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Abstract

How can we build artificial agents that can autonomously ex-
plore and understand their environments? An immediate re-
quirement for such an agent is to learn how its own sensory
state corresponds to the external world properties: It needs to
learn the semantics of its internal state (i.e., grounding). In
principle, we as programmers can provide the agents with the
required semantics, but this will compromise the autonomy
of the agent. To overcome this problem, we may fall back on
natural agents and see how they acquire meaning of their own
sensory states, their neural firing patterns. We can learn a lot
about what certain neural spikes mean by carefully control-
ling the input stimulus while observing how the neurons fire.
However, neurons embedded in the brain do not have direct
access to the outside stimuli, so such a stimulus-to-spike as-
sociation may not be learnable at all. How then can the brain
solve this problem? (We know it does.) We propose that
motor interaction with the environment is necessary to over-
come this conundrum. Further, we provide a simple yet pow-
erful criterion, sensory invariance, for learning the meaning
of sensory states. The basic idea is that a particular form of
action sequence that maintains invariance of a sensory state
will express the key property of the environmental stimulus
that gave rise to the sensory state. Our experiments with a
sensorimotor agent trained on natural images show that sen-
sory invariance can indeed serve as a powerful objective for
semantic grounding.

Introduction
For an agent (natural or artificial) to be autonomous in the
truest meaning of the word, it must be able to learn, on its
own, about the external world and its basic properties. The
very first obstacle here is that the agents have direct access
only to its internals: It does not have direct access to the
world, nor to the world properties, since it cannot step out-
side of itself to observe the world (cf. Pierce & Kuipers 1997
and Philipona et al. 2003; 2004). This is in short the prob-
lem of grounding (Harnad 1990): How can we make the
meaning (or semantics) of the internal state intrinsic to the
system (Freeman 1999), rather than it being provided by a
third party? (The problem is also related to the concept of
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Figure 1: External vs. Internal Observer. The problem of
decoding internal sensory state is seen from (a) the outside,
and (b) from the inside of the brain. The sensory neurons
shown inside the brain perform a transformation from input
I to spikes s using the function f (i.e., s encodes properties
of I). The task is to find out the property of the input I given
the internal state s. (a) With full access to the input I and the
state s, or if the property of f is known, what s stands for can
be inferred. (b) However, with the lack of those knowledge,
such an inference may be impossible.

natural semantics by Cohen & Beal (1999).) For example,
consider the situation depicted in figure 1. If we have ac-
cess to both the external and the encoded internal state of an
agent (or the brain), then we can infer what external prop-
erties are represented by the internal state, but this involves
a third party (i.e., we, as external observers; figure 1a). On
the other hand, if we can only observe the encoded inter-
nal state while trapped inside the agent (i.e., intrinsic to the
system), then trying to infer external world properties may
seem futile (figure 1b; also see the discussion on the limita-
tions of isomorphism in Edelman 1999). However, we know
that autonomous agents like us are fully capable of such an
inference. How can that be the case?

Let us consider what should (or could) be the minimal set
of things given to an agent at birth (or switch-on time; Weng
2004). From a biological perspective, the set will include
raw sensors and actuators, and rudimentary initial processes
built on top of those, such as the orientation-tuned neurons
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Figure 2: Visual Agent Model. An illustration of a sim-
ple sensorimotor agent is shown. The agent has a limited
field of view where part of the input from the environment
(I) is projected. A set of orientation-tuned units f (sensory
primitives) receive that input and transform it to generate a
pattern of activity in the sensory array s (black marks ac-
tive). In the example shown here, the 45o unit is turned on
by the input. Based on the sensory array pattern, a map-
ping π to motor action vector a is determined, resulting in
the movement of the visual field in that direction, and then
a new input is projected to the agent. Note that the agent is
assumed to be aware of only its internal sensory state s, thus
it has no knowledge of I , nor that of f .

in the primary visual cortex (Daw 1995), or simple motor
primitives in the central pattern generator (CPG) (Marder &
Calabrese 1996). Note that CPGs can generate these mo-
tor patterns in the absence of any sensory input (Yuste et al.
2005). One thing to notice here is that this minimal set in-
cludes motor capabilities, which is missing from the picture
in figure 1b, and it turns out that the motor side is key to
solving the grounding problem. In this paper, we will show
that these motor primitives are central in associating external
stimulus properties with internal sensory states. We will also
propose a simple yet powerful learning criterion for ground-
ing: sensory invariance. In previous work, we demonstrated
that the idea basically works on a toy problem using syn-
thetic images, with a simple ad hoc learning rule (Choe &
Bhamidipati 2004). In this paper, we employ a learning rule
based on standard reinforcement learning (Q learning), and
present results and analyses on natural images.

The remainder of the paper is organized as follows. First,
we will provide a sketch of the general framework. In the
section that follows, we will present details of our model and
the learning rule. The next section provides the experimental
procedure, along with results and analysis. Finally, we will
discuss the contribution of our work and its relation to other
works, and conclude the paper with a brief outlook.

Model of the Agent and the Environment
Let us consider a simple sensorimotor agent (figure 2), with
a limited field of view. The visual input is transformed by an
orientation filter (modeling primary visual cortical neurons)
into a spike pattern in the sensory array. The sensory array
forms the sensory primitive s that the agent must consider
and infer the stimulus property as related to the external vi-
sual environment. The agent has no access to the input I ,
nor to the functional properties of filter f .

The agent is internal to this model, and it is not clear
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Figure 3: Sensory Invariance Driven Action. The state of
the agent during movement of its gaze is shown. Under the
condition shown here, the internal state does not change, and
the stimulus property represented by the unchanging state
(45o orientation) is congruent with the property of the mo-
tion (45o diagonal motion). Thus, by generating a motor
behavior while trying to maintain internal state invariance
results in that behavior mirroring the sensory property con-
veyed by that internal state.

that it will ever be capable of associating a visual orienta-
tion with the sensory spikes. If we consider the agent as in
figure 1b there is no solution; however, with the addition of
motor primitives as represented in figure 2, a solution can be
found. The addition of the motor primitives is critical; by
relating sensor activity and motor command, certain aspects
of the sensor properties can be inferred. A crucial insight
that occurred to us at this point was that certain kinds of
action tend to keep the sensory activity pattern stable (i.e.
invariant) during on-going movement, and the property of
this motion reflects that of the sensory stimulus.

Consider the state of the agent in figure 3: the sensory unit
for 45o orientation is activated at time t = 1. Now move the
gaze diagonally along the 45o input: This will keep the the
45o sensor stable during the motor act. This action would
directly reflect the property of the input stimulus, and leads
us to conclude that association of internal sensory states to
sensory-invariance driven action can serve as the “meaning”
for the sensory primitive. This way, even without any prior
knowledge, or direct access to the external world, agents
can learn about the key environmental property (here, ori-
entation) conveyed by the sensory state (cf. “proximal rep-
resentation” in second-order isomorphism; Edelman 1999).
Further, the generated motor output is behaviorally relevant,
meaning that the sensory state and the action are congruent
(cf. Bowling, Ghodsi, & Wilkinson 2005). Thus, sensory
invariance can serve as a simple, yet powerful criterion for
enforcing this mapping while serving as a basis of grounding
for internal representational states. In this paper, we will use
a standard reinforcement learning algorithm, together with
the invariance criterion, to infer external world properties
from internal state information.

Model Architecture
The general model of the agent is shown in figure 2. We will
first describe input preprocessing, then response generation,
and finally the learning rule that will allow the agent to map



Figure 4: Raw (IR) and Difference-of-Gaussian (DoG)
Filtered Input (ID). A natural image input (left) and its
DoG-filtered version (right) used in the training simulations
are shown. The image was 640× 480 in size.

the sensory state to meaningful motor pattern using sensory-
invariance as the criterion.

Initial input preprocessing
The input image is first convolved by a difference-of-
Gaussian (DoG) filter to simulate the preprocessing done in
the lateral geniculate nucleus. The filter is defined as follows
for each pixel (x, y):

D(x, y) = gσ/2(x, y)− gσ(x, y), where (1)

gb(x, y) = exp
(
− (x− xc)2 + (y − yc)2

b2

)
(2)

is a Gaussian function with width b and center (xc, yc). The
parameter σ was k/4 for filters of size k × k (k = 15 for all
experiments), and xc = yc = 8. The original raw image IR

is convolved with the DoG filter to generate ID:

ID = IR ∗D, (3)

where “*” is the convolution operator. ID is then subtracted
by its pixel-wise mean, and normalized:

ID(x, y) :=
ID(x, y)− µD

maxu,v |ID(u, v)|
, (4)

where (x, y) is the pixel location, and µD the mean for all
ID(x, y). An example of IR and ID are given in figure 4.
The input I was a 31 × 31 square area sampled from ID,
centered at the agent’s gaze.

Sensorimotor primitives
The sensory state is determined by an array of oriented Ga-
bor filters. Each Gabor filter Gi is defined at each location
(x, y) as:

Gθ,φ,σ,ω(x, y) = exp−
x′2+y′2

σ2 cos (2πωx′ + φ) , (5)

where θ is the orientation, φ the phase, σ the standard devi-
ation of the Gaussian envelope, and ω the spatial frequency.
The values x′ and y′ are calculated as:

x′ = x cos(θ) + y sin(θ), (6)
y′ = −x sin(θ) + y cos(θ). (7)

All m × m-sized filters Gi shared the same width (σ =
m/2), phase (φ = −π/2), and spatial frequency (ω =

Figure 5: Oriented Gabor Filters.

2/m). Orientation θ varied over the index i, where θi =
b(i− 1)π/nc, given the number of filters n. Figure 5 shows
eight Gabor filters Gi (i = 1..n, for n = 8).

The filter response is a column vector s′ of elements s′i,
corresponding to the vectorized dot-product of the input and
the Gabor filter:

s′i =
∑
x,y

Gi(x, y)I(x, y). (8)

The vector s′ is then normalized by its l2-norm |s′|:

s′ :=
s′

|s′|
. (9)

The current sensory state index s is determined by:

s = arg max
θi,i=1..n

s′i, (10)

where each s corresponds to a unique orientation of θ as
described above.

For each orientation, there are two matching gaze direc-
tions, such as 0o and 180o motion for θ = 0o. Thus, for
n orientation filters, the motion direction set contains 2n
movement-directions (figure 2):

A =
{

(d cos(θ), d sin(θ))
∣∣∣∣ θ =

(i− 1)π
n

, i = 1..2n

}
,

(11)
where d is the travel distance of each movement (d = 7), θ
the direction, and n the number of orientation filters. Each
action vector (ax, ay) ∈ A changes the agent’s center of
gaze from (x, y) to (x + ax, y + ay). When the location of
the gaze reached the boundary of ID, the gaze location was
wrapped around and continued on the opposite edge of ID.

Learning algorithm
Consider a particular sensory state st−1 at time t − 1, tak-
ing action at−1 takes the agent to sensory state st. The state
transition depends on the particular edge feature in the visual
scene, and is probabilistic due to the statistical nature of nat-
ural images. The reward is simply the degree of invariance
in the sensory states across the response vectors s′t−1 and s′t:

rt = s′t · s′t−1, (12)

where ”·” represents the dot-product. When filter response is
invariant, reward is maximized (rt = 1), and in the opposite
case minimized (rt = −1). This provides a graded measure
of invariance rather than a hard “Yes” or “No” response.

The task is to form state-to-action mapping that maxi-
mizes reward rt at time t. This is basically a reinforcement
learning problem, and here we use the standard Q-learning
algorithm (Watkins & Dayan 1992). (Note that other re-
inforcement learning algorithms such as that of Cassandra,
Kaelbling, & Littman (1994) may be used without loss of
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Figure 6: Q table. An illustration of the Q table with four
orientation states is shown. Since for each orientation there
can be two optimal directions of motion, there are eight
columns representing the eight possible directions of mo-
tion. An ideal case is shown above, where Q(si, aj) is max
in the two optimal directions for a given sensory state, and
hence the diagonal structure. (Note that the actual values
can differ in the real Q table.)

generality.) The agent determines its action at time t using
the learned state-action function Q(st, at) for state st and
action at (see figure 6). Assuming that the Q function is
known, the agent executes the following stochastic policy π
at each time step t:

1. Given the current state st, randomly pick action at.
2. If at equals arg maxa∈A Q(st, a),

(a) then perform action at,
(b) else perform action at with probability propor-

tional to Q(st, at).
3. Repeat steps 1 to 3 until one action is performed.

To mimic smooth eye movement, momentum was added
to the policy so that at = at−1 with probability 0.3. Also,
the probability of accepting a move in step 2(b) above was
controlled by a randomness factor c (set to 1.8 during train-
ing) so that if c is large, the chance of accepting a low-
probability action is increased.

Up to this point, we assumed that the true Q func-
tion is known, upon which the policy is executed. How-
ever, the Q function itself needs to be learned. Following
Mitchell (1997), we used Q-learning for nondeterministic
rewards and actions to update the Q table:

Qt(s, a) := (1− αt)Qt−1(s, a)

+ αt

(
rt + γ max

a′∈A
Qt−1(s′, a′)

)
, (13)

where s′ is the state reached from s via action a, γ the dis-
count rate (= 0.85 in all experiments), and αt defined as:
αt = 1

1+vt(s,a) , where vt(s, a) is the number of visits to the
state-action pair (s, a) up to time t (initial α was 1.0).

Because the design of the agent implies two optimal ac-
tions for each input state, each round of Q learning was re-
stricted to the current action’s cardinal block (left or right
half of the Q table). For policy execution, one of the two
halves of the Q table was randomly selected with each half
having equal chance of being selected.
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Figure 7: Ideal and Learned Q(s, a) Values. The grayscale
representation of the (a) ideal and the (b) learned Q table
are shown for the three experiments (8, 16, and 32 orien-
tation sensors). Black represents the minumum value, and
white the maximum value. Note that the true ideal values in
(a) should be two identity matrices appended side-by-side.
However, given the fairly broad tuning in orientated Gabor
filters, a small Gaussian fall-off from the central diagonal
was assumed to form an approximately ideal baseline.

Experiments and Results
In order to test the effectiveness of the learning algorithm in
the previous section for maximizing invariance, and to ob-
serve the resulting state-action mapping, we conducted ex-
periments on the natural image shown in figure 4. We tested
three agents with different number of sensory primitives: 8,
16, and 32. The corresponding motor primitives were 16,
32, and 64. The agents were trained for 100,000, 200,000,
and 400,000 iterations, respectively. As the Q table grows in
size, visiting a particular (s, a) pair becomes less probable,
so the training time was lengthened for the simulations with
more sensory primitives to assure an approximately equal
number of visits to each grid (s, a).

Figure 7 shows the ideal vs. the learned Q table. The
learned Q tables show close correspondence to the ideal
case. As shown in figure 6, the ideal case would show two
optimal directions of motion for a particular sensory state.
For example, 0o sensory state would be maintained if the
gaze moved either in the 0o or the 180o direction, under
ideal circumstances (the input is an infinite line with orien-
tation 0o: cf. O’Regan & Noë 2001). Thus, in principle, the
true ideal case should be two (appropriately scaled) identity
matrices pasted side-by-side, as in figure 6. However, as the
Gabor filters are broadly tuned (i.e., not very thin and sharp),
there needs to be some tolerance since moving in a close-
enough direction will still result in a high degree of invari-
ance as measured by equation 12. Thus, in practice, those
tables shown in figure 7a would be a good approximation of
the ideal case (these tables were obtained by convolving the
true ideal case with Gaussian kernels).

To measure quantitatively the performance of the learning
algorithm, we adopted an error measure by comparing the
ideal Q table and the learned Q table. The root mean squared
error (RMSE) in the Q tables was obtained as:
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Figure 8: Quantitative Measure of Performance. The
root mean squared error (RMSE) in the normalized Q ta-
ble (figure 7b) compared to that of the ideal case (figure 7a)
is shown for the three experiments. Each data point was
gathered from every 1,000 training iterations. In all cases,
convergence to a low error level is observed.

E =

√∑
s,a (Q′

I(s, a)−Q′
L(s, a))2

n
, (14)

where E is the error in Q; Q′
I(s, a) and Q′

L(s, a) are the
normalized, ideal and learned, Q values, for state-action pair
(s, a); and n the total number of state-action pairs in the Q
table. The normalized Q values were obtained with:

Q′(s, a) =
Q(s, a)− µQ

maxs,a Q(s, a)−mins,a Q(s, a)
, (15)

where µQ is the mean Q value over all (s, a) pairs.
Figure 8 shows the evolution of the error in Q estimate

over time for the three experiments. All three experiments
show that the error converges to a stable level.

Finally, we observed the gaze trajectory before and af-
ter learning, to see how well the expressed motor pattern
corresponds to the world properties signaled by the inter-
nal sensory state. Figure 9 shows the results for the three
experiments. Initially, the gaze trajectories are fairly ran-
dom. Also, there seems to be no apparent relation between
the gaze trajectory and the underlying image structure. (The
input image (figure 4) has a set of radially arranged leaves
centered near the middle, slightly to the left.) On the con-
trary, the gaze trajectory after learning shows a striking pat-
tern. The trajectories are more directed (longer stretches in
the same direction), and they show close correspondence to
the image structure. For example, for all rows in figure 9b,
the trajectories emerge from and converge to the center of ra-
diation of the leaves. What is more important is that, at any
point in time, the agent will have an internal sensory state
corresponding to the local orientation in the input, and the
generated motor pattern will be in the direction that is con-
gruent with that external orientation property. Thus, through
learning to maximize invariance in the internal sensory state
through action, the agent can very well infer the external
world property signaled by its internal, encoded, sensory
state. Here, the basis of inference for the agent is its own
motor act, thus grounding is based on the “behavior” of the
motor system, not from the sensory system.
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Figure 9: Gaze Trajectory Before and After Learning.
The gaze trajectory generated using (a) initial Q and (b)
learned Q are shown for the three different experiments. In
each plot, 1,000 steps are shown. The trajectory was col-
ored black→gray→white over time so that it is easier to
see the time-course, especially where there is a large over-
lap in trajectories. (The color was repeated after 768 steps.)
For these experiments, the randomness factor c was reduced
to 1.0 to encourage “exploitation” over “exploration”. (a)
Initially, the gaze trajectory is fairly random, and does not
show high correlation with the underlying image structure.
(b) However, after training, the trajectory closely follows
the prominent edges in the natural image (around the radial
edges coming out from the center). The oriented property
of the motor pattern resulting from the sensory-invariance
criterion is congruent with the underlying image structure.
(The trajectory is a bit random due to the stochastic policy.)

Discussion
The main contribution of this work is in the demonstration
of how a sensorimotor agent can infer about external world
properties based on its internal state information alone. We
showed that even without any prior knowledge about exter-
nal world properties or any direct access to the environment,
an agent can learn to express the sensory properties through
its own actions. Our key concept was invariance, which
served as a simple (simple enough for biology) yet power-
ful criterion for grounding. Note that our contribution is not
in saying that action matters (others have successfully ar-
gued for the importance of action: Arbib 2003; Llinás 2001;
Brooks 1991). Rather, it can be found in how action can
provide grounding for the internal sensory state and what
criterion is to be used. We presented early conceptual work
in Choe & Bhamidipati (2004), but it had theoretical (use
of an ad hoc learning rule) and experimental shortcomings
(synthetic inputs), both of which are overcome in this paper.

Our work is similar in spirit to those of Pierce &



Kuipers (1997), Philipona, O’Regan, & Nadal (2003), and
Philipona et al. (2004), where they addressed the same prob-
lem of building up an understanding of the external world
based on uninterpreted sensors and actuators. However,
Pierce & Kuipers focused more on how basic primitives can
be constructed and used, and Philipona et al. took a different
route in linking environmental properties and internal under-
standing (the concept of compensability).

One apparent limitation of our model is that it seems un-
clear how the approach can be extended to grounding of
complex object concepts. The answer is partly present in
figure 9: If we look at the motor trajectory, we can already
see the overall structure in the environment. However, for
this to work, memory is needed. Our agent currently does
not have any form of long-term memory, so it cannot re-
member the long trajectory it traced in the past. If memory
is made available, the agent can in principle memorize more
complex motor patterns, and based on that ground complex
object concepts. A parallel work in our lab showed prelim-
inary results on how such an approach can be advantageous
compared to straight-forward spatial memory of the image
(Misra 2005). These results suggest that motor primitives
may be an ideal basis for object recognition and generaliza-
tion (cf. motor equivalence of Lashley (1951)).

It is not surprising that certain neurons in the brain are
found to associate sensory and motor patterns in a direct
manner: Rizzolatti et al. (1996) discovered “mirror neurons”
in monkey prefrontal cortex, which are activated not only by
visually observed gestures, but also by the motor expression
of the same gesture. The role of these neurons have been as-
sociated with imitation, but in our perspective, these neurons
may be playing a deeper role of semantic grounding.

Conclusion
In this paper we analyzed how agents can infer external
world properties based on its encoded internal state informa-
tion alone. We showed that action is necessary, and motor
pattern that maintains invariance in the internal state results
in that motor pattern expressing properties of the sensory
state. The sensory state can thus be grounded on this particu-
lar motor pattern. We expect our framework and approach to
provide deeper insights into the role of action in autonomous
grounding in artificial and natural agents.
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