Support-Vector Machines

- Haykin chapter 6.
- See Alpaydin chapter 13 for similar content.
- Note: Part of this lecture drew material from Ricardo Gutierrez-Osuna's Pattern Analysis lectures.

Introduction

- Support vector machine is a linear machine with some very nice properties.
- The basic idea of SVM is to construct a separating hyperplane where the margin of separation between positive and negative examples are maximized.
- Principled derivation: structural risk minimization
- error rate is bounded by: (1) training error-rate and (2) VC-dimension of the model.
- SVM makes (1) become zero and minimizes (2).

Optimal Hyperplane

For linearly separable patterns $\left\{\left(\mathbf{x}_{i}, d_{i}\right)\right\}_{i=1}^{N}$ (with $\left.d_{i} \in\{+1,-1\}\right)$:

- The separating hyperplane is $\mathbf{w}^{T} \mathbf{x}+b=0$:

$$
\begin{aligned}
& \mathbf{w}^{T} \mathbf{x}+b \geq 0 \quad \text { for } d_{i}=+1 \\
& \mathbf{w}^{T} \mathbf{x}+b<0 \quad \text { for } d_{i}=-1
\end{aligned}
$$

- Let \mathbf{w}_{o} be the optimal hyperplane and b_{o} the optimal bias.

Distance to the Optimal Hyperplane

- From $\mathbf{w}_{o}^{T} \mathbf{x}_{i}=-b_{o}$, the distance from the origin to the hyperplane is calculated as:

$$
d=\left\|\mathbf{x}_{i}\right\| \cos \left(\mathbf{x}_{i}, \mathbf{w}_{o}\right)=\frac{-b_{o}}{\left\|\mathbf{w}_{o}\right\|}
$$

since

$$
\mathbf{w}_{o}^{T} \mathbf{x}_{i}=\left\|\mathbf{w}_{o}\right\|\left\|\mathbf{x}_{i}\right\| \cos \left(\mathbf{w}_{o}, \mathbf{x}_{i}\right)=-b_{o}
$$

Distance to the Optimal Hyperplane (cont'd)

- The distance from an arbitrary point to the hyperplane can be calculated as:
- When the point is in the positive area:

$$
r=\|x\| \cos \left(\mathbf{x}, \mathbf{w}_{o}\right)-d=\frac{\mathbf{x}^{T} \mathbf{w}_{o}}{\left\|\mathbf{w}_{o}\right\|}+\frac{b_{o}}{\left\|\mathbf{w}_{o}\right\|}=\frac{\mathbf{x}^{T} \mathbf{w}_{o}+b_{o}}{\left\|\mathbf{w}_{o}\right\|}
$$

- When the point is in the negative area:

$$
r=d-\|x\| \cos \left(\mathbf{x}, \mathbf{w}_{o}\right)=-\frac{\mathbf{x}^{T} \mathbf{w}_{o}}{\left\|\mathbf{w}_{o}\right\|}-\frac{b_{o}}{\left\|\mathbf{w}_{o}\right\|}=-\frac{\mathbf{x}^{T} \mathbf{w}_{o}+b_{o}}{\left\|\mathbf{w}_{o}\right\|}
$$

Optimal Hyperplane and Support Vectors

- Support vectors: input points closest to the separating hyperplane.
- Margin of separation ρ : distance between the separating hyperplane and the closest input point.

Optimal Hyperplane and Support Vectors (cont'd)

- The optimal hyperplane is supposed to maximize the margin of separation ρ.
- With that requirement, we can write the conditions that \mathbf{w}_{O} and b_{o} must meet:

$$
\begin{aligned}
& \mathbf{w}_{o}^{T} \mathbf{x}+b_{o} \geq+1 \quad \text { for } d_{i}=+1 \\
& \mathbf{w}_{o}^{T} \mathbf{x}+b_{o} \leq-1 \quad \text { for } d_{i}=-1
\end{aligned}
$$

Note: $\geq+1$ and ≤-1, and support vectors are those $\mathbf{x}^{(s)}$ where equality holds (i.e., $\mathbf{w}_{o}^{T} \mathbf{x}^{(s)}+b_{o}=+1$ or -1).

- Since $r=\left(\mathbf{w}_{o}^{T} \mathbf{x}+b_{o}\right) /\left\|\mathbf{w}_{o}\right\|$,

$$
r=\left\{\begin{array}{cl}
1 /\left\|\mathbf{w}_{o}\right\| & \text { if } d=+1 \\
-1 /\left\|\mathbf{w}_{o}\right\| & \text { if } d=-1
\end{array}\right.
$$

Optimal Hyperplane and Support Vectors (cont'd)

- Margin of separation between two classes is

$$
\rho=2 r=\frac{2}{\left\|\mathbf{w}_{o}\right\|}
$$

- Thus, maximizing the margin of separation between two classes is equivalent to minimizing the Euclidean norm of the weight \mathbf{w}_{o} !

Primal Problem: Constrained Optimization

For the training set $\mathcal{T}=\left\{\left(\mathbf{x}_{i}, d_{i}\right)\right\}_{i=1}^{N}$ find \mathbf{w} and b such that

- they minimize a certain value $(1 / \rho)$ while satisfying a constraint (all examples are correctly classified):
- Constraint: $d_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1$ for $i=1,2, \ldots, N$.
- Cost function: $\Phi(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}$.

This problem can be solved using the method of Lagrange multipliers (see next two slides).

Mathematical Aside: Lagrange Multipliers

Turn a constrained optimization problem into an unconstrained optimization problem by absorbing the constraints into the cost function, weighted by the Lagrange multipliers.
Example: Find point on the circle $x^{2}+y^{2}=1$ closest to the point $(2,3)$ (adapted from Ballard, An Introduction to Natural Computation, 1997, pp. 119-120).

- Minimize $F(x, y)=(x-2)^{2}+(y-3)^{2}$ subject to the constraint $x^{2}+y^{2}-1=0$.
- Absorb the constraint into the cost function, after multiplying the Lagrange multiplier α :

$$
F(x, y, \alpha)=(x-2)^{2}+(y-3)^{2}+\alpha\left(x^{2}+y^{2}-1\right) .
$$

Lagrange Multipliers (cont'd)

Must find x, y, α that minimizes
$F(x, y, \alpha)=(x-2)^{2}+(y-2)^{2}+\alpha\left(x^{2}+y^{2}-1\right)$. Set the partial derivatives to 0 , and solve the system of equations.

$$
\begin{gathered}
\frac{\partial F}{\partial x}=2(x-2)+2 \alpha x=0 \\
\frac{\partial F}{\partial y}=2(y-2)+2 \alpha y=0 \\
\frac{\partial F}{\partial \alpha}=x^{2}+y^{2}-1=0
\end{gathered}
$$

Solve for x and y in the 1 st and 2 nd, and plug in those to the 3rd equation

$$
x=y=\frac{2}{1+\alpha}, \quad \text { so }\left(\frac{2}{1+\alpha}\right)^{2}+\left(\frac{2}{1+\alpha}\right)^{2}=1
$$

from which we get $\alpha=2 \sqrt{2}-1$. Thus, $(x, y)=(1 / \sqrt{2}, 1 / \sqrt{2})$.

Primal Problem: Constrained Optimization (cont'd)

Putting the constrained optimization problem into the Lagrangian form, we get (utilizing the Kunh-Tucker theorem)

$$
J(\mathbf{w}, b, \alpha)=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}-\sum_{i=1}^{N} \alpha_{i}\left[d_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right]
$$

- From $\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}}=0$:

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i}
$$

- From $\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial b}=0$:

$$
\sum_{i=1}^{N} \alpha_{i} d_{i}=0
$$

Primal Problem: Constrained Optimization (cont'd)

- Note that when the optimal solution is reached, the following condition must hold (Karush-Kuhn-Tucker complementary condition)

$$
\alpha_{i}\left[d_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right]=0
$$

for all $i=1,2, \ldots, N$.

- Thus, non-zero α_{i} s can be attained only when
$\left[d_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right]=0$, i.e., when the α_{i} is associated with a support vector $\mathbf{x}^{(s)}$!
- Other conditions include $\alpha_{i} \geq 0$.

Primal Problem: Constrained Optimization (cont'd)

- Plugging in $\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i}$ and $\sum_{i=1}^{N} \alpha_{i} d_{i}=0$ back into $J(\mathbf{w}, b, \alpha)$, we get the dual problem.

$$
\begin{aligned}
J(\mathbf{w}, b, \alpha)= & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}-\sum_{i=1}^{N} \alpha_{i}\left[d_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right] \\
= & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}-\sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{T} \mathbf{x}_{i} \\
& -b \sum_{i=1}^{N} \alpha_{i} d_{i}+\sum_{i=1}^{N} \alpha_{i} \\
& \left\{\text { noting }^{T} \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right. \\
& \left.\quad \text { and from } \sum_{i=1}^{N} \alpha_{i} d_{i}=0\right\} \\
= & -\frac{1}{2} \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{T} \mathbf{x}_{i}+\sum_{i=1}^{N} \alpha_{i} \\
= & -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\sum_{i=1}^{N} \alpha_{i} \\
= & Q(\alpha) .
\end{aligned}
$$

- So, $J(\mathbf{w}, b, \alpha)=Q(\alpha)\left(\alpha_{i} \geq 0\right)$.
- This results in the dual problem (next slide).

Dual Problem

- Given the training sample $\left\{\left(\mathbf{x}_{i}, d_{i}\right)\right\}_{i=1}^{N}$, find the Lagrange multipliers $\left\{\alpha_{i}\right\}_{i=1}^{N}$ that maximize the objective function:

$$
Q(\alpha)=-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\sum_{i=1}^{N} \alpha_{i}
$$

subject to the constraints
$-\sum_{i=1}^{N} \alpha_{i} d_{i}=0$
$-\alpha_{i} \geq 0$ for all $i=1,2, \ldots, N$.

- The problem is stated entirely in terms of the training data $\left(\mathbf{x}_{i}, d_{i}\right)$, and the dot products $\mathbf{x}_{i}^{T} \mathbf{x}_{j}$ play a key role.

Solution to the Optimization Problem

Once all the optimal Lagrange mulitpliers $\alpha_{o, i}$ are found, \mathbf{w}_{o} and b_{o} can be found as follows:

$$
\mathbf{w}_{o}=\sum_{i=1}^{N} \alpha_{o, i} d_{i} \mathbf{x}_{i}
$$

and from $\mathbf{w}_{o}^{T} \mathbf{x}_{i}+b_{o}=d_{i}$ when \mathbf{x}_{i} is a support vector:

$$
b_{o}=d^{(s)}-\mathbf{w}_{o}^{T} \mathbf{x}^{(s)}
$$

Note: calculation of final estimated function does not need any explicit calculation of \mathbf{w}_{O} since they can be calculated from the dot product between the input vectors!

$$
\mathbf{w}_{o}^{T} \mathbf{x}=\sum_{i=1}^{N} \alpha_{o, i} d_{i} \mathbf{x}_{i}^{T} \mathbf{x}
$$

Margin of Separation in SVM and VC Dimension

Statistical learning theory shows that it is desirable to reduce both the error (empirical risk) and the VC dimension of the classifier.

- Vapnik $(1995,1998)$ showed: Let D be the diameter of the smallest ball containing all input vectors \mathbf{x}_{i}. The set of optimal hyperplanes defined by $\mathbf{w}_{o}^{T} \mathbf{x}+b_{o}=0$ has a VC dimension h bounded from above as

$$
h \leq \min \left\{\left\lceil\frac{D^{2}}{\rho^{2}}\right\rceil, m_{0}\right\}+1
$$

where $\lceil\cdot\rceil$ is the ceiling, ρ the margin of separation equal to $2 /\left\|\mathbf{w}_{o}\right\|$, and m_{0} the dimensionality of the input space.

- The implication is that the VC dimension can be controlled independetly of m_{0}, by choosing an appropriate (large) ρ !

Soft-Margin Classification

- Some problems can violate the condition:

$$
d_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1
$$

- We can introduce a new set of variables $\left\{\xi_{i}\right\}_{i=1}^{N}$:

$$
d_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}
$$

where ξ_{i} is called the slack variable.

Soft-Margin Classification (cont'd)

- We want to find a separating hyperplane that minimizes:

$$
\Phi(\xi)=\sum_{i=1}^{N} I\left(\xi_{i}-1\right)
$$

where $I(\xi)=0$ if $\xi \leq 0$ and 1 otherwise.

- Solving the above is NP-complete, so we instead solve an approximation:

$$
\Phi(\xi)=\sum_{i=1}^{N} \xi_{i}
$$

- Furthermore, the weight vector can be factored in:

$$
\Phi(\mathbf{x}, \xi)=\underbrace{\frac{1}{2} \mathbf{w}^{T} \mathbf{w}}_{\text {Controls VC dim }}+\underbrace{C \sum_{i=1}^{N} \xi_{i}}_{\text {Controls error }}
$$

Soft-Margin Classification: Solution

- Following a similar route involving Lagrange multipliers, and a more restrictive condition of $0 \leq \alpha_{i} \leq C$, we get the solution:

$$
\begin{gathered}
\mathbf{w}_{o}=\sum_{i=1}^{N_{s}} \alpha_{o, i} d_{i} \mathbf{x}_{i} \\
b_{o}=d_{i}\left(1-\xi_{i}\right)-\mathbf{w}_{o}^{T} \mathbf{x}_{i}
\end{gathered}
$$

Nonlinear SVM

- Nonlinear mapping of an input vector to a high-dimensional feature space (exploit Cover's theorem)
- Construction of an optimal hyperplane for separating the features identified in the above step.

Inner-Product Kernel

- Input \mathbf{x} is mapped to $\boldsymbol{\varphi}(\mathbf{x})$.
- With the weight \mathbf{w} (including the bias b), the decision surface in the feature space becomes (assume $\varphi_{0}(\mathbf{x})=1$):

$$
\mathbf{w}^{T} \boldsymbol{\varphi}(\mathbf{x})=0
$$

- Using the steps in linear SVM, we get

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} d_{i} \boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)
$$

- Combining the above two, we get the decision surface

$$
\sum_{i=1}^{N} \alpha_{i} d_{i} \boldsymbol{\varphi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\varphi}(\mathbf{x})=0
$$

Inner-Product Kernel (cont'd)

- The inner product $\boldsymbol{\varphi}^{T}(\mathbf{x}) \boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)$ is between two vectors in the feature space.
- The calculation of this inner product can be simpified by use of a inner-product kernel $K\left(\mathbf{x}, \mathbf{x}_{i}\right)$:

$$
K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\boldsymbol{\varphi}^{T}(\mathbf{x}) \boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)=\sum_{j=0}^{m_{1}} \varphi_{j}(\mathbf{x}) \varphi_{j}\left(\mathbf{x}_{i}\right)
$$

where m_{1} is the dimension of the feature space. (Note:

$$
\left.K\left(\mathbf{x}, \mathbf{x}_{i}\right)=K\left(\mathbf{x}_{i}, \mathbf{x}\right) .\right)
$$

- So, the optimal hyperplane becomes:

$$
\sum_{i=1}^{N} \alpha_{i} d_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)=0
$$

Inner-Product Kernel (cont'd)

- Mercer's theorem states that $K\left(\mathbf{x}, \mathbf{x}_{i}\right)$ that follow certain conditions (continuous, symmetric, positive semi-definite) can be expressed in terms of an inner-product in a nonlinearly mapped feature space.
- Kernel function $K\left(\mathbf{x}, \mathbf{x}_{i}\right)$ allows us to calculate the inner product $\boldsymbol{\varphi}^{T}(\mathbf{x}) \boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)$ in the mapped feature space without any explicit calculation of the mapping function $\boldsymbol{\varphi}(\cdot)$.

Examples of Kernel Functions

- Linear: $K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\mathbf{x}^{T} \mathbf{x}_{i}$.
- Polynomial: $K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\left(\mathbf{x}^{T} \mathbf{x}_{i}+1\right)^{p}$.
- RBF: $K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}-\mathbf{x}_{i}\right\|^{2}\right)$.
- Two-layer perceptron: $K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\tanh \left(\beta_{0} \mathbf{x}^{T} \mathbf{x}_{i}+\beta_{1}\right)$ (for some β_{0} and β_{1}).

Kernel Example

- Expanding

$$
K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}_{i}\right)^{2}
$$

with $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}, \mathbf{x}_{i}=\left[x_{i 1}, x_{i 2}\right]^{T}$,

$$
\begin{aligned}
K\left(\mathbf{x}, \mathbf{x}_{i}\right)= & 1+x_{1}^{2} x_{i 1}^{2}+2 x_{1} x_{2} x_{i 1} x_{i 2} \\
& +x_{2}^{2} x_{i 2}^{2}+2 x_{1} x_{i 1}+2 x_{2} x_{i 2} \\
= & {\left[1, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}\right] } \\
& {\left[1, x_{i 1}^{2}, \sqrt{2} x_{i 1} x_{i 2}, x_{i 2}^{2}, \sqrt{2} x_{i 1}, \sqrt{2} x_{i 2}\right]^{T} } \\
= & \boldsymbol{\varphi}(\mathbf{x})^{T} \boldsymbol{\varphi}\left(\mathbf{x}_{i}\right),
\end{aligned}
$$

where $\boldsymbol{\varphi}(\mathbf{x})=\left[1, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}\right]^{T}$.

Nonlinear SVM: Solution

- The solution is basically the same as the linear case, where $\mathbf{x}^{T} \mathbf{x}_{i}$ is replaced with $K\left(\mathbf{x}, \mathbf{x}_{i}\right)$, and an additinoal constraint that $\alpha \leq C$ is added.

Nonlinear SVM Summary

Project input to high-dimensional space to turn the problem into a linearly separable problem.

Issues with a projection to higher dimensional feature space:

- Statistical problem: Danger of invoking curse of dimensionality and higher chance of overfitting
- Use large margins to reduce VC dimension
- Computational problem: computational overhead for calculating the mapping $\varphi(\cdot)$:
- Solve by using the kernel trick.

