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ABSTRACT

Texture segmentation is an effortless process in scene analy-

sis, yet its mechanisms have not been sufficiently understood.

A common assumption in most current approaches is that tex-

ture segmentation is a vision problem. However, considering

that texture is basically a surface property, this assumption

can at times be misleading. One interesting possibility is that

texture may be more intimately related with touch than with

vision. Recent neurophysiological findings showed that re-

ceptive fields for touch resemble that of vision, albeit with

some subtle differences. To leverage on this, we tested how

such distinct properties in tactile receptive fields can affect

texture segmentation performance, as compared to that of vi-

sual receptive fields. Our main results suggest that touch has

an advantage over vision in texture processing. We expect

our findings to shed new light on the role of tactile perception

of texture and its interaction with vision, and help develop

more powerful, biologically inspired texture segmentation al-

gorithms.

1. INTRODUCTION

Visual perception starts from segregation of scenes based on

cues related to luminance, color, contours and texture of ob-

ject surfaces. Moreover, the human visual system uses tex-

ture information in order to automatically–or preattentively–

segregate parts of the visual scene [1]. Several theories and

algorithms exist for texture discrimination based on vision

[2, 3]. These models diverge from one another in algorith-

mic approaches to address texture imagery using spatial ele-

ments and their statistics. Even though there are differences

among these approaches, they all begin from the assumption

that texture segmentation is a visual task.

However, considering that texture is basically a surface

property [4], this assumption can at times be misleading. An

interesting possibility is that since surface properties are most

immediately accessible to touch, tactile perception may be

more intimately associated with texture than with vision (it is

known that tactile input can affect vision [5]).

Coincidently, the basic organization of the tactile (so-

matosensory) system bears some analogy to that of the visual
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system [6]. In particular, recent neurophysiological findings

showed that receptive fields for touch resemble that of vi-

sion, albeit with some subtle differences [7]. To leverage on

this, we tested how such distinct properties in tactile recep-

tive fields can affect texture segmentation performance, as

compared to that of visual receptive fields.

Our results based on the above ideas suggest that touch

has an advantage over vision in texture processing. We expect

our findings to shed new light on the role of tactile perception

of texture and its interaction with vision, and help develop

more powerful, biologically inspired texture segmentation al-

gorithms.

2. METHODS

The most widely used feature generators for texture segmen-

tation is the computational model of the early visual receptive

field (of V1 simple cell), the Gabor filter [8]. When generat-

ing Gabor features, typically, an input image I(x, y), (x, y) ∈
Ω (Ω is the set of pixel locations) is convolved with a 2D Ga-

bor function G(x, y) as follows [9]:

Gλ,θ,ϕ(x, y) = exp
(

x′2
+γ2y′2

2σ2

)

· cos
(

2π x′

λ
+ ϕ

)

x′ = x · cos θ + y · sin θ, y′ = −x · sin θ + y · cos θ

where λ is the wavelength (1.5×window size), θ is the ori-

entation preference, ϕ is the symmetry phase, γ is the as-

pect ratio, and σ is the standard deviation of the Gaussian

envelope. In our experiments we set these values to be σ =
0.56, γ = 1.0, and ϕ = 0.5π . Afterwards, a bank of Ga-

bor filters with eight equidistant preferred orientations, θ =
k ·

π
8
, (k = 0, 1, . . . , 7) was constructed. The tactile coun-

terpart of the V1 simple cell model is the receptive field (RF)

for neurons in the somatosensory area 3b [10]. To the best of

our knowledge, tactile RFs have not been incorporated in any

texture segmentation or computer vision related algorithms.

DiCarlo and Johnson [10] derived the tactile RF model

by recording area 3b neural responses to dot patterns using

reverse correlation. The main structure of the RFs consists

of three Gaussian subfields: central excitatory region accom-

panied by an inhibitory lobe and a temporally, dynamically

lagging inhibitory lobe with respect to the excitation center

[10]. Each subfield can be expressed as:
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Fig. 1. RF models: (a) Visual RFs showing 157.5o, 0o, and

22.5o orientation preference. (b) Tactile RF’s responses to

five finger-tip scanning directions (baseline orientation pref-

erence is 0o in all cases).

G(x, y) = a · exp
(

−
1

2
LT S−1L

)

,

L =

[

x − µx − vxτ

y − µy − vyτ

]

, S =

[

σ2
x ρσxσy

ρσxσy σw
y

]

where (µx , µy) represents the center of the subfield, (vx, vy)
represents the stimulus velocity vector, and τ represents the

delay of the peak excitation or inhibition with respect to skin

stimulation. The center of excitation was fixed to stay at the

middle of all tactile models while the complementary inhibi-

tion and lagging inhibition centers varied with respect to the

excitatory center. The parameters a, σx, σy , and ρ specify the

amplitude, spread, orientation, and elongation (aspect ratio)

of the excitatory (a > 0) or inhibitory (a < 0) component

represented by the Gaussian function.

Finally, the three Gaussian subfields are linearly summed

to represent the tactile model. In Figure 1, the outline in the

middle depicts the initial RF before scanning. The arrows rep-

resent scanning directions of the fingertip. From each scan,

the resulting RF is illustrated through three diagrams: (1) The

excitatory and fixed inhibitory lobe are outlined in gray el-

lipses and the lagging component is illustrated as dotted (be-

fore scanning) and black (after scanning) ellipses; (2) the lag-

ging inhibitory lobe is displaced in the opposite direction of

the scan; (3) and the linear summation of arrows listed as fixed

orientation components.

This extra degree of freedom of the tactile receptive field

(TRF) model (the lagging component) affects the level of

occlusion of the excitatory lobe that ultimately determines

orientation preference. As with the visual receptive fields

(VRFs), a bank of eight TRF models with equidistant orien-

tations was made.

Given the computational models of tactile and visual

modalities, our experiments measured the performance of tex-

ture segregation through means of detecting texture-defined

boundaries from natural and synthetic texture image inputs.

We used 18 textures from the widely cited Brodatz texture

collection [11] and 18 textures with boundary simply synthe-

sized by appending two textures. For the experiments, we

Fig. 2. A sample texture set. The top row shows non-

boundary and the bottom row boundary textures.

made six different texture sets so that each set contains three

non-boundary textures and three boundary textures. Figure 2

shows one texture set containing three non-boundary textures

and three boundary textures. In order to extract the RF re-

sponse for the given textures, each texture was preprocessed

by a Laplacian of Gaussian (LoG) filter, a popular choice for

edge detection, followed by a transformation of the edge into

detectable discontinuities [12]. The LoG filter is defined as

below

Gσ(x, y) = 1√
2πσ2

·

(

−
x2+y2

2σ2

)

,

LoG = ∆Gσ(x, y) = δ2

δx2
Gδ(x, y) + δ2

δy2
Gδ(x, y)

where σ is the standard deviation (width) of the Gaussian en-

velope and is set to 0.5 in our experiment.

In order to reproduce equivalent stimuli from tactile sen-

sation from a finger, we examined a certain number of con-

secutive window patches (frames) sliding across a predefined

scanning direction inside the input image. The pixel inten-

sity in the image played the role of surface height in texture

surfaces. In this experiment, we used 12 frames with a win-

dow size of 15 (or 17) pixels. TRF and VRF filter banks

constructed with 8 oriented RFs having identical size with

the window patches (frames) were applied by vectorized dot

product to the individual window patches, producing a vector

consisting of 12 response values.

Specifically, we examined multiple scans from every in-

put image with different scanning directions to accommodate

all possible ways of encountering the texture boundaries. Fig-

ure 3 shows a group of typical response profiles extracted

from random natural texture images scanned at various direc-

tions. Texture boundaries were located in the middle of the

input image between two distinct textures. As shown, TRF

responses show higher amplitudes and correlation along the

texture boundary, compared to those of VRFs.

3. EXPERIMENTS AND RESULTS

We compared the classification rate based on the two types

of RF responses (TRFs and VRFs), and also analyzed the

boundary/non-boundary separability in the two representa-

tions.

So far, we obtained TRF and VRF response data from in-

put images with texture-defined boundaries. To expose effects
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Fig. 3. 3D visualization of RF responses. Visualization of

100 (left) TRF and (right) VRF responses superimposed on

the input image containing a texture-defined boundary in the

middle.

Fig. 4. Comparison of average classification rate for six dif-

ferent texture sets with TRFs and VRFs. In almost all cases,

the classification rate with TRFs is better than the one with

VRFs (errorbars indicate standard deviation).

of boundary-present responses, we conducted a double-blind

test by adding a virtually identical, but controlled experiment

without any texture-defined boundaries. On the condition of

the same combination of scanning direction, input textures

(without any boundaries) and identical parameterizations, we

have collected the same amount of controlled data.

We trained a standard back-propagation network (120

input unit, 10 hidden units, 2 output units ([1 0] for bound-

ary and [0 1] otherwise) throughout 200 epochs at learning

rate η = 0.5) to discriminate texture boundary responses

from non-boundary responses. On top of training with stan-

dard back-propagation, the final decision of detecting a tex-

ture boundary was based on voting [13]. We selected five

neighboring output vectors from the network and applied the

majority rule to finally determine whether the five outputs

indicated a texture boundary or non-boundary texture input.

We used 18 random textures from the Brodatz collection

and constructed two sets of input images: target-present (tex-

ture boundary) images versus target-absent (no texture bound-

ary) images as depicted in Figure 2. Figure 4 shows the result-

ing classification rate of voted texture boundaries for 6 exem-

plary sets. The TRF performances were significantly superior

to those of the VRF (t-test: n = 1920, p < 0.03) except for

texture set 1 (p = 0.27).

Why are TRFs better than VRFs for texture segmentation?

One possible reason is that the nonlinear structure of the TRF

is more ecologically suited to the feature of the surface texture

than linear structure of the VRF because most textures are

composed of more nonlinear features than linear features.

As we can see in figure 1, a three-component model has

curvy lobes between excitatory and inhibitory components

because the lagged inhibitory component affects the two fixed

components whereas a Gabor filter has linear division be-

tween the excitatory and the inhibitory components. Hence,

the bank of three-component models may easily extract more

nonlinear features in the surface texture than a Gabor filter

bank.

To validate this idea, we tested boundary detection with

curvy textures and linear textures. Figure 5 shows two types

of texture and the comparison of the classification rate. Curvy

textures without boundary were synthesized with many seg-

ments of circles at different curvatures (0.333, 0.2, and 0.143)

and linear textures without boundary were synthesized with

lines at different orientations (horizontal, vertical, and slash).

As we can see, TRFs show a higher competitive edge on curvy

textures.

In order to test the representational power of TRFs as

compared to VRFs, we used Fisher’s Linear Discriminant

Analysis (LDA). Figure 6 shows the probability density of

the LDA distribution extracted from a set of input images.

In each case, data from the non-boundary and the boundary

case are shown as two separate classes. The plots show that

the TRF response feature distribution is more separable than

those from the VRF.

Up to this point, we have applied classification result com-

parisons to determine the relative usefulness of local spatial

features represented in TRF and VRF responses. However,

this characterizes the joint performance of a feature operator

and a subsequent classifier. In other words, subsequent pro-

cessing of the raw responses such as voting or LDA are liable

to alter raw attributes of the initial input space.

Therefore, from the discriminant analysis, we can objec-

tively compare the features only by measuring cluster separa-

bility according to the Fisher criterion [9]. Moreover, this was

expected and we subsequently validated it with ANOVA, as

we found that TRF responses had p-values under 0.05 while

VRF responses had higher p-values around 0.10. The results

indicate that TRF based-responses have higher separability,

better representing boundary-present features.

4. DISCUSSION

The primary aim of this study was to explore and compare

performances of texture segregation based on Tactile Recep-

tive Fields (TRFs) and Visual Receptive Fields (VRFs). Our

current finding suggests that touch-based texture perception

contains more discriminative information than vision-based

local spatial features. Statistical measures and classification

performances were used to evaluate this characteristic as well

as providing insight on analyzing the TRF representation.

Due to the extra degree of freedom and component in the RF

structure, TRF’s functional implications can accommodate



Fig. 5. Comparison of classification rate for curvy and linear

textures. Left: Textures with curvy (top two rows) or linear

features (bottom two rows) are shown. Right: Performance of

TRF vs. VRF on curvy/linear textures are shown.

more complex spatial properties, e.g., curvature, than VRFs.

In particular, we have also investigated a preliminary test to

analyze the implications of different components that make

up an RF and how they contribute to the detection of texture

boundaries. By fixing a certain parameter and isolating it

from other fixed parameters, we can explore the effectiveness

of the isolated parameter.

Test results show that two leading factors–lagging cen-

ter orientation and orientation preferences–of the RF structure

have stronger links to the superior performance of TRF over

VRF based boundary detection.

5. CONCLUSION

The main novelty and contribution of this paper is in the use

of tactile receptive field responses for texture segmentation.

Furthermore, we showed that touch-based representation is

superior to its vision-based counterpart when used in texture

boundary detection.

Tactile representations were also found to be more dis-

criminable (LDA and ANOVA). We expect our results to help

better understand the nature of texture perception and build

more powerful texture processing algorithms.
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