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Abstract. How can artificial or natural agents autonomously gain un-
derstanding of its own internal (sensory) state? This is an important
question not just for physically embodied agents but also for software
agents in the information technology environment. In this paper, we in-
vestigate this issue in the context of a simple biologically motivated sen-
sorimotor agent. We observe and acknowledge, as many other researchers
do, that action plays a key role in providing meaning to the sensory state.
However, our approach differs from the others: We propose a new learn-
ing criterion, that of on-going maintenance of sensory invariance. We
show that action sequence resulting from reinforcement learning of this
criterion accurately portrays the property of the input that triggered a
certain sensory state. This way, the meaning of a sensory state can be
firmly grounded on the choreographed action which maintains invariance
in the internal state.

1 Introduction

Information technology has been largely driven by the growth in quantity, speed,
and precision, but less by the improvement in quality and relevance of infor-
mation. For that reason, while the amount of data being accumulated daily is
staggering, our understanding of the data is not. The problem boils down to that
of meaning [1, 2], i.e., what do these data mean and how can software systems
understand the meaning of the data that they process? In this paper, we put
this problem in the context of the brain, which is the only know device which
naturally processes meaning, and find out what could be a potential solution.

The brain is made up of 100 billion neurons [3], which generate a complex
pattern of activity in response to sensory stimuli from the external environment.
A fundamental question in brain and cognitive sciences is, how do we under-
stand what this pattern means? To make the question even simpler, we can ask
what does a spike of a single neuron mean? [4]. Even this reduced problem is
not trivial, and it took an enormous effort to come to the current state of under-
standing, beginning from muscle spindles [5] to cat visual cortical neurons [6] to
sophisticated stimulus reconstruction methods developed lately (see, e.g., [4]).
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Fig. 1. External vs. Internal Observer The problem of decoding neural spikes is
seen from the outside (a), and from the inside (b) of a perceptual agent. The neuron
shown as a circle inside the box performs a input I to spike S transformation using
function f : I → S. The function f is supposed to be a highly complex one, and
the neuron may be deeply embedded in the agent (i.e., it is not at the immediate
sensory transduction stage, such as the photo-receptors). The task then is to find out
the property of input I given just the spikes S.

A popular approach to this question is through associating the neural spikes
with the stimulus that triggered those spikes [7] (see [8] for a review). Such
methods have been successful in characterizing the neural spiking properties and
accurately predicting the stimulus given just the spike train. This method in-
volves the experimenter systematically varying the environmental stimulus while
measuring the neural response (see, e.g., [4] chapter 2), so that at a later time,
when only the spike train is observed, something can be said about the stimulus
property. Mathematically, this is conveniently written using the Bayes theorem
[4] (see Figure 1a):

P (I|S) =
P (S|I)P (I)

P (S)
,

where I is the input stimulus and S is the spike train. Note that the likelihood
term P (S|I) requires that we have either an empirical statistics or a reasonable
model of the stimulus-to-spike translation. Thus, the interpretation of the current
spike train P (I|S) seems to depend on direct knowledge about the stimulus
properties, one way or another, which introduces the problem of circularity (cf.
[9]).

Now suppose we ask the same question “what does a single spike mean?” to
another neuron in the brain where such spikes are received (Figure 1b). Because
this neuron does not have immediate knowledge about the environmental stimu-
lus associated with the spike it received nor that of the receptive field properties
(as it does not have the tools of an experimenter) the neuron cannot apply the
technique mentioned above. (This problem can also be seen in the context of
the Bayesian theorist, i.e., not merely an observer; an issue raised by Jepson and
Feldman [10].) For example, consider a similar situation depicted in figure 2.
Inside the agent, the only available information is the sensory array activity,
so if we are trapped inside this agent without access to the visual environment
outside, we can never figure out what the sensor activity means.



Autonomous Semantics Through Action 3

This paper begins by realizing this as a genuine issue. Our contention is
that such a dilemma can be overcome through learning how to associate sen-
sory activity to the motor actions the brain itself generates. The importance of
sensorimotor learning has been emphasized in the past by many researchers:

1. schema theory [11, 12];
2. learning of sensorimotor contingency [13, 14];
3. two-level interdependence of perception and action [15];
4. ecological perception of affordances [16];
5. subsumption architecture in robotics [17];
6. sensory-motor coordination in autonomous agents [18–21];
7. dynamical systems approach in agent-environment interaction (reviewed in

[22]);
8. learning of natural semantics in robots [23];
9. mirror neurons and imitation in primates [24, 25];

10. motor learning enhancing perceptual performance [26];
11. the role of action in meaning and semantics in a dynamically coupled system

[1] [2] (pp.13–17);
12. sensory substitution through active exploration [27, 28];
13. fixed action patterns (FAP) and thought as internalized action [29] (pp.134–

141); and finally,
14. the role of action in consciousness [30] (pp.193–196), all recognize action as

a key element in intelligent brain function.

Building upon these, we begin by examining how action can help in autonomous
discovery of meaning in agents as shown in figure 1b. Our problem formulation
is similar in spirit to Philipona et al. [14] and Pierce and Kuipers [20, 21], where
a sensorimotor agent has to learn about its own raw sensors and actuators. The
twist is that we provide a simple criterion that can exactly link the sensory states
and the associated actions in a meaningful way.

Below, we first define the problem in terms of a sensorimotor agent we intro-
duced in figure 2, and propose a learning algorithm based on on-going sensory-
invariance driven motor action. The basic idea is that the agent has knowledge
about its own movements, and the movements that it generates that reliably
activate a particular sensor in the sensor array constitute the meaning of that
sensor’s spike. The acquired meaning for each sensor and the resulting behavioral
patterns are presented next, followed by discussion and conclusion.

2 Meaning of Spikes in a Sensorimotor Agent

To better illustrate our point, let us consider a small, concrete example as shown
in figure 2, a simple sensorimotor agent. The agent has a limited visual field,
and the incoming visual signal is transformed via the oriented filters (mimicking
primary visual cortical neurons) into a spike pattern in the sensory array. Let
us further assume that the agent does not have any knowledge (e.g., about the
receptive field structure) of its oriented filters. The task of the agent then is to
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Fig. 2. A Sensorimotor Agent An illustration of a simple sensorimotor agent is
shown. The agent has a limited visual field where the input from the environment
is projected. A set of orientation-tuned neurons receive that input and generate a
pattern of activity in the sensory array (black marks active). In the situation here, the
45o sensor is turned on by the input. Based on the sensory array pattern, after some
processing (signified by “?”), the x and y values of the motor vector is set, resulting
in the movement of the visual field and a new input is projected to the agent.

attach meaning to its own sensory array activity pattern, i.e., to come to the
understanding that each sensor represents a certain oriented visual input.

Imagine we are inside this agent, isolated from the world outside the box,
sitting near the big “?” sign. It is questionable then whether we can ever be able
to associate an orientated visual input stimulus with the spikes generated in the
sensor array because we cannot peek outside, and we do not know the particular
mechanism of the filters. The spike, in principle, could have been generated from
any sensory modality, e.g., auditory or tactile input.

The only way we can see this issue resolved is through action, that is, the
movement generated by the agent. This point is not entirely obvious at first, so
let us elaborate a little bit what we mean. As shown in figure 2, we included the
capability of action in the agent. The agent is able to gaze at different parts of
the scene by moving around its visual field. The x and y variables correspond to
the movement of the visual field in the x and the y direction, respectively. Thus,
these two variables are like motor commands. We, sitting on that “?” sign, can
generate different combinations of (x, y) values and observe the changing pattern
in the sensory array. By relating the sensor activity and the motor command that
was just generated, certain aspects of the sensor property can be recovered. We
believe this is generally agreeable, but it is too general. It begs the question
of what is that “certain aspects” of the sensory property and how can they be
learned?

A crucial insight that occurred to us at this point was that certain kinds of
action tend to keep the sensory activity pattern to remain unchanged (i.e., in-
variant) during vigorous movement, and this action exactly reflects the property
of the sensory stimulus. For example, consider the state of the agent as shown
in figure 2, where a 45o input is presented, and the corresponding sensor is acti-
vated in the agent. Now imagine we move the visual field according to the motor



Autonomous Semantics Through Action 5

vectors (1, 1), (1, 1), ..., (1, 1), (−1,−1), (−1,−1), ..., (−1,−1), which corresponds
to a back-and-forth movement along the 45o diagonal (i.e., aligned on the input).
Such an action will keep only the 45o sensor turned on during the motor act,
i.e., the sensory array stays invariant. We can see that this motion, generated
while trying to keep the sensor array unchanged, has led the agent to perform
an act which reflects the stimulus. Thus, we are led to conclude that associating
this kind of sensory-invariance driven action with spikes can potentially serve as
a meaning for each sensory neuron.1

To test this insight that ascribing meaning to sensory neuron activity is pos-
sible through learning the sensorimotor association based on sensory-invariance,
we implemented a learning agent following the description in figure 2. The fol-
lowing sections describe the learning rule of the agent, followed by the results.

3 Learning of Sensory-Invariance Driven Action

Consider the agent described above (figure 2). We define a simple learning rule
based on our idea of sensory-invariance driven action. The agent has the current
state of its sensors S (the sensory array), and a set of actions D (possible com-
binations of the motor vector) that it can perform. For simplicity, we limit the
sensor state set S to four different values

S ≡ {0o, 45o, 90o, 135o}, (1)

which correspond to the four different orientation preference (note that 0o is
the same as 180o etc.) of the sensors, and the action set D to eight different
categories

D ≡ {0o, 45o, 90o, 135o, 180o, 225o, 270o, 315o}, (2)

which are the possible directions of motion of the visual field with a limited dis-
tance of movement. Thus, the above corresponds to (1, 0), (1, 1), (0, 1), (−1, 1), ...
in terms of the motor vectors we mentioned earlier (the motion in x and y were
either 0 or 1).

The learning task of the agent can then be treated as a standard reinforce-
ment learning problem with a Markov assumption (see, e.g., [31, 32]). The goal
of the agent is to select an action from the action set D that maintains the sen-
sory array activity invariant. Thus, the reward is simply the degree of sensory-
invariance in successive stages of action. More formally, the agent has to learn a
policy function π,

π : S → D, (3)

at step t which selects a direction of motion dt ∈ D based on the previous state
st ∈ S so that the resulting reward rt is maximized. The execution of the policy
at each state st results in reward:

rt = r(st, dt), (4)
1 Note that the invariance of this kind is different from that in Philipona et al. [14]

where invariance is gained as a result of compensated motion, but not during the
motion itself.
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based on the reward function r(s, d) for s ∈ S, d ∈ D, and this function is
updated as follows:

rt+1(s, d) =
{

rt(s, d) + α ∗ ft if st = st−1,
rt(s, d)− α ∗ ft if st 6= st−1,

(5)

where rt+1 is the reward at step t + 1; α(= 0.01) is a fixed learning rate; and
ft is the number of action steps taken by the agent up till t which resulted in
either (1) continuously maintaining the sensory array to be invariant or (2) the
opposite (i.e., changing all the time). Thus, if st = st−1 was true for the past
n (= a large number) consecutive steps, then ft = n, and this will increase
the reward associated with (s, d). On the other hand, n consecutive failures of
maintaining sensory invariance will also lead to a high ft value, but this time
the reward for (s, d) will decrease. The reward function is simple but even such
a simple rule is sufficient for the agent to learn sensorimotor associations.

In the following, we will present the learned policy π and the behavior of the
agent which mimics the input stimulus.

4 Experiments and Results

Fig. 3. Inputs Used for Training and Testing The agent was trained and tested
on 51 × 51 bitmap images each containing a 3-pixel wide oriented edge. Four inputs
with four different orientations are used for the experiments (from the left: 0o, 45o,
90o, and 135o).

In the learning process the agent interacted continuously with the visual
environment in a series of episodes. During each episode, the agent was presented
with a 51× 51 bitmap image containing an oriented edge (figure 3). The visual
field of the agent was 9 × 9 which can slide across the image. The visual field
input was directly compared to each of the four sensory filters (also 9×9 in size)
and the sensory state s was set to a value θ when there was an exact match with
one of the four orientations θ ∈ S (see equation 1) .

The agent was trained to learn the policy π : S → D using equation 5 by
going through the four different inputs. Since the size of the state and the action
sets were |S| = 4 and |D| = 8, the policy π and the associated rewards can be
enumerated in a 4 × 8 table. At each step, the next direction of motion d ∈ D
(see equation 2) was determined based on the expected reward values stored
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Fig. 4. Reward Vector of Each Sensory State The reward values of the four
possible sensory states (0o, 45o, 90o, and 135o) are shown in polar coordinates. The
top row from (a) to (d) are before training, and the bottom row from (e) to (h) are
reward values after training. In each plot, for each point (θ, δ), the angle θ represents
the direction d ∈ D of the visual field movement (there are 8 possible directions),
and the distance δ from the origin represents the associated reward value given the
current sensory state (shown below each plot). The reward values were between 0
and 1. Initially, the rewards are randomly assigned for each direction of motion for
each sensory state. After the agent is trained, the reward values become maximal for
the movement along the orientations that correspond to the input that triggered that
sensory state.

in such a reward table of the agent. The reward table was initialized to hold
uniformly distributed random numbers between 0 and 1. Note that the reward
was limited to the range 0 ≤ rt ≤ 1. Figure 4a–d shows the initial reward values
where each plot corresponds to a state s ∈ S, and each polar plot shows the
reward r (distance from origin) for each action d ∈ D (angle) for the given state
s.

The training was carried out until the agent was able to learn to maximize
the reward by consistently meeting the sensory-invariance criterion. The training
usually lasted for up to 500 steps for each input. The reward table after training
is visualized in figure 4e–h. The results clearly show that the agent learned
to associate motion d which reflects (or mimics) the actual orientation of the
environmental input to the current sensory state s triggered by that input. For
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0o Input

(a) 0< step ≤ 30 (b) 30< step ≤ 60 (c) 60< step ≤ 90

135o Input

(d) 0< step ≤ 30 (e) 30< step ≤ 60 (f) 60< step ≤ 90

Fig. 5. Behavior of the Agent after Training Each plot shows a snapshot of 30
steps of movement of the agent’s visual field in the 51 × 51 scene (only every 6 steps
are shown). The triangles indicate the location of the visual field in the scene and their
grayscale values represent the simulation step (black is the most recent step). The light
gray lines in the background show the oriented input edges. Two simulation runs are
shown here: (a) to (c) are for 0o input and (d) to (f) are for 135o. The trained agent
successfully generates motion sequence to trace the input in both runs based on its
sensor state and policy π. For example, in (b) the agent starts in the center and moves
right, and bounces back when it reaches the end of the input (c).

example, in figure 4f , the maximum reward values associated with the sensory
state s = 45o are d = 45o and d = 225o, indicating a preference for a back-and-
forth movement along the 45o axis which exactly mimics the visual input. The
same is true for all other states (figure 4e, g, and h).

One thing to note from the actual numerical reward values (not shown) is that
there is a slight difference (≤0.01) between reward values for the two opposite
directions separated by 180o (e.g., d = 45o and d = 225o). The minor difference
helps the agent to have an initial bias in the selection of the first movement, and
to maintain a momentum to continuously follow along an orientation instead
of rapidly oscillating between two opposite directions. Note that this desirable
effect was not explicitly built in by us, but rather, emerged from the sensory-
invariance driven learning rule.

In order to verify if our analysis of the reward table is accurate, the trained
agent was tested with fixed oriented inputs and the resulting motor behavior
was observed. Figure 5 shows the action sequence generated by the agent for two
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different inputs with orientations 0o and 135o. The plots show the movement of
the visual field of the agent in response to the given input. The results show
that the action of the agent based on the learned reward table exactly reflects
our analysis above: The agent, upon activation of a single orientation sensor,
performs a movement mimicking the external input that triggered that sensor,
thus assigning (in our interpretation) a meaning to the sensory neuron’s spike in
terms of its own action.

5 Discussion and Future Work

The main contribution of our work is the realization that a sensorimotor agent
can find the meaning of its sensory state within its own actions, but more im-
portantly, that the objective of maintaining on-going sensory-invariance plays a
key role in allowing the agent to autonomously discover this semantic link.

An important message implicit in our work is that invariance can be seen
from a totally different perspective. Usually, invariance is seen as something
that needs to be detected or picked up from the environment by the percep-
tual system (e.g., invariant feature detection in vision). However, our approach
differs in that invariance is sought-after in the internal activity pattern and it
is internally enforced through a well-choreographed action. We speculate that
there may be a link between this kind of action-based neural invariance and in-
variant sensory features in the conventional sense. For example, an approaching
object will expand as time flows (turning on a certain neuron), and the same
kind of effect can be achieved through a forward motion (again turning on the
same neuron). Thus, the meaning of that neuron firing can be understood in
terms of the action that would turn on that neuron reliably (cf. Gibson’s work
on ecological perception and detection of environmental invariances [16]). Thus,
even without action, when that neuron turns on (i.e., object is approaching), the
brain can infer that it is analogous to moving forward toward the object.

Bell [33] posed an interesting question regarding the perception-action cycle.
To quote, “What quantity should a perception-action cycle system maximize,
as a feed-forward channel might maximize its capacity?”, which is relevant in
our context. This is an important question, and we believe our reward criterion
of maximizing on-going sensory invariance can serve as a potential answer. As
we have seen, such a criterion can be used to internally learn the meaning of
sensory state which may be a very important function for a “perception-action
cycle system” to possess.

One criticism we anticipate is that if the agent had a rich array of sensors,
such as a 2D matrix of RGB pixels, then the properties of the visual environment
can be easily recovered within the agent through unsupervised learning even
without direct access to the outside world. However, this does not help solve the
problem, because this rich information is only available at the very first stage of
sensory processing. The next stage, and the stage following that, etc. only receive
a more and more encoded version from the previous stage, just like the sensory
array in our agent which receives only encoded spikes from the orientation-tuned
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filters. Thus, the same difficulty can remain. Another related criticism may be
that the learning criterion we proposed may not be applicable to all stages
of sensory processing. For example, the retinal ganglion cells and the lateral
geniculate nucleus (LGN) in the early visual pathway show a center-surround
receptive field property. It is not easy to imagine any kind of action sequence
that would possibly keep these neurons’ activities invariant. Our response to this
is that sensorimotor coupling does not seem to exist at such an early stage of
sensory processing (see e.g. [34]), and thus we do not claim that our approach
will work in this stage.

One potential limitation of our account is that our model implicitly assumes
that the agent has direct knowledge about its own movement, upon which the
meaning of the sensors are grounded. The work by Philipona et al. [14] and
Pierce and Kuipers [20, 21] point into a direction where a possible resolution can
be found. They showed that without any knowledge of the external world, phys-
ical properties of the environment can be learned through sensorimotor learning.
Especially, Philipona et al. [14] observe that there are two classes of sensors, ex-
teroceptive and proprioceptive. They observed that agents have complete control
over proprioceptive sensors (i.e., they can exactly predict the values based on
their actions), whereas the same is not true for exteroceptive sensors. Thus,
action, and the closely tied proprioceptive sensors may provide a more direct
knowledge (as we proposed in this paper) to the agent than other common sen-
sors. Another point is that unlike perception which is highly underconstrained
(the problem of inverse-optics), but action or movement is strictly constrained
by the bodily limits (e.g., we cannot stretch beyond a certain point). Such strong
constraints may provide a learning problem to the brain which is significantly
easier than perceptual learning.

Can our approach be extended into other sensory modalities such as audi-
tion, somatic sense, olfaction, etc.? Our approach is general enough to be easily
extended into certain modalities such as somatic sense (see e.g. [35]), but it
cannot work very well in domains where there is not much correlation between
action and the perceived sensory state, e.g., olfaction.2 Here, it would be useful
to mention a different kind of meaning, those that are related to reinforcement
signals such as gustatory rewards. Rolls proposed in [37] that semantics of brain
states can be either related to (1) sensorimotor skills (as we also proposed) or to
(2) environmental reinforcement. Olfaction, gustation, and other such sensory
modalities convey signals that are highly related to survival values, and thus
they may take on a different kind of meaning.

The model presented here is decidedly simple to convey the essence of the
problem, and as such, it can be extended in several directions. We would like to
note that sensory invariance does not always have to be defined on a single neu-
ron’s activity. Any kind of pattern, be that spatial or temporal, can be attempted
to be maintained invariant while performing an action. Thus, meaning based on

2 There is however some evidence that the act of sniffing can alter the perceived
sense of smell [36], which indicates that our approach may also be applicable in the
olfactory domain.



Autonomous Semantics Through Action 11

action can also be ascribed to a repeating pattern of activity, not just to a single
spike. Also, invariance can be maintained in only one part of the global pattern,
which can be seen as a relaxed version of the invariance criterion. i(Attentional
mechanisms may be necessary for this purpose [38].) We believe investigating
in this direction will be most fruitful, and in fact we are currently steering our
effort into this direction.

Finally, we would like to re-emphasize that the problem of meaning we raised
in this paper is not only a central issue in autonomous agent or neuroscience
research (cf. [2]), but also in information technology (IT) in general. The current
information technology is mostly syntax-driven, and there is not much provision
for autonomous semantics: At the end of the day, the entities that assign meaning
to the meaningless symbols are us, humans [39]. This is becoming a serious
problem because of the rapid growth in the amount and rate of data, since
we humans no longer have sufficient time to attach meaning to the continuous
stream of data. The problem seems to be that current IT systems are passive
processors of information. As we have seen in this paper, activeness and action is
key to autonomous understanding, thus, exploring how and in what manner can
we make IT systems to be active may allow us to create major breakthroughs
for the future IT.

6 Conclusion

From the realization that neural decoding methods requiring direct knowledge
of the stimulus pose a problem when viewed from within the brain, we derived
a novel solution to the problem of learning the meaning of sensory states, i.e.,
through sensorimotor learning based on on-going sensory invariance. We believe
that the insight developed in this paper can help build a more autonomous
agent with a semantics grounded on its own sensorimotor capacity, for its own
sake. Such agents with autonomous understanding will be necessary for a major
breakthrough in the future of information technology.

Acknowledgments

We would like to thank Kuncara A. Suksadadi for his help with initial simula-
tions. We also thank members of NIL and Cognoscenti at Texas A&M for lively
discussions. Insightful comments by Benjamin Kuipers, Un Y. Nahm, Ricardo
Gutierrez-Osuna, and Ronnie Ward are also gratefully acknowledged. The com-
ments by two anonymous reviewers also helped clarify a couple of points, for
which we are grateful. This research was supported in part by the Texas Higher
Education Coordinating Board ARP/ATP program grant 000512-0217-2001.

References

1. Freeman, W.J.: A neurobiological theory of meaning in perception. In: Proceedings
of the International Joint Conference on Neural N etworks, IEEE (2003) 1373–1378



12 Choe and Bhamidipati

2. Freeman, W.J.: How Brains Make Up Their Minds. Wiedenfeld and Nicolson Ltd.,
London, UK (1999) Reprinted by Columbia University Press (2001).

3. Williams, R.W., Herrup, K.: The control of neuron number. Annual Review of
Neuroscience 11 (1988) 423–453

4. Rieke, F., Warland, D., de Ruter van Steveninck, R., Bialek, W.: Spikes: Exploring
the Neural Code. 1st edn. MIT Press, Cambridge, MA (1997)

5. Adrian, E.D.: The impulses produced by sensory nerve endings. Journal of Phys-
iology (London) 61 (1926) 49–72

6. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. Journal of Physiology (London) 160 (1962)
106–154

7. Warland, D., Meister, M.: Multi-neuronal firing patterns among retinal ganglion
cells encode spatial information. Investigative Opthalmology Vision Science Sup-
plement 36 (1995) 932
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