki, “Development of
a semi-automated method for three-dimensional neural structure segmenta-
tion,” in Society for Neuroscience Abstracts, Washington, DC: Society for
Neuroscience, 2006. Program No. 834.13. Online.

[24] Zuse Institute Berlin (ZIB) and Mercury Computer Systems, Berlin,
“Amira: Advanced 3D visualization and volume modeling,” 2006.
http://www.amiravis.com.

[25] D. M. Mayerich and J. Keyser, “Filament tracking and encoding for complex
biological networks,” in Proceedings of Solid Modeling, 2008. To appear.

[26] D. M. Mayerich, Z. Melek, and J. Keyser, “Fast filament tracking using
graphics hardware,” Tech. Rep. TAMU-CS-TR-2007-11-3, Department of
Computer Science, Texas A&M University, 2007.

[27] K. Haris, S. Efstratiadis, N. Maglaveras, C. Pappas, J. Gourassas, and
G. Louridas, “Model-based morphological segmentation and labeling of
coronary angiograms,” IEEE Trans. Med. Imag., vol. 18, pp. 1003–1015,
October 1999.

32



[28] R. W. Hamming, Numerical Methods for Scientists and Engineers. New
York: NY: McGraw-Hill, 1962.

[29] T. Pavlidis, Algorithms for graphics and image processing. Computer Sci-
ence Press, 1982.

[30] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice Hall,
2nd ed., 2002.

[31] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig,
and R. Kikinis, “Three-dimensional multi-scale line filter for segmentation
and visualization of curvilinear structures in medical images,” Medical Im-
age Analysis, vol. 2, pp. 143–168, 1998.

[32] K. Al-Kofahi, S. Lasek, D. Szarowski, C. Pace, G. Nagy, J. Turner, and
B. Roysam, “Rapid automated three-dimensional tracing of neurons from
confocal image stacks,” IEEE Transactions on Information Technology in
Biomedicine, vol. 6, pp. 171–186, 2002.

[33] D. M. Mayerich, Z. Melek, and J. Keyser, “Fast filament tracking using
graphics hardware,” Technical Report, vol. TAMU-CS-TR-2007-11-3, 2007.

[34] C. Stoll, S. Gumhold, and H.-P. Seidel, “Visualization with stylized line
primitives.,” p. 88, 2005.

[35] Z. Melek, D. Mayerich, C. Yuksel, and J. Keyser, “Visualization of fibrous
and thread-like data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1165–1172, 2006.

[36] T. Yoo, N. J. Ackerman, and M. Vannier, “Toward a common validation
methodology for segmentation and registration algorithms,” in Lecture Notes
In Computer Science, Vol. 1935; Proceedings of the Third International Con-
ference on Medical Image Computing and Computer-Assisted Intervention,
(London), pp. 422–431, Springer, 2000.

[37] S. J. Warfield, K. H. Zou, and W. M. Wells, “Validation of image segmenta-
tion and expert quality with expectation-minimization algorithm,” in Lecture
Notes In Computer Science, Vol. 2488; Proceedings of the 5th International
Conference on Medical Image Computing and Computer-Assisted Interven-
tion, pp. 298–306, 2002.

33



[38] D. L. Pham, C. Xu, and J. L. Prince, “Current methods in medical image
segmentation,” Annual Review of Biomedical Engineering, vol. 2, pp. 315–
337, 2000.

[39] R. A. Koene, “Large scale high resolution network generation: Producing
known validation sets for serial reconstruction methods that use histological
images of neural tissue,” in International Conference on Complex Systems,
2007. [Presentation].

[40] J. S. Guntupalli, “Physical sectioning in 3D biological microscopy,” Master’s
thesis, Department of Computer Science, Texas A&M University, 2007. To
be released in December 2007.

[41] A. R. Rao, G. A. Cecchi, and M. Magnasco, “High performance comput-
ing environment for multidimensional image analysis,” BMC Cell Biology,
vol. 8(Suppl 1), p. S9, 2007.

[42] J. Kwon, D. Mayerich, Y. Choe, and B. H. McCormick, “Lateral sectioning
for knife-edge scanning microscopy,” in Proceedings of the IEEE Interna-
tional Symposium on Biomedical Imaging, 2008. In press.

[43] O. Sporns and G. Tononi, “Classes of network connectivity and dynamics,”
Complexity, vol. 7, pp. 28–38, 2002.

[44] M. Kaiser and C. C. Hilgetag, “Nonoptimal component placement, but short
processing paths, due to long-distance projections in neural systems,” PLoS
Computational Biology, vol. 2, pp. 805–815, 2006.

[45] D. Chklovskii, T. Schikorski, and C. Stevens, “Wiring optimization in corti-
cal circuits,” Neuron, vol. 34, pp. 341–347, 2002.

[46] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,
“Network motifs: Simple building blocks of complex networks,” Science,
vol. 298, pp. 824–827, 2002.

[47] A.-L. Barabási, Linked. Cambridge, MA: Perseus Publishing, 2002.

34


	Knife-Edge Scanning Microscopy: High-throughput Imaging and Analysis of Massive Volumes of Biological Microstructures
	Background
	High-Throughput, Physical-Sectioning Imaging
	Volumetric Data Analysis Methods

	Knife-Edge Scanning Microscopy
	Tracing in 2D
	Tracing in 3D
	Interactive Visualization
	Discussion
	Validation and editing
	Exploiting parallelism

	Conclusion


