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The function of the brain is intricately woven into the fabric of time. Functions such
as (1) storing and accessing past memories, (2) dealing with immediate sensorimotor
needs in the present, and (3) projecting into the future for goal-directed behavior are
good examples of how key brain processes are integrated into time. Moreover, it can
even seem that the brain generates time (in the psychological sense, not in the physical
sense) since, without the brain, a living organism cannot have the notion of past nor
future. When combined with an evolutionary perspective, this seemingly straight-forward
idea that the brain enables the conceptualization of past and future can lead to deeper
insights into the principles of brain function, including that of consciousness. In this
paper, we systematically investigate, through simulated evolution of artificial neural
networks, conditions for the emergence of past and future in simple neural architectures,
and discuss the implications of our findings for consciousness and mind uploading.

Keywords: mind uploading; time; material interaction; prediction; self; authorship; neu-
roevolution

1. Introduction

The function of the brain is intricately woven into the fabric of time. Functions
such as (1) storing and accessing past memories [Shastri, 2002], (2) dealing with
immediate sensorimotor needs in the present [Rossetti, 2003], and (3) projecting
into, predicting, and/or anticipating the future for goal-directed behavior [Gross
et al., 1999; Henn, 1987; Kozma & Freeman, 2003] are good examples of how key
brain processes are integrated into time. Moreover, it can even seem that the brain
generates time (in the psychological sense, not in the physical sense) since, without
the brain, a living organism cannot have the notion of past nor future (see Dowden
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[2001] for a discussion on time and mind/brain function). When combined with
an evolutionary perspective, this seemingly straight-forward idea that the brain
enables the conceptualization of past and future can lead to deeper insights into
the principles of brain function (see, e.g., Chung et al. [2009, 2012]; Chung & Choe
[2009]; Kwon & Choe [2008]).

Most current investigations on the temporal aspects of brain function are focused
on specific tasks such as temporal coding, binding/segmentation, or prediction (see,
e.g., von der Malsburg & Buhmann [1992]; Fuhrmann et al. [2002]; Fortune & Rose
[2001]; Natschléger et al. [2001]). Therefore, broader questions from an evolution-
ary perspective are rarely asked, e.g., can memory evolve from simple feedforward
neural architectures, or can predictive function evolve from simple recurrent neural
architectures? See Suddendorf & Corballis [2007] for a rare exception to this, where
the authors talk about evolution of foresight and “mental time travel”, albeit at a
higher, cognitive level than what we will focus on in this paper.

In this paper, we will systematically investigate, through simulated evolution of
neural networks, conditions for the emergence of functions that enable the notion
of past and future (i.e., memory and prediction) in simple neural architectures, and
discuss the implications of the results for consciousness and mind uploading.

2. Background

In this section we will review works that provide background and motivation for
this paper. First we will review the neural architectures of simple, primitive animals.
Next, we will look at literature related to stigmergy (i.e., alterations of the environ-
ment to affect future behavior [Beckers et al., 1994]) and its relation to memory.
Finally, we will discuss literature on predictive functions in the brain.

2.1. Neural architectures of primitive animals

It is instructive to look at the origins of the nervous system and what steps it took to
become the complex networks that we see today in advanced animals like mammals.
Here, we will focus on the first few steps, shown in Fig. 1. One of the simplest animals
is the sponge. The sponge lacks a nervous system, where independent effectors are
actuated by direct stimulus (Fig. la). The next step up is the simplest animals
with a nervous system, such as corals, jellyfish, and hydra. In these animals, e.g., in
the hydra, a single neuron (sensorimotor neuron) links between the sensory surface
and the effector (Fig. 1b) and these neurons form a sparse, distributed network.
Finally, a more advanced form can be found in animals like the flatworm, where
interneurons are introduced and cell bodies are organized into nervous ganglia along
the length of the body (Fig. 1c-d). In all cases, the neuronal network of the animals
are distinctly feedforward, thus their behaviors are largely reactive. Such animals
can only respond to the moment-to-moment stimuli, oblivious of the inputs they
received in the past (i.e., they live in the eternal present). In this sense, they do
not have memory. Note that synaptic plasticity can be seen as a form of memory,
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but for simple animals like the flatworm, adjustment of synaptic efficacy can only
change how the animal reacts to the immediate stimulus. How can such primitive
animals further evolve to become sensitive to the past and the future? This is one
of the central questions we will address in this paper.

l Stimulus

(a) Single e (b) sm — e

Fig. 1. Progression of neural architectures in simple animals A progression of neural
architectures is shown, from (a) a single effector (= e) that also senses the stimulus, to (b) a
sensorimotor neuron (= sm) innervating the effectors (e.g., muscle cells), to (¢) a sensory neuron
(= s) innervating a motor neuron (= m), which in turn actuates the effectors. (d) Part of the
flatworm nervous system showing a basic plan similar to (¢) (i = interneuron, GN = ganglion).
In all cases, the basic architecture is feedforward. Adapted from Swanson [2003]. (d) is from Cajal
[1909], as shown in Swanson [2003].

2.2. Stigmergy and its transition to memory-like function

Stigmergy refers to “the production of a certain behaviour in agents as a conse-
quence of the effects produced in the local environment by previous behaviour”
[Beckers et al., 1994]. Altering the environment in any way that affects future be-
havior falls under this category, such as dropping and detecting some type of marker.
For example, humans and many other animals use external objects or certain sub-
stances excreted into the environment as a means for spatial memory (see Rocha
[1996]; Chandrasekharan & Stewart [2004]; Chandrasekaran & Stewart [2007] for
theoretical insights on the benefits of the use of inert matter for cognition). In this
case, olfaction (or other forms of chemical sense) serves an important role as the
“detector”. Olfaction is one of the oldest sensory modalities, shared by most liv-
ing organisms [Hildebrand, 1995; Vanderhaeghen et al., 1997; Mackie, 2003]. This
form of spatial memory resides in the environment, thus it can be seen as external
memory. On the other hand, in higher animals, spatial memory is also internalized,
for example in the hippocampus. Interestingly there are several different clues that
suggest an intimate relationship between the olfactory system and the hippocam-
pus. They are located nearby in the brain, and genetically they seem to be closely
related: [Machold et al., 2003; Palma et al., 2004] showed that the Sonic Hedgehog
gene controls the development of both the hippocampus and the olfactory bulb.
Furthermore, neurogenesis is most often observed in the hippocampus and in the
olfactory bulb, alluding to a shared functional demand [Frisén et al., 1998]. Finally,
it is interesting to think of neuromodulators [Krichmar, 2008] as a form of internal
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marker dropping.

Note that most existing works on stigmergy focus on the social aspect of it,
such as in social insects and in ant colony optimization [Dorigo & Gambardella,
1997; Dorigo & Blum, 2005; Theraulaz & Bonabeau, 1999; Bonabeau et al., 2000a;
Carroll & Janzen, 1973], and in many cases they involve structure-building in the
environment [Theraulaz & Bonabeau, 1999; Bonabeau et al., 2000b]. In contrast, in
this paper, we will present a more individual use of stigmergy, as a form of memory.

2.3. Predictive function in the brain

Prediction plays an important role in intelligent systems, and internal models make
up a key component. For example, Rosen [1985] argued that anticipatory systems
depend on internal predictive models of the agents themselves and the environments
that are used in predicting the future for the purpose of control in the present.
Wolpert and his colleagues showed how internal models in the brain (cerebellum,
to be specific) can be used for prediction in motor behavior [Wolpert & Flanagan,
2001; Wolpert et al., 1995, 1998; Kawato, 1999]. On the other hand, Bongard et al.
[2006] showed that through the use of an internal self model, physical sensorimotor
agents can show resilient behavior when part of the agent becomes damaged (such
as amputated limbs, etc.). There are more instances of prediction being detected in
brain function. Rao & Ballard [1999] showed that the interaction between feedfor-
ward and feedback connections between cortical regions can play a predictive role.
Rao & Sejnowski [2000] also showed that predictive sequence learning can occur in
recurrent cortical circuits. Finally, Hawkins & Blakeslee [2004] argued that the neo-
cortex may have prediction as its primary function. In general, any work that cites
anticipation, internal model, and goal-directed behavior all implicitly or explicitly
involve prediction as a key part of their investigation.

As mentioned in Sec. 1, most of the existing works on prediction focus on specific
tasks or mechanisms, and rarely question the evolutionary origin of such a function.
Furthermore, how memory (past) is related to prediction (future) is not considered
in these works.

3. Emergence of Memory: From the Present to the Past

Can feedforward neural networks express memory-like behavior? In principle, this
is not possible, but we found that when material interaction with the environment
is allowed (basically a form of stigmergy), memory can be possible.

Fig. 2 summarizes the task, methods, and results. Fig. 2a illustrates the ball
catching task [Beer, 2000]. Equipped with a fixed number of range sensors (radiating
lines), an agent is allowed to move left or right at the bottom of the screen while
trying to catch two balls falling from the top. The goal is to catch both balls. The
balls fall at different speeds, so a good strategy is to catch the fast-falling ball first
(Fig. 2a B and C) and then go back and catch the slow one (D and E). Note that
in C the ball on the left is outside of the sensor range. Thus, a memory-less agent
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would stop at this point and fail to catch the second ball. In sum, this task requires
memory.

Fig. 2b shows a feedforward network with a slight modification (dropper and
detector of external markers). This kind of modification can be trivial to implement
from an evolutionary point of view, since existing sensors can be extended to serve
as detectors and excretion and other bodily discharge (e.g., pheromones) can take
up the function of the dropper. The basic internal architecture of the network is
identical to any other feedforward network, with five range sensor (I; to I5), and
two output units that determine the movement (O and Os). The two added input
units (Ig and I7) signal the presence of a dropped marker on the bottom plane, and
the additional output unit (O3) makes the decision of whether to drop a marker
at the current location or not. Note that there are no recurrent connections in the
controller network itself. We used genetic search to evolve the network weights. The
fitness was calculated based on the number of balls caught. The success in this kind
of agent will depend critically on whether the markers are dropped at the right
moment and appropriate behavior generated when certain markers are detected.

%)

Catch Performance (¥

0
Fast Left Ball Fast Right Ball

(a) Task (b) Dropper/detector network (¢) Performance

Fig. 2. Dropper/detector network’s performance in ball catching (a) The ball catching
task is illustrated (A). The agent has five range sensors to detect the falling balls, and can move to
the left or to the right. One ball falls fast and the other falls slow. To catch both balls, first the fast
falling ball needs to be caught (B), but doing so would often make the slower ball to go beyond the
sensor range (C). Memory is needed to go back to the slower ball (D-E). (b) The dropper/detector
network is shown (it is basically feedforward). Five inputs indicate the range sensors for the falling
balls, and two additional sensors are for detecting the markers on the ground. Two output units
are used to determine the motion direction, and the third unit used to trigger the dropping of
the markers. Genetic search is conducted on the connection weights of the controller network. (c)
Performance comparison between the dropper/detector network (gray) and a recurrent network
(black) is shown. See text for details. Adapted from Chung & Choe [2009, 2011].

In Fig. 2¢, the average ball catching performance of the dropper network is
presented (gray bar), along with that of the recurrent network (black bar). The
recurrent network was a standard Elman network [Elman, 1991]. Both types of
networks were trained using genetic algorithms, where the connection weights were
adjusted over the generations (error bars indicate standard deviation). The results
are reported in two separate categories: fast left ball and fast right ball. This was
to show that the network does not have any fixed bias for catching the ball falling
fast on one side only. Both networks performed at the same high level (over 90%
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of the balls caught). This is quite remarkable for a feedforward network, although
it had the added dropper/detector mechanism. The dropping/detecting strategy
also seems consistent with an interpretation that the agent has memory (see Chung
et al. [2009]; Chung & Choe [2011] for details). We also tested purely feedforward
networks, but they were only able to catch only ~50% of all balls dropped. The
effectiveness of the dropper/detector network was also demonstrated in a more
complex 2D foraging task [Chung & Choe, 2011].

These results suggest how organisms with only the concept of present could have
evolved mechanisms to look into the past without rewiring their brain circuits.

4. Emergence of Prediction: From the Past to the Future

Once a recurrent neural architecture is made available (through some route in evo-
lution), what can it achieve? It can clearly modify its behavior based on stimuli that
were received in the past. So, in a sense, recurrent neural networks have memory of
the past, but that is only half of the story.

Do these recurrent networks have the ability to forecast the future? In fact,
recurrent networks have been used extensively for time series prediction [Connor
et al., 1994; Barbounis et al., 2006; Kuan & Liu, 1995]. However, these works are
based on training the recurrent networks on time-series data that explicitly contain
future information. Thus, the predictive capability emerging in these networks is
mainly due to the information provided to them to begin with, through the super-
vised training set. That is, for this case, we cannot say that the predictive function
was emergent.

We take a different stab at this question, by assuming no prior data that al-
ready contain information of the future, nor a built-in optimization criterion that
explicitly measures prediction performance. The idea is to evolve recurrent neural
network controllers in a dynamic task where prediction is not an immediate task
requirement (Fig. 3a-b). The key innovation here was to simply measure the inher-
ent predictability of the internal state trajectories (i.e., the time-series made up of
hidden neuron activations over time; see Fig. 3b-c), and see if those with higher
predictability spontaneously evolve, just based on the task demand (in this case,
pole balancing). Note that here the predictability of the trajectory is a post hoc
quantity only used for analysis, so it does not feed back into fitness calculation.

An immediate question is, how can predictability of the internal state trajectory
be measured? Fig. 3¢ shows how. Again, we do not want to impose a preconceived
notion (such as smoothness, low curvature, etc.) to bias our analysis, so we took
a data-driven approach. Given n past data points (n = 4 in the figure), we want
to know if the n 4+ 1-th data point can be easily predicted. To measure this, we
can construct a supervised learning training set consisting of n inputs and 1 target
value, by sliding this small window along the entire internal state trajectory. Then,
we can use any suitable supervised learning algorithm to learn the mapping, from n
past data points to the n+ 1-th data point. Trajectories that lead to lowest training
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error can be said to have high predictability (i.e., the data set itself has a predictive
property).
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Fig. 3. Predictability of internal state trajectory in a pole-balancing controller network
(a) 2D pole balancing task. (x, y) is the location of the cart, and 6, and 6, the angles from the
z axis. (b) A recurrent neural network controller for (a), illustration of its hidden-unit activations
(internal state) over time (lower right, three neurons x, y, and z), and a 3D plot of the internal state
trajectory. The connection weights are adapted using genetic search. (¢) Measuring predictability
of internal state trajectory. Given a few past data points as input (¢t — 3 to t), how well can
the next data point (¢ + 1) on the trajectory be predicted? (d) Experimental design showing the
population (left), selection (middle), and post-selection analysis (right). Individuals that pass the
selection stage have equal task performance, but analysis of their internal state can show different
characteristics: Some with highly predictable internal state trajectory, and others with much less
predictable trajectory. (ISP = Internal State Predictability) Adapted from Kwon & Choe [2010].

Why should this be of interest? We have found that among equally high-
performing individuals (Fig. 3d, middle), some have highly predictable internal state
(i.e., hidden unit activation value) trajectories (Fig. 3d, right, top group and Fig. 4
top row [high ISP]) while some are not so predictable (low predictability, Fig. 3d,
right, bottom group and Fig. 4 bottom row [low ISP]). In fact, the internal state
predictability for 127 top-performing agents from the population show a smooth
gradient, from very low to very high predictability (Fig. 5a). Since the individuals
from both groups (high ISP vs. low ISP) passed the same performance threshold,
they actually have equal performance given the same task. However, we discovered
that when the initial condition of the task is made harder, those with high pre-
dictability retain their performance while those with low predictability lose much
of their performance! (Fig. 5b)

The implication of this finding is profound. First, predictable internal state dy-
namics turned out to have a high selective value in evolution. This can be an
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important precursor to a full-blown predictive function. Second, certain properties
that are internal to the agent can affect the course of evolution (examples of such
internal properties include subjective phenomena such as consciousness: see Sec. b
for more discussion on this point).
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Fig. 4. Internal State (Hidden Unit Activity) Trajectories Examples are shown for highly
predictable (top row) and hard to predict (bottom row) internal state trajectories. The highly
predictable group shows smooth and periodic orbits, whereas the hard to predict group shows
sudden turns and tangled trajectories. Adapted from Kwon & Choe [2008].

5. From Predictive Dynamics to Consciousness

Through our method outlined above, we can approach, in a scientific manner,
one of the deepest mysteries in modern science, i.e., that of consciousness [Searle,
1997]. Here, we will talk about two aspects of consciousness that relate to the re-
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(a) Internal state predictability (b) Performance in harder tasks

Fig. 5. Internal State Predictability and Task Performance Results from the analysis of
internal state predictability and subsequent performance in harder task environments are shown.
(a) The internal state predictability measured with a supervised learner is shown for 127 highly
successful pole balancers. All of the controllers were able to balance the pole for 5,000 or more
steps. (b) Comparison of the top 10 (blue bar) and bottom 10 (white bar) controllers in (a) are
shown. In this comparison, the pole balancing task was made harder by increasing the initial tilt
angle of the pole. We can see that the controllers with high internal state predictability mostly
retain their performance, those with low predictability lose most of their performance. Adapted
from results reported in Kwon & Choe [2008].
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sults presented above (especially material from Sec. 4): (1) subjectivity and (2)
self-perspectival organization [Van Gulick, 2004]. Subjectivity basically means that
consciousness is a first-person property and is inaccessible by a third-person [Van
Gulick, 2004]. This immediately raises questions regarding the evolutionary value
of consciousness. For example, consider Fig. 6. If two equally functional individuals
exist, one with subjective consciousness and the other without, why would natural
selection favor the conscious one? Our results in Sec. 4 shed some light on this
question. As shown in Fig. 3d, at some point in time, individuals with equal per-
formance but with different internal properties (e.g., internal state predictability)
can coexist. However, certain internal properties can at a later time (e.g., when the
environment changes) turn out to be beneficial to survival. Thus, our work shows
how apparently subjective properties can bias natural selection.

conscious @ zombie
o
R
<~

Fig. 6. Conscious being vs. zombie From the outside, a conscious being and a zombie (a
philosophical zombie) may seem indistinguishable. However, internally (or subjectively), one might
have phenomenal experience (left) while the other might lack this kind of experience (right). These
internal characteristics may be determined in part by the internal state dynamics (see the text for
details).

Self-perspectival organization means that conscious experience does not stand
alone, but rather, it belongs to a subject or a self (Searle [1997], p. 183; Van Gulick
[2004]). How can we scientifically study something that is so subjective as the notion
of self? We propose that we need to track back by considering the properties and
necessary conditions of these phenomena. For example, authorship (of one’s own
action) is a prominent property of the self. Authorship means “I” am the owner of
my actions [Millgram, 2005; Humphrey, 1992]. A distinct property of self-authored
actions is that they are 100% predictable. It does not make sense to say, e.g., “I think
there is a 90% chance that T will type the letter ‘A’ after this.” A necessary condition
for such an accurate prediction is the predictability of the internal state dynamics,
i.e., the underlying dynamics should lend itself to prediction (see Fig. 6). This is
where it suddenly becomes objective, detached from the subjective notion of self.
There is no agreement on how to measure the subjective aspect of consciousness or
self, but we can experimentally (and hence objectively) measure the predictability
of neural (or population) dynamics as a surrogate of the more subjective qualities
of self and consciousness. Furthermore, our results in Sec. 4 showed that there is
an evolutionary edge for agents that have more predictable internal dynamics. So,
our work can provide clues on how important necessary conditions of consciousness
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could have evolved.

6. Implications on Mind Uploading

The basic idea of mind uploading is simple: Capture and preserve the mind state in
a digital (or some other available) medium, for subsequent whole brain emulation
[Hayworth, 2010; Sandberg & Bostrom, 2008; Koene, 2006]. However, there are di-
verse perspectives on what constitutes successful mind uploading and whether it
is possible or not based on various theoretical and technical arguments [Hayworth,
2010]. In this section, we will discuss how the results presented in preceding sec-
tions can clarify issues regarding mind uploading relating to time, subjectivity, and
evolution.

First, the temporal dimension needs attention equal to the spatial dimension
when it comes to mind uploading (see the criticism of spatialization of time in
Bergson [1988] which led to the concept of duration [durée], and the idea of “thick
moment” by Humphrey [1992]). Structural (basically spatial) information alone,
such as the connectome [Sporns et al., 2005; Sporns, 2011}, may not be sufficient for
successful mind uploading and whole brain emulation. Of course parameters other
than connectivity, such as connection strength and sign (excitatory or inhibitory),
are important. However, the delay between connections are often overlooked, while
our work suggests that delay can directly influence function since it can fundamen-
tally alter the dynamics of the circuit, including the predictive kind. Furthermore,
the existence of delay in the nervous system also seems to necessitate a predictive
function, initially in the form of delay compensation [Lim & Choe, 2008, 2006a,b].
(See Choe [2004] for another example where temporal parameters [especially delay]
play a key role in system-level function.) Thus, accurately estimating temporal pa-
rameters such as conduction delay based on the length and diameter of axons from
structural data might be necessary for successful mind uploading and whole brain
emulation.

Second, our approach suggests an effective strategy for dealing with subjective
phenomena such as consciousness. As discussed in Sec. 5, instead of investigating the
subjective phenomenon itself, we can initially focus on objective necessary condi-
tions of the phenomenon. This way, important properties of the target phenomenon
can be revealed and retained. In our case, we identified predictable dynamics as
such a necessary condition. Such conditions (not just the ones we identified) can
serve as a practical metric to measure the success of mind uploading and whole
brain emulation. For example, two simulations that show the same performance on
a task-specific metric can greatly differ in terms of their internal dynamics. In such
a case, we can compare the internal dynamics to further refine our evaluation, e.g.,
preferring simulations exhibiting a more predictable internal dynamics.

Finally, our work demonstrates the importance of inferring the evolutionary
steps through which mind emerged (cf. Humphrey [1992]). Mind uploading is in a
sense very synchronic (as opposed to being diachronic), thus it may seem odd to
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put it in the context of an evolutionary time scale. However, as we have shown in
this paper, considering an evolutionary perspective can help identify key principles
that drive the emergence of mind. Such principles can effectively address theoretical
issues regarding mind uploading such as subjectivity or self.

7. Discussion

In this paper, we investigated the relationship between time and consciousness,
and identified predictable internal state dynamics as an important precursor of
consciousness. Furthermore, we discussed the implications of this finding for mind
uploading. In this section, we will examine three related topics: uncertainty, external
vs. internal, and embodiment.

In Sec. 5, we argued that prediction of one’s own action is an important pre-
cursor of consciousness. There is another angle from which we can link up predic-
tion (especially those with high-confidence) and consciousness. The phenomenon of
blindsight [Weiskrantz, 1986] is a good example. In blindsight, the subject is not
consciously aware of the visual input, but visual task performance is maintained
at a fairly high level. In a sense, the blindsight subjects are very uncertain, which
could be indicative of low predictability leading to the lack of conscious perception.
On the other hand, conscious subjects are extremely confident about their percep-
tual events. These observations allows us to see the three-way relationship among
prediction, uncertainty, and consciousness.

Another interesting aspect of our work is that the boundary between internal
and external (and similarly between subjective and objective) is blurred. Memory
is needed, to eventually develop consciousness, but our first demonstration of mem-
ory was through the external medium (dropper/detector). The dropper/detector
agent’s neural architecture is feedforward, so it is supposed to be reactive, thus the
agent lives in an eternal present. However, through the markers dropped in the en-
vironment, it gains memory. Thus, for this agent, the memory is straddled between
the inner and the outer realm, blurring the subjective/objective boundary. Another
example of such a blurring can be observed in the internal state predictability ex-
periment. Can we say that the hidden unit activities are purely internal information
inaccessible from the outside? That is, can we say that they are truly subjective?
Experiments under harder task conditions was able to bring out agents that possess
certain internal properties, so it seems hard to say the hidden unit information is
totally subjective. These results challenge our preconceived notion of internal vs.
external (or subjective vs. objective), and provide some conceptual tools for dealing
with subjectivity in mind uploading research.

The last topic we want to discuss is embodiment. The focus of modern neu-
roscience is mostly on the brain, while the body receives relatively less attention
[Hacker, 1987]. This trend is naturally quite dominant in mind uploading research,
where the efforts are concentrated on preserving brain states. However, for success-
ful whole brain emulation, we need to reverse engineer the brain, and for this, it
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will be necessary to map out the entire body as well, since it will be difficult to
reconstruct the inputs and outputs without the body. Furthermore, important dy-
namics can only be captured at the level of the sensorimotor loop that involves the
body and the environment (e.g., such as internal state invariance for autonomous
semantics [Choe et al., 2007]). In sum, for ultimate mind uploading, not only the
brain but also the body may have to be scanned and emulated.

8. Conclusion

In this paper, we showed, through simulated evolution experiments, how memory
of the past and prediction of the future can emerge in simple neural architectures.
The results we find are simple yet profound: (1) even reactive mechanisms can gain
memory, through actively altering the environment; (2) predictable internal state
dynamics have a fitness advantage and will emerge through evolution when faced
with changing environmental demands. Furthermore, we argued that (3) predictable
dynamics is a precursor of consciousness. We expect these results to help us bring
subjective issues in mind uploading into an objective domain, and provide con-
crete metrics and strategies for mind uploading, especially relating to the temporal
dimension.
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