
Abstract. Contour integration in low-level vision is
believed to occur based on lateral interaction between
neurons with similar orientation tuning. How such
interactions could arise in the brain has been an open
question. Our model suggests that the interactions can
be learned through input-driven self-organization, i.e.,
through the same mechanism that underlies many other
developmental and functional phenomena in the visual
cortex. The model also shows how synchronized firing
mediated by these lateral connections can represent the
percept of a contour, resulting in performance similar to
that of human contour integration. The model further
demonstrates that contour integration performance can
differ in different parts of the visual field, depending on
what kinds of input distributions they receive during
development. The model thus grounds an important
perceptual phenomenon onto detailed neural mecha-
nisms so that various structural and functional proper-
ties can be measured and predictions can be made to
guide future experiments.

1 Introduction

Contour integration in low-level vision means forming a
coherent percept out of a discontinuous sequence of line
segments (Fig. 1). Contour integration is a special case
of perceptual grouping; it takes place early on in the
visual processing system and lends itself to precise
psychophysical measurements. Thus understanding the
neural mechanisms underlying contour integration can
give us insights into how perceptual grouping in general
can be implemented.

Psychophysical experiments (Field et al. 1993; Geisler
et al. 1999, 2001; Pettet et al. 1998), neurophysiological
observations (Gilbert and Wiesel 1990; Bosking et al.
1997; Fitzpatrick et al. 1994), and computational models

(Geisler et al. 1999, 2001; Grossberg and Williamson
2001; Li 1998; Ross et al. 2000; VanRullen et al. 2001;
Yen and Finkel 1997, 1998) suggest that contour inte-
gration in the visual cortex may be due to lateral inter-
action of neurons with similar orientation tuning. In the
preceding models, such interactions are hard-coded
based on specific association constraints (Li 1998; Ross
et al. 2000; VanRullen et al. 2001), a predetermined set
of rules such as relative orientation difference, distance,
curvature, and change in curvature (Yen and Finkel
1997, 1998). The models match experimental data quite
well. Neurophysiological observations have shown that
specific patterned lateral connections that could imple-
ment such rules exist in the visual cortex (Bosking et al.
1997; Fitzpatrick et al. 1994). Grossberg and Williamson
(2001) showed computationally how such lateral con-
nections could adapt to achieve stable contour integra-
tion with fixed receptive fields.

However, it is currently unknown how such detailed
afferent and lateral connection patterns could emerge
during development. Furthermore, since the models are
based on rules uniformly applied over the whole model
cortex, they do not explain differences in contour inte-
gration performance across different areas of the visual
field. For example, contour integration has been found
to be absent in human peripheral vision (Hess and
Dakin 1997), and convexity of illusory contours are
harder to discriminate in the upper hemifield compared
to the lower hemifield (Rubin et al. 1996). The goal of
this paper is to show that all these phenomena can be
due to input-driven self-organization of the visual cor-
tex. This way, contour integration can be seen as a
necessary effect of the same developmental process that
is responsible for the organization, plasticity, and several
functional phenomena of the visual cortex.

Several models of self-organization have been pro-
posed to explain how the orientation maps in the cortex
could form (Bartsch and van Hemmen 2001; Burger and
Lang 1999; Goodhill and Cimponeriu 2000; Kohonen
1981, 1982; Kohonen 1995; Miller 1994; Obermayer
et al. 1990; von der Malsburg 1973; see Swindale 1996
for a review). In most of these models, only the afferent
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connections self-organize while the lateral interactions
are represented as a fixed, uniform interaction kernel. In
those models where the lateral connections adapt as
well, the final connectivity pattern is elongated, but not
patchy like the patterns in the visual cortex. Therefore,
such models cannot account for functional phenomena
that depend on the specific patterns of lateral connec-
tions. With this goal in mind, we recently developed a
model with explicit self-organizing lateral connections,
showing that patches of strong lateral connections de-
velop between neurons with similar orientation prefer-
ence, and that these connections can serve as a
foundation for segmentation and binding (RF-SLIS-
SOM, or Receptive Field Spiking Laterally Intercon-
nected Synergetically Self-Organizing Map) (Bednar and
Miikkulainen 2000b; Choe and Miikkulainen 1998;
Miikkulainen et al. 1997; Sirosh 1995; Sirosh et al. 1996;
Sirosh and Miikkulainen 1997). Self-organization of
laterally connected maps is the first main principle of the
contour integration model presented in this paper.

Patterned lateral interactions are strongly believed to
contribute to contour integration, but how does the vi-
sual system represent a contour as a coherent object with
its neural activity? A separate line of research has pro-
duced a possible answer to this question. Experiments
have shown that feature binding and segmentation in the
visual system may be based on temporal coding pro-
duced by synchronous and desynchronous population
activity (Eckhorn et al. 1988; Engel et al. 1991; Gray
and Singer 1987; Gray et al. 1989 (see Singer and Gray
1995; Gray 1999; and Singer 1999 for a review)). Locally
synchronous firing has been observed, for example, in
the visual cortex of cats and monkeys. Recordings of
single-unit activities, multiunit activities (MUAs), and
local field potentials (LFPs) in different areas of the vi-
sual cortex were taken, and neurons with nonoverlap-
ping receptive fields were found most likely to be
synchronized when the receptive field properties were
similar or when the firing represented global stimulus
properties. Computational models also demonstrated
that such behavior could be obtained in a network of
neurons with temporal dynamics (Eckhorn et al. 1990;
Gerstner 1998; Grossberg and Grunewald 1997; Horn
and Opher 1998; Reitboeck et al. 1993; von der
Malsburg 1986, 1987; von der Malsburg and Buhmann
1992; Wang 1995, 1996, 2000). Therefore, segmentation

and binding by synchronized firing is the second main
principle of our contour integration model.

In this paper, the above two principles are unified into
a single model. We demonstrate that the orientation
map and the lateral connections self-organize so that the
functional statistics of lateral connections become simi-
lar to edge co-occurrence statistics in natural images.
These connections mediate synchronized firing of neu-
rons, so that the contour integration performance of the
model closely matches psychological data. This way, the
model (i) shows how the circuitry for contour integra-
tion could arise from general self-organization mecha-
nisms in the brain, (ii) provides further computational
evidence for synchronization as the substrate for seg-
mentation and binding, and (iii) grounds an important
perceptual grouping phenomenon on a detailed neural
architecture, where various functional properties can be
measured and predictions made to guide future experi-
ments.

2 Model description

2.1 Motivation and overview

The contour integration model is based on the RF-
SLISSOM model of self-organization and segmentation
in the primary visual cortex Choe and Miikkulainen
(1998). In this model, each cortical neuron receives
afferent connections from the input layer and lateral
excitatory and inhibitory connections from neighboring
neurons in the cortex. The connection strengths self-
organize based on correlations in the activity. In the final
ordered map, the lateral excitation has a short range and
causes neurons responding to the same connected input
object to fire synchronously, effectively binding the
spikes into a single coherent representation. The lateral
inhibitory connections have a long range and establish
competition between representations of different
objects.1 Neurons representing different objects fire at
different times, and the input is thereby segmented into
different objects.

This previous model showed how self-organization
and segmentation could be achieved in a single unified
framework. The lateral interactions play a crucial role in
both behaviors: they establish competition that drives
self-organization, and they establish desynchronization
that drives segmentation. The model did not include any
long-range excitatory connections because they were not
found necessary to model the above behaviors. How-
ever, it turns out that such a parsimonious model cannot
account for filling-in phenomena such as contour inte-
gration. The network has to be able to bind together
representations that are separated by gaps: that is, it has

Fig. 1. Contour integration task. This figure shows a typical input
image used in psychophysical experiments on contour integration.
Human subjects are instructed to find the longest continuous contour
consisting of separate line segments embedded in a background of
randomly oriented distractors. In this example, the contour consists of
six segments, running diagonally from middle left to bottom right

1 Although long-range connections in the cortex appear to be
mostly excitatory, their effect can be inhibitory through inhibitory
interneurons (Grinvald et al. 1994; Hata et al. 1988; Hirsch and
Gilbert 1991; Weliky et al. 1995). RF-SLISSOM abstracts such
interneurons and models the overall inhibitory effect as one
connection.
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to have long-range excitatory connections that link
together the representations of the different segments of
a fragmented contour.

The model is extended in this paper with such long-
range excitatory connections (Fig. 2). The extended
model is called PGLISSOM (or Perceptual Grouping
LISSOM Choe 2001). The cortical network is divided
into two separate components: MAP1 and MAP2.
MAP1 is similar to the RF-SLISSOM cortex with
short-range excitatory and long-range inhibitory con-
nections. This map has the task of driving the self-
organization of the network into an ordered map.
MAP2 performs the task of long-range segmentation
and binding, with long-range excitatory connections
that perform contour integration and long-range
inhibitory connections that implement segmentation of
separate objects. The two maps are assumed to be
overlaid in one cortical network: such a functional
specialization across laminar layers of the visual cortex
is consistent with known neuroanatomical data from
layers IV, VI, and II/III of the visual cortex (see
Grossberg and Williamson 2001). In other words, the
model is based on the hypothesis that some of the
neurons in each cortical column are involved in estab-
lishing and maintaining organization, whereas others
perform visual segmentation and binding.

2.2 Neuron model

The details of the neuron model are illustrated in
Fig. 2a. Each connection is a leaky integrator that
performs exponentially decayed summation of incoming
spikes (i.e., convolution with an exponential kernel,
Eckhorn et al. 1990):

sðtÞ ¼
Xt

n¼0
xðt � nÞe�kn ; ð1Þ

where sðtÞ is the current decayed sum at time step t,
xðt � nÞ is the input spike (either 0 or 1) n time steps in
the past, and k is the decay rate. Different types of
connections have distinct decay rates: ke for excitatory
and ki for inhibitory lateral connections, and kc for
intracolumnar connections. The sum can be defined in a
computationally more practical form as a recurrence
equation, which is used in the current implementation:

sðtÞ ¼ xðtÞ þ sðt � 1Þe�k ; ð2Þ
where sðtÞ and sðt � 1Þ are the current and previous
decayed sums, xðtÞ is the current input spike and k is the
decay rate (Eckhorn et al. 1990). The leaky integrator
models the postsynaptic potential (PSP) that decays
exponentially over time in biological neurons. By
adjusting the decay rate k, the synapse can function as
either a coincidence detector or as a temporal integrator.
When the synaptic decay rate is high, the neuron can
only fire when there is a sufficient number of inputs
coming in from many synapses simultaneously. On the
other hand, when the decay rate is low, the neuron
accumulates the input. Thus presynaptic neurons can
have a lingering influence on the postsynaptic neuron.
By varying the decay rates for different types of con-
nections, the relative time scales of the different con-
nection types can be controlled to obtain desirable
synchronization behavior.

The spike generator compares the input to a thresh-
old and decides whether to fire a spike. The threshold is
dynamic, depending on the previous firing activity at the

Fig. 2a, b. Overview of the PGLISSOM model. a Neuron model.
Leaky integrators at each synapse perform decayed summation of
incoming spikes, and the outgoing spikes are generated by comparing
the sum of weighted sums to the dynamic spiking threshold. Four
types of inputs contribute to the activity: afferent, excitatory lateral,
inhibitory lateral, and intracolumnar connections. The dynamic
threshold consists of the base threshold hbase, the absolute refractory
component habs, and the relative refractory component hrel. b Overall

organization of the network. The cortical network consists of two
layers (or maps): MAP1 has short-range excitation and long-range
lateral inhibition and drives the self-organization of the model. In
MAP2, both excitation and inhibition have a long range, establishing
binding and segmentation. Both maps receive input from a model
retina, and neurons in the vertically corresponding locations on the
two maps are connected via intracolumnar connections representing a
cortical column
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neuron, in order to model the refractory period and to
improve synchronization. It consists of three terms:

hðtÞ ¼ hbase þ habsðtÞ þ shrelðtÞ ; ð3Þ

where hbase is the base threshold, habsðtÞ implements the
absolute refractory period during which the neuron
cannot fire, hrelðtÞ implements the relative refractory
period during which firing is possible but requires
extensive input, and s is a scaling constant. The absolute
refractory component habsðtÞ is defined as:

habsðtÞ ¼ 1 if yðt � iÞ ¼ 1 for any i � jabs

0 otherwise ,

�
ð4Þ

where jabs determines the length of the absolute refrac-
tory period and yðtÞ represents whether a spike occurred
at time t:

yðtÞ ¼HðrðtÞ � hðt � 1ÞÞ ; ð5Þ

where Hð�Þ is the Heaviside step function, rðtÞ is the
weighted input sum (7), and hðt � 1Þ is the dynamic
threshold. The relative refractory component hrelðtÞ is
implemented as an exponentially decayed sum of the
output spikes (Fig. 2a), i.e., a leaky integrator similar to
the leaky synapses:

hrelðtÞ ¼ yðtÞ þ hrelðt � 1Þe�krel ; ð6Þ

where krel is the decay rate.
Eckhorn et al.(1990) and Reitboeck et al. (1993) de-

scribed a similar dynamic thresholdmechanism consisting
of hbase and hrel only. The absolute refractory period was
included in our model to ensure that the neurons did not
fire too rapidly. An added benefit is that synchronization
is more robust against noise (Choe 2001).

2.3 Network activation and learning

The organization of the network is shown in Fig. 2b.
The input ri;jðtÞ to the spike generator of the cortical
neuron (in each map) at location (i; j) at time t consists
of (i) the input from a fixed-size receptive field in the
retina2 centered at the location corresponding to the
neuron’s location in the cortical network, (ii) from
neurons around the same relative location in the
opposite map, (iii) excitation, and (iv) inhibition from
neighboring neurons in the same map:

ri;jðtÞ ¼ g
�
ca
X

r1;r2

nr1;r2lij;r1r2

þ cc
X

p1;p2

fðt � 1Þp1;p2mij;p1p2

þ ce
X

k;l

gklðt � 1ÞEij;kl

� ci
X

k;l

gklðt � 1ÞIij;kl

�
; ð7Þ

where ca; cc, ce, and ci are, respectively, the relative
strengths of the afferent, intracolumnar, and excitatory
and inhibitory lateral contributions, nr1;r2 is the input
level of retinal neuron (r1; r2), lij;r1r2 is the corresponding
afferent connection weight, fp1;p2 is the decayed sum of
spikes of the cortical neuron (p1; p2) of the other cortical
map, mij;p1p2 is the corresponding intracolumnar connec-
tion weight, gklðt � 1Þ is the decayed sum of spikes
from the map neuron (k; l) at time t � 1, Eij;kl is the
corresponding excitatory and Iij;kl the inhibitory lateral
connection weight, and gð�Þ is a piecewise linear
approximation of the sigmoid function that squashes
the net input sum between 0.0 and 1.0:

gðxÞ ¼
0 if x < d
1 if x > b
x�d
b�d otherwise ;

8
<

: ð8Þ

where d is the threshold and b is the ceiling.
The inputs to the model consist of activation patterns

with activation values ranging between 0 and 1. A fixed
such input is presented on the retina at each iteration
and the cortical neurons are allowed to generate and
exchange spikes. After several iterations, the short-term
spiking rate of the neurons in a small window is calcu-
lated:

V ðtÞ ¼ savgV ðt � 1Þ þ ð1� savgÞyðtÞ ; ð9Þ

where savg is the window size, V ðt � 1Þ is the previous
average firing rate, and yðtÞ is the output spike at time t.
The afferent, lateral, and intracolumnar weights are then
modified according to the normalized Hebbian learning
rule:

wij;mnðtÞ ¼
wij;mnðt � 1Þ þ aVijðtÞVmnðtÞP
ij ½wij;mnðt � 1Þ þ aVijðtÞVmnðtÞ�

; ð10Þ

where wij;mnðtÞ is the connection weight from neuron
ðm; nÞ to ði; jÞ, wij;mnðt � 1Þ is the previous weight, a is the
learning rate (aa for afferent, ac for intracolumnar, ae for
excitatory, and ai for inhibitory connections), and VijðtÞ
and VmnðtÞ are the average spiking rates of the neurons.

This process of weight adaptation is repeated with
inputs at random locations and orientations, and the
neurons gradually become sensitive to particular orien-
tations at particular locations, resulting in a global re-
tinotopic orientation map similar to that found in the
visual cortex. The self-organized map will then syn-
chronize and desynchronize the firing of neurons to
indicate binding and segmentation of visual features to
different objects present in the scene. The lateral con-
nections that survive connection death play an impor-
tant role in this process by mediating synchronization
and desynchronization among populations of neurons.

3 Experiments

A Stacked RF-SLISSOM network with a 46� 46 retina
and a 136� 136 cortex was trained for 40,000 itera-
tions with straight elongated Gaussian bars at random

2 The preprocessing in the retinal ganglion cells and lateral
geniculate nucleus (LGN) was bypassed for simplicity.
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locations in the retina. Although natural images could in
principle be used as well (Bednar 2002), such abstract
input is computationally more efficient while still
representing the essential local features of natural
stimuli after the edge detection and enhancement
mechanisms in the retina and LGN. During each
training presentation, the network was allowed to settle
for 15 time steps (through Eq. 7.) and all connections
except the inhibitory lateral connections in MAP2 were
updated according to Eq. 10. The fixed inhibition in
MAP2 provides a baseline similar to global inhibition in
other cortical models (Eckhorn et al. 1988; Kammen
et al. 1989; Terman and Wang 1995; von der Malsburg
and Buhmann 1992; Wang 1995, 1996, 2000): it allows
input elements to be segmented by default, unless lateral
excitation binds them together. The details of the model
and the simulation details are given in the Appendix.

3.1 Orientation map and functional connection statistics

A well-formed orientation map emerged in the training
process (Fig. 3). The map is qualitatively similar to the
orientation map in the primary visual cortex with
features such as linear zones where orientation prefer-
ence changes continuously along one direction, pinwheel
centers around which a full 360� of orientation prefer-
ences can be observed, and fractures where orientation
preference changes abruptly (Blasdel 1992; Blasdel and
Salama 1986). Because of the intracolumnar connec-
tions, similar activity patterns formed on both maps
during self-organization, and they developed almost
identical global organizations (Fig. 3). After training,
lateral connections with weights less than 0.001 were
killed, leaving a patchy connection profile (Fig. 4a–c).
Like connectivity patterns found in the visual cortex
(Bosking et al. 1997; Fitzpatrick et al. 1994), the
remaining lateral connections target those neurons that

have a similar orientation preference as their source
neuron, and they are distributed mainly along the
direction of the source neuron’s preferred orientation.
In other words, connections link areas with highly
correlated activity, such as those along a continuous
contour.

To quantify the grouping rules implemented by the
lateral excitatory connections, their distributions in final
MAP2 were measured in detail (Fig. 5). Since these
distributions are obtained from the receptive fields of the
neurons, they describe the functional connectivity of the
neurons in the retinal (i.e., visual) space rather than
simple cortical wiring statistics. The results confirm that
(i) the lateral connections more often connect neurons
with similar orientation tuning (Fig. 5b) and (ii) con-
nections go to target neurons with receptive fields
aligned along the preferred orientation of the source
neuron, with a small flank (Fig. 5c). In other words,
neurons whose receptive fields fall on a smooth (cocir-
cular) contour are most likely to be connected with
strong lateral excitatory connections in MAP2.

Interestingly, these connection statistics are very
similar to the edge co-occurrence statistics in natural
images (Geisler et al. 2001) (Fig. 5d). Combined with
transitive grouping rules, such edge co-occurrence sta-
tistics can accurately predict human contour integration
performance (Geisler et al. 1999, 2001). Therefore, we
expect the model to perform like humans as well. If this
prediction is confirmed, it lends computational support
to the idea that self-organized lateral connectivity in V1
underlies contour integration performance in humans.

3.2 Contour integration

Psychological experiments by Field et al.(1993) and
Geisler et al. (1999, 2001) have shown that contour
integration accuracy is maximal when orientation jitter
in the physical contour is 0�, and the accuracy decreases
as a function of increasing orientation jitter. The lateral
connection statistics in the previous section are consis-
tent with such behavior, but does the model actually
perform that way? To answer this question, we ran
several contour integration experiments with varying
degrees of orientation jitter (Fig. 6).

To measure the performance of the model, for each
input bar, the number of spikes generated by the area of
the cortex that responded to the bar was counted at each
time step. This quantity is called the multiunit activity of
the response, or MUA, and it can be used to identify
which area of the cortex is active at each time step. To
determine the degree of synchronization between two
areas, the linear correlation coefficient r between their
MUA sequences was calculated as follows:

r ¼
P

iðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðyi � �yÞ2

q ; ð11Þ

where xi and yi, i ¼ 1; . . . ;N are the MUA values at time
i for the two areas representing the two different objects
in the scene, and �x and �y are the mean of each sequence.

Fig. 3a,b. Orientation preferences in MAP1 and MAP2. The orien-
tation preference at each location on the cortex is coded in color,
according to the color key in the middle. The orientation preference of
each neuron was calculated by taking a dot product of its afferent
weight matrix and six different elongated Gaussians: the preference
was the vector sum of six polar vectors, each consisting of the angle of
one Gaussian and its dot product (Bednar 1997; Blasdel 1992). The
same organization of orientation preferences developed in both maps.
The global and local features such as pinwheel centers and fractures in
each map closely match those found in the visual cortex
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Using r as the measure, the contour integration per-
formance of the network in the four different input
configurations (degrees of orientation jitter; Fig. 6) was
calculated. The network was presented with each input
for 600 iterations and the MUAs from the activity areas
on MAP2 corresponding to the nine input segments
were obtained. The MUA sequences are shown in Fig. 6.
The correlation coefficients for MUA pairs belonging to
the same contour measure the degree of contour inte-
gration. The higher these values, the more synchronized
are the areas, thus representing a strong percept of a
salient contour. The average of the within-contour cor-
relations is used as a measure of overall performance of
the model. The results are summarized in Fig. 7, plotted
against the human performance data from Geisler et al.
(1999, 2001). The plot clearly shows that at low orien-
tation jitter, the model and human performance are both
high, but as the jitter increases, they both deteriorate in a
similar manner. Correlation coefficients between MUA
pairs corresponding to two background segments, or
pairs between a background and a segment, in the
contour remained low, usually near 0 (not shown); thus
they were not perceptually salient. Such a performance
profile is closely predicted by the lateral connection
statistics, as described in the previous section. This way,
the perceptual phenomenon of contour integration can
be grounded on the circuit-level description given by the
model.

3.3 Contour segmentation

Importantly, the synchronization process that estab-
lishes the contour percept can also separate different
contours to different percepts. In this experiment, two
collinear contours were presented as input and the
correlations between and across the MUAs represent-
ing each input segment were calculated (Fig. 8). All
simulation parameters were the same as in the previous
experiment. By comparing the rows in the plot, we can

see that in the beginning (at stimulus onset) all areas
are synchronized, but as the lateral interactions start to
take effect, the MUAs start to form two major groups
firing in two alternating phases. The correlation
coefficients of areas in the same contour are consis-
tently high (0.86), while those in different contours are
very low (�0:11), signifying integration within each
contour and segmentation across the two contours.
This result suggests that the same circuitry responsible
for contour integration can also be responsible for
contour segmentation when there are multiple salient
contours.

3.4 Influence of input distribution on structure
and performance

The results in previous sections suggest that lateral
connections play a significant role in the contour
integration and segmentation process. Because these
connections are formed in an input-driven self-orga-
nizing process, different input distributions result in
different patterns of lateral connectivity, which in turn
result in different performance in behavioral tasks. This
explanation can potentially account for the observations
by Hess and Dakin (1997) and Rubin et al. (1996)
showing that contour integration performance differs
between fovea and periphery, and between upper and
lower visual hemifield.

To date, the distributions of input features across the
visual field have not been fully characterized, and it is
not possible to verify this hypothesis directly with
experimental data. However, with the current model we
can test the basic principle that different input distri-
butions result in different performance. In this section,
we will systematically vary the input distribution and
show how it affects the lateral connectivity and contour
integration in the PGLISSOM model.

There are several ways in which the input distribution
could vary between two areas: one area could receive

Fig. 4a–c. Excitatory lateral connections. The excitatory lateral
connections from three source neurons in MAP2 (marked by arrows
in the orientation map) are shown. The hue represents the orientation
preference of the target neuron, and the intensity represents the
strength of the connection. The neurons are numbered in Cartesian
coordinates, where the lower left corner is neuron (1,1) and the upper
right corner is neuron (54,54). a Excitatory lateral connections of
neuron (18,22), with an orientation preference of 53�. b Excitatory

lateral connections of neuron (21,25), with an orientation preference
of 179�. c Excitatory lateral connections of neuron (35,33), with an
orientation preference of 88�. The lateral connections link neurons
with similar orientation tuning (similar hue), and the target zones are
aligned along the orientation preference of the source neuron, as is the
case in experimental observations (Bosking et al. 1997). Specific
connections like these are crucial for implementing perceptual
grouping tasks such as contour integration

80



more training with oriented inputs than the other, or it
could receive longer or more sharply defined edges, or
edges with higher curvature or preferred orientation, or
edges organized into a texture. We chose to test
PGLISSOM in two representative ways, by (i) changing
the input presentation frequency and by (ii) changing the
curvature of the input. In the first experiment, inputs
were presented in one area twice as often as in the other.
In the second, the angles between the line segments
constituting an input was varied uniformly randomly
within the interval [0�, 10�] in one area vs. [0�, 25�] in the
other. Under each of these conditions, a PGLISSOM

network was trained in the same way as in Sect. 3.1 and
tested as in Sect. 3.2 using the same set of parameters.
These conditions represent the general idea that the in-
puts, e.g., in the fovea and in the lower hemifield are
likely to be more numerous and more complex than in
the upper hemifield and in the periphery.

After training each network for 40,000 iterations,
orientation maps comparable to those in the previous
self-organization experiments emerged in each case.
However, their lateral connection patterns were quite
different, as shown by the ðh;/; dÞ statistics similar to
those in Sect. 3.1 (Figs. 9 and 10).

Fig. 5a–d. Lateral connection and edge co-occurrence statistics. The
distributions of lateral connections in the model are compared to the
edge co-occurrence statistics in nature to see how well they match
perceptual requirements. a The plot summarizes the notation used in
panels b–d. For each pair of neurons connected with lateral excitatory
connections, the afferent weight matrix was used to calculate (i) the
orientation preference of the neuron (shown as oriented bars) and
(ii) the location of the receptive field in retinal space (as the center of
gravity of the afferent weight matrix). From these values, the direction
/, radial distance d, and orientation preference difference h between
all pairs of neurons shown as the color of the bar were calculated.
Notice that these values measure the spatial relationship between the
two neurons in the retinal (or visual) space, not in the cortical space,
and therefore allow for a comparison of connectivity with human
performance data (Geisler et al. 2001). b The number of connections
as a function of orientation difference in the model (solid line) and
experimental data (dotted line) are shown. The number of excitatory
lateral connections in MAP2 that exceeded a threshold value of 0.001
were counted and normalized by the number of neurons. The
corresponding measurements in tree shrew visual cortex were obtained
by staining methods (Bosking et al. 1997). This plot shows that strong
excitatory lateral connections mostly link neurons with similar
orientation tuning. c Distributions of h, /, and d in MAP2. Each
location in polar coordinates ð/; dÞ displays two values: (i) the black

oriented bars represent the most probable orientation h of the target
receptive field at that direction and distance ð/; dÞ. These orientations
are aligned along cocircular paths emanating from the center. (ii) The
color scale in the background shows the relative log-probability of
finding a target receptive field at direction / and distance d. The
locations with high relative probability (red and yellow areas) form a
bow-tie-shaped flank along the horizontal axis. Such an arrangement
is very similar to the association field (or local grouping functions)
suggested by psychophysical research (Field et al. 1993; Geisler et al.
1999, 2001). d Bayesian edge co-occurrence statistic (reprinted by
permission from Vision Research, 41: 711–724, Geisler et al., Figure
3). Each location ð/; dÞ contains a small round disk, representing the
likelihood ratios of all possible orientations h at that location by color
coding. The h with the highest ratio is shown in the foreground. Each
likelihood ratio represents the conditional probability of a pair of edge
elements in configuration (h;/; d) belonging to the same physical
contour vs. different physical contours in natural images. A high
likelihood ratio indicates that a pair of edges in that configuration is
more likely to occur on a common natural contour than on separate
contours. The conditional probabilities were determined through
manual labeling of contours in real-world images. There is a strong
correspondence between these data and the connection statistics in the
model, suggesting that the model is well suited for encoding grouping
relations in natural images
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In the frequency experiment, two major differences
emerged (Fig. 9). (i) The high-probability areas extend
out longer in the high-frequency map (a) than in the low-
frequency map (b), i.e., the map with more exposure to
oriented edges can group together more distant inputs.

(ii) The most probable h for a given ð/; dÞ location tends
to be cocircular in the high-frequency map (a), while in
the low-frequency map (b) it is more collinear (i.e., the
black edges in the high-probability areas are more par-
allel). Collinearity is the most prominent feature in the
input and is therefore learned first. With enough input
presentations it is extended to large distances. Cocircu-
larity develops slower than collinearity because the re-
sponse levels are lower in the cocircular arrangement.
The more frequently stimulated map had enough input
presentations and was able to learn the secondary (coc-
ircularity) property as well.

In the curvature experiment (Fig. 10), high-proba-
bility areas are broader in the map trained with a
broader range of curvatures (a) compared to the one
trained with a narrower range (b). As expected, the in-
put-driven self-organizing process has encoded the input
distribution differences into the lateral connections. As a
result, the map with exposure to higher curvature should
be better at integrating cocircular contours.

The difference in structure predicts that contour
integration performance between the networks should
also differ. To test this prediction, contour integration
experiments like those in Sect. 3.2 were performed on

Fig. 7. Contour integration in humans vs. the model. The model’s
performance was measured as the average correlation coefficient
between the MUA sequences in the salient contour and that of
humans as the percentage of correctly identified contours (Geisler
et al. 1999, 2001) (RMS amplitude 12.5, fractal exponent 1.5; the error
bars indicate standard deviation in the model). The x-axis is the
orientation jitter in degrees (h). In both cases, performance is robust
up to 30� but then quickly breaks down as the orientation jitter
increases

Fig. 6a–d. Contour integration with varying degrees of orientation
jitter. The input presented to the network (left) and the resulting
multiunit activity plot (right) are shown. Each contour element is an
oriented Gaussian of length a2 ¼ 3:5 and width b2 ¼ 1:5 (Sect. A.2).
The activity levels of the retinal units are plotted in grayscale from
white to black. Each contour was composed of three contour elements
and embedded in a background of six other randomly oriented
elements. Each contour runs diagonally from lower left to top right
with varying degrees of orientation jitter. At right, the multiunit
activities (MUAs) of the active areas are shown in grayscale. Time

(i.e., simulation iteration) is on the x-axis, and the y-axis consists of
nine rows, each plotting the MUAs corresponding to one input. The
bottom three rows represent the MUAs of the salient contour, and the
top six rows represent MUAs of the random background contour
elements. Synchronization is very strong for 0� and 30� but relatively
weak for 50� and 70�, that is, the contours get harder to detect as the
orientation jitter increases. In all cases (a to d), the backgroundMUAs
are unsynchronized. A quantitative summary of these results is shown
in Fig. 6
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each network: each network was activated for 600 iter-
ations and the MUA sequences corresponding to the
three contour elements were measured. The results are
summarized in Fig. 11.

The MUAs were more synchronized in the high-fre-
quency network than in the low-frequency one for both 0�

and 40� of orientation jitter (Fig. 11a). Moreover, this
performance gapwas wider in the 40� case, indicating that

the more frequently stimulated map did not just learn to
same task more accurately – it actually learned to detect
cocircular contours in addition to the collinear ones.

In the curvature comparison experiment, the MUAs
of both conditions were equally synchronized in the 0�

orientation jitter case. However, with 40� of jitter, the
map trained with higher curvature ([0�, 25�]) synchro-
nized the components of the contour significantly better

Fig. 9a, b. Distributions of excitatory lateral
connections with high and low frequency of
input presentation. During training,
PGLISSOM network a received oriented
training inputs twice as often as network b.
As a result, the lateral connection profiles in
MAP2 differ in two significant ways: (i) the
high probability areas (red and yellow)
extend longer in a than in b, and (ii) the most
probable h (black oriented bars) are cocir-
cular in a but mostly collinear in b. These
results predict that contours should be easier
to detect in visual areas that see oriented
inputs more often

Fig. 10a, b. Distributions of excitatory lateral connections trained
with different curvature ranges. Two PGLISSOM networks were
trained with different input curvature distributions: a with [0�, 25�]
and bwith [0�, 10�]. TheMAP2s in these networks developed different
lateral connection distributions as a result. (The number of tracks in

the probability plots were increased by reducing the histogram bin size
to highlight this difference.) The high probability areas (red and
yellow) are broader in a than in b, suggesting that contours with more
curvature and higher orientation jitter should be easier to detect in
network a

Fig. 8. Contour segmentation. The input for the contour segmenta-
tion experiment consisted of two contours, vertical and diagonal
(shown at left). The grayscales and the input sizes are identical to
those in Fig. 5. The MUA sequences from the six areas of MAP2
responding to each input are shown at right. The bottom three rows
correspond to the vertical contour and the top three rows to the

diagonal contour. The average correlation coefficients between pairs
of MUA sequences is high (0.86) within the same contour and low
(�0:11) across different contours. Neurons within a contour are
synchronized, while neurons belonging to different contours are
desynchronized, segmenting two contours
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(Fig. 11b). The more cocircular lateral connections al-
lowed this map to synchronize line segments that were
less perfectly aligned.

These results show that if the input distribution varies
across different areas of the visual field, the input-driven
self-organization process will shape the connections
accordingly, and such structural differences will lead to
different performance in contour integration. This is an
important prediction of the model that in the future can
be tested with input variation in natural visual input.
Such studies can eventually lead to a computational
explanation of why visual performance differs across the
visual field, and perhaps to some extent even in different
species.

4 Discussion

Our results show that the specific lateral connectivity
necessary for contour integration can be due to input-
driven self-organization. The same self-organization
mechanism was previously shown to be potentially
responsible for orientation, ocular dominance, and
frequency columns and patchy connections between
them, for repair after cortical and retinal damage, and
for tilt aftereffects (Miikkulainen et al. 1997), providing
a unified explanation of several different phenomena in
the visual cortex. The main new idea advanced in this
paper is that long-range excitatory lateral connections
can also self-organize into highly specific patterns that
serve a perceptual grouping function.

The connection patterns that emerge in the model
closely approximate those found in neurophysiological
experiments (Bosking et al. 1997; Fitzpatrick et al. 1994)
and are very similar to the local contour grouping sta-
tistics found in natural images (Geisler et al. 1999, 2001).
They also generally agree with connection patterns
hypothesized in hand-coded computational models (Li
1998; Ross et al. 2000; Yen and Finkel 1997, 1998). We
also demonstrated that synchronized firing of neuronal
populations can represent the percept of contour very
well by comparing correlations to human contour inte-
gration accuracy with varying degrees of orientation
jitter (Field et al. 1993; Geisler et al. 1999; Geisler et al.
2001).

The input patterns studied in this paper are decidedly
simple for two reasons: (i) they make it is possible to
characterize and measure model behavior clearly, with-
out confounding factors, and (ii) more complex patterns
would require larger networks, which are computation-
ally too expensive to simulate at the moment. For
example, the current self-organization simulations
required about 200 MB of memory and took about 20 h
on a 1.7-GHz Pentium PC. To represent more complex
inputs, the number of rows and columns would have to
be scaled up by a factor of four, resulting in a simulation
with over 40 GB of memory and a training time of over
4800 h. However, there is good reason to believe that the
model will scale up well: it is based on regular patterns of
connectivity that can be duplicated horizontally, result-
ing in a larger-scale model with similar behavior. In a

parallel line of research, we have developed methods for
such incremental scaling of self-organizing firing-rate
models (Bednar et al. 2002); applying these methods to
the contour integration task is a most interesting direc-
tion of future work. The temporal behavior of the model
should also scale up well. Campbell et al. (1999) recently
showed that time to synchronization in locally con-
nected integrate-and-fire neurons is logarithmically
proportional to the network size. Since the dynamic
threshold neuron used in the current model is equivalent
to integrate-and-fire neurons, we expect our model to
show similar, manageable temporal scaling behavior as
the network size is increased. In the near future, suffi-
cient computational power might exist to train the
model with natural images. Based on analogous results
with firing-rate models (Bednar et al. 2002), we expect
the results with more complex images to be similar to
those of the current model.

Whether or not contour integration in the model
occurs depends on whether the appropriate lateral con-
nections exist. Integration is possible only if focused
(i.e., patchy) lateral connections link neurons with sim-
ilar orientation preferences. Even though the integration
and adaptation mechanisms might be the same
throughout the cortex, if the input to the different areas
differs during development, different contour integration
performance results. The model therefore suggests why
the performance, e.g., in the upper vs. lower hemifield
(or in fovea vs. periphery) might differ: if the upper vi-
sual field does not receive sufficiently dense visual input
during development, its lateral connections remain dif-
fuse, resulting in weaker integration. We plan to test this
hypothesis in the future with a model that also takes into
account the structural differences in these areas, such as
different receptor densities. In this way, the observed
differences in contour integration performance can
possibly be explained as an effect of input-driven self-
organization.

Statistics of images projected on the retina indeed
support the idea that input distributions may differ
among different visual areas. Reinagel and Zador (1999)
showed that human gaze most often falls upon areas
with high contrast and low pixel correlation. As a result,
sharper images may project more often on the fovea
than the periphery, allowing more specific connections
to form. A similar method can be used to find out if
there is a difference in statistical distribution of image
features in the lower vs. upper hemisphere. This seems
likely, based on the observation that primates mostly
manipulate objects in their lower hemifield (Previc
1990). Such statistical differences together with Hebbian
self-organization would then result in different contour
integration capability in different visual areas, as was
demonstrated in Sect. 3.4.

A competing hypothesis would be that the differences
between hemifields (as well as those between fovea and
periphery) are genetically determined. One way of dis-
tinguishing between these hypotheses would be to rear
an animal with eye glasses that flip the input to the upper
and lower hemifield. After the critical period, the ani-
mal’s performance on contour detection task could be
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measured and the connectivity patterns formed in the
upper and lower hemifield compared to normally reared
control animals. With genetic determination there
should be no noticeable difference, whereas PGLISSOM
predicts that high connectivity and good integration
would occur in the upper hemifield, instead of the lower
hemifield as in control animals.

The fact that even simple patterns such as straight
Gaussian bars shape the circuitry for contour integration
is an interesting result. It supports a previous proposal by
Bednar and Miikkulainen (1998, 2000a) that simple
internally generated patterns in the developing nervous
system may pretrain the cortex before birth, explaining
why a certain degree of organization and functionality
already exists in a newborn cortex. However, since the
PGLISSOM model was trained with straight Gaussian
bars, one would expect only collinear properties to
emerge in the connection profile, instead of the cocircular
patterns actually observed (Fig. 5). Such an unexpected
result follows fromHebbian learning on graded responses
(Fig. 12). Neurons coactivate even if their receptive fields
are not perfectly aligned, allowing cocircular connections
to develop along with the collinear ones. Such graded
training in general matches the regularities in the visual
environment, forming a robust starting point for learning
more refined regularities in the visual input.

As we have seen in this paper, connection statistics,
feature co-occurrence statistics, and performance are
very closely related. It may be possible to measure co-
occurrence statistics of visual features other than ori-
entation as well, and such statistics could be used to
derive hypotheses about the functional connectivity of
visual cortical areas. Thus perceptual grouping rules
employed by the brain can be systematically investigated
by examining the statistical structure in natural scenes.

5 Conclusion

This paper shows how the specific connection patterns
that may facilitate contour integration and segmentation

in the visual cortex can be due to the same general
process of input-driven self-organization as in many
other cortical structures. The contour integration per-
formance measured by the degree of synchronization in
the model matches human performance data very well,
lending further support to the idea that segmentation
and binding could be due to synchronized firing of
neuronal groups. The model also suggests that differ-
ently distributed input presentations and the resulting
lateral connections may be the cause of the different
degrees of contour integration observed in the different
visual areas. It should be possible to account for other
low-level Gestalt phenomena with similar computational
principles.
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A Appendix: Simulation setup

This section describes the simulation setup in detail for
accurate replication of the results presented in this
paper. The code and simulation configuration files can
be found on the World Wide Web at http://www.cs.
tamu.edu/faculty/choe.

A.1 Network

While MAP1 consisted of 136� 136 neurons, MAP2
was reduced to 54� 54 to save simulation time
and memory. The intracolumnar connections between
MAP1 and MAP2 were proportional to scale, so that
the relative locations of corresponding neurons in the
two maps were the same. However, different parameter

Fig. 11a, b. Contour integration performance for different input
distributions. For each input consisting of three contour elements, the
correlation coefficients were calculated between each pair of MUA
sequences, and the average was used as the measure of performance,
as in Fig. 7. Error bars indicate� standard deviation. Plot a shows the
contour integration performance for the frequency experiments. For
both 0� and 40� orientation jitter, the high-frequency map had higher
correlation than the low-frequency map. The difference is more
pronounced in the 40� case, as predicted by the lateral connection

distributions in Fig. 9. Plot b shows the contour integration
performance for the [0�, 10�] vs. [0�, 25�] curvature experiments. At
0� orientation jitter, the performance is comparable, but with 40� of
jitter, the map trained with higher curvature input performs
significantly better, as predicted by the connection distributions in
Fig. 9. (The performance is generally lower in b than in a because to
cover the whole range of curvatures, each particular curvature can
only be shown with low frequency)
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values were required for the two maps, corresponding to
their different sizes. Excitatory lateral connections in
MAP1 had an initial radius of 7 and gradually reduced
to 3, and inhibitory lateral connections had a fixed
radius of 10. Initially, large areas have correlated activity
so that global order can be formed, and later on the
reduced lateral excitatory connections help fine-tune the
local order in the map (Kohonen 1982, 1989, 1993;
Sirosh and Miikkulainen 1997). In MAP2, excitatory
lateral connections had a radius of 40 and 54 inhibitory
connections. Afferent connections to the retina had a
radius of 6 in both maps and intracolumnar connections
a radius of 2 in both maps. The retina consisted of
46� 46 receptors, except for Sect. 3.4 where it was
72� 72 to have sufficiently large lower and upper
hemifields for the experiments. As long as the relative
sizes of the map, the retina, and the lateral connection
radii are similar to these values, the maps self-organize
well (see Bednar et al. 2002 for precise equations that
allow scaling maps to different sizes).

A.2 Self-organization

This section describes the simulation setup used in
Sects. 3.1 and 3.4. The input in the training experiment
consisted of straight oriented Gaussians:

nr1;r2 ¼ expð� ððr1 � xÞ cosð/Þ � ðr2 � yÞ sinð/ÞÞ2

a2

� ððr1 � xÞ sinð/Þ þ ðr2 � yÞ cosð/ÞÞ2

b2
Þ ; ð12Þ

where nr1;r2 is the desired activity of the retinal neuron at
location (r1; r2), a2 and b2 specify the length along the
major and minor axes of the Gaussian, and / specifies
its orientation. These axis lengths were a2 ¼ 15:0 and
b2 ¼ 0:6 for the first 1,000 iterations, and they were
increased to 45.0 and 0.45 thereafter, except for Sect. 4
where the axis lengths were a2 ¼ 15:0 and b2 ¼ 1:3 at the
beginning and increased to 50.0 and 0.8 by iteration
10,000, to compensate for the enlarged retina size. All
weights were initialized with uniform random numbers
within ½0::1�. The relative contributions of afferent,
lateral excitatory, lateral inhibitory, and intracolumnar
connections were ca ¼ 1:1, ce ¼ 0:8, ci ¼ 0:9, and
cc ¼ 0:5 for MAP1 and ca ¼ 1:1, ce ¼ 0:2, ci ¼ 2:5, and

cc ¼ 0:9 for MAP2. The learning rates of afferent, lateral
excitatory, lateral inhibitory, and intra-columnar con-
nections were aa ¼ 0:012, ae ¼ 0:008, ai ¼ 0:008, and
ac ¼ 0:012 for MAP1 and aa ¼ 0:012, ae ¼ 0:008,
ai ¼ 0:0, and ac ¼ 0:012, for MAP2. At 5,000 iterations,
aa and ac in both maps were decreased to 0.008 so that
the global order in the map could start stabilizing. Initial
base threshold hbase for both maps was 0.05. At the
beginning of each settling iteration, the hbase was
adjusted to 50% of maxi;jðri;jðtÞÞ so that the network
would not become too active or totally silent. Later, the
percentage was increased to 57.5% at 15,000 iterations
for MAP1 and 65% at 5,000 for MAP2. While
organized maps can be obtained without such parameter
adaptation, using them generally leads to better results.
Interestingly, biological evidence also supports such
adaptation processes during learning, including both
threshold adaptation (Azouz and Gray 2000; Prince and
Huguenard 1988) and synaptic plasticity (Caleo and
Maffei 2002).

The synaptic decay rates were different for different
types of connections. Previous sum was decayed by e�k,
where k ¼ 3:0; 0:5; and 1.0 for lateral excitatory, inhib-
itory, and intracolumnar connections, respectively, for
both maps. The decay rate in the spike generator’s
inhibitory feedback krel ¼ 0:5 in both maps. The relative
contribution of the inhibitory feedback in dynamic
threshold calculation was s ¼ 0:4 in both maps. The
threshold and ceiling of the linear approximation of the
sigmoid function gð�Þ were d ¼ 0:01 and b ¼ 1:3 in both
maps. For the average spiking rate of neurons, a running
average with the rate savg ¼ 0:92 was calculated.

A.3 Contour integration and segmentation

This section describes the setup for contour integration
experiments in Sects. 3.2, 3.3, and 3.4. The input to the
network consisted of oriented Gaussians of length
a2 ¼ 3:5 and width b2 ¼ 1:5 (Eq. 12). Examples are
shown in Fig. 6. For the training, a long Gaussian was
necessary, but for the contour integration experiments,
they were short enough to fit into a single receptive field
(afferent connection radius = 6).

The network configuration and parameters were the
same as in Sect. A.2, except for the following changes:
The lateral excitatory connections in MAP2 with weights
less than 0.001 were deleted, modeling death of unused
connections Katz and Callaway (1992), and ce in MAP2
was increased to 0.8. In addition, the excitatory learning
rate ae in MAP2 was set to 0.1. Although not strictly
necessary for grouping, this fast learning makes the
patchy connections more uniform and helps promote
synchrony among the connected regions; it does not
affect the patchy structure of the connections or the
organization of the map. Fast adaptation has been pro-
posed to be useful in several forms (von der Malsburg
1981; Crick 1984; Wang 1996), but it remains to be ver-
ified in biological systems, and its role in smoothing the
response constitutes a further prediction of the model. To
help desynchronization (segmentation) and model

Fig. 12a, b. Simultaneous activation of neurons. The plot shows two
representative cases of coactivation (i.e., when two neurons are
activated simultaneously), when a long (dashed line) input is presented
across the two receptive fields. a Collinear arrangement: the two
receptive fields (thick bars) are precisely aligned. If a long input is
presented along the same direction, the two neurons will respond
maximally, and the connection between them becomes stronger.
b Cocircular arrangement: even though the two receptive fields are
slightly misaligned, they are still weakly activated and their connection
is strengthened, although less so than in a
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synaptic noise, MAP2 ci was increased to 5.0 and 4%
noise was added. Previously, for self-organization, the
absolute refractory period (jabs) was set to 0. The firing
rates of the neurons were high as a result and the simu-
lation proceeded in a fast time scale. For the contour
integration experiments, a finer degree of temporal res-
olution was necessary, so jabs was increased to 4.
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