Deep Learning

Machine Learning Lecture

Spring 2021

Yoonsuck Choe
What Is Deep Learning?

- Learning higher level abstractions/representations from data.
- Motivation: how the brain represents and processes sensory information in a hierarchical manner.

From LeCun’s Deep Learning Tutorial
Deep learning is based on neural networks.

- Weighted sum followed by nonlinear activation function.

- Weights changed with *gradient descent* ($\eta =$ learning rate, $E =$ err):

 $$w_{ij} \leftarrow w_{ij} - \eta \frac{\partial E}{\partial w_{ij}}$$
Intro to Neural Network: Backpropagation

Weight w_{ji} is updated as: $w_{ji} \leftarrow w_{ji} + \eta \delta_j a_i$, where

- a_i: activity at input side of weight w_{ji}.
- Hidden to output weights (thick red weight). T_k is target value.

$$\delta_k = (T_k - a_k)\sigma'(net_k)$$

- Deeper weights (green line in figure above).

$$\delta_j = \left[\sum_k w_{kj} \delta_k \right] \sigma'(net_j)$$
What Neurons Do in a Neural Network

Two points of view (both are valid):

- Function approximation
- Decision boundary

* Represent input features – more on this later.
Function Approximation

- Assume one input unit (scalar value).
- Depending on # of hidden layers, # of hidden units, etc., function with any complex shape can be learned. Ex: $y = \sin(x)$.
Example: $y = \sin(x)$

- Top: $\sin(x)$ nnet: Model=[# of units, activation func, [next layer spec], ...]
- Bottom: $\sin(x)$ vs. the hidden unit’s output of last hidden layer.
Ex: $y = \sin(x)$ Model=[2,tanh:1,linear]

- One hidden layer with 2 units, One output unit. [2,tanh:1,linear]
- Bottom plot: Hidden neurons represent sigmoids.
- Top plot: Output unit is a linear combination of two sigmoids.
Ex: \(y = \sin(x) \) Model=[20,\text{tanh}:3,\text{tanh}:1,\text{linear}]

- 2nd hidden layer represents linear combination of 20 sigmoids.
Ex: $y = \sin(x)$ Model=[20,tanh:5,tanh:1,linear]

- Out-of-range inputs illustrate the limitation of DL.
Ex: \(y = \sin(x) \)
Model=[30, tanh:1, linear]

- Does a single hidden layer suffice? – Yes, with enough neurons.
Perceptrons (step function activation) can only represent **linearly separable** functions.

- Output of the perceptron:

 \[W_0 \times I_0 + W_1 \times I_1 - t > 0, \text{ then output is } 1 \]

 \[W_0 \times I_0 + W_1 \times I_1 - t \leq 0, \text{ then output is } -1 \]

If activation function is sigmoid, decision is a smooth ramp.
• Rearranging

\[W_0 \times I_0 + W_1 \times I_1 - t > 0, \]

then output is 1,

we get (if \(W_1 > 0 \))

\[I_1 > \frac{-W_0}{W_1} \times I_0 + \frac{t}{W_1}, \]

where points above the line, the output is 1, and -1 for those below the line. Compare with

\[y = \frac{-W_0}{W_1} \times x + \frac{t}{W_1}. \]
Limitation of Perceptrons

- Only functions where the -1 points and 1 points are clearly separable can be represented by perceptrons.

- The geometric interpretation is generalizable to functions of n arguments, i.e. perceptron with n inputs plus one threshold (or bias) unit.
Generalizing to n-Dimensions

- $\vec{n} = (a, b, c), \vec{x} = (x, y, z), \vec{x}_0 = (x_0, y_0, z_0)$.

- Equation of the plane: $\vec{n} \cdot (\vec{x} - \vec{x}_0) = 0$

- In short, $ax + by + cz + d = 0$, where a, b, c can serve as the weight, and $d = -\vec{n} \cdot \vec{x}_0$ as the bias.

- For n-D input space, the decision boundary becomes a $(n - 1)$-D hyperplane (1-D less than the input space).

http://mathworld.wolfram.com/Plane.html
Linear Separability

- Functions/Inputs that can or cannot be separated by a linear boundary.
Decision Boundary in Multilayer Networks

(a) One output

(b) Two hidden, one output

- Example: XOR

- Multiple decision regions.
Decision Boundary Demo with Tensorflow Playground

- http://playground.tensorflow.org
Deep Learning

- Complex models with large number of parameters
 - Hierarchical representations
 - More parameters = more accurate on training data
 - Simple learning rule for training (gradient-based).

- Lots of data
 - Needed to get better generalization performance.
 - High-dimensional input need exponentially many inputs (curse of dimensionality).

- Lots of computing power: GPGPU, etc.
 - Training large networks can be time consuming.
Deep Learning, in the Context of AI/ML

Deep Learning: Automating Feature Discovery

From LeCun's Deep Learning Tutorial
The Rise of Deep Learning

Made popular in recent years

- Andrew Ng & Jeff Dean (Google Brain team, 2012).
- Schmidhuber et al.'s deep neural networks (won many competitions and in some cases showed super human performance; 2011–). Recurrent neural networks using LSTM (Long Short-Term Memory).
Long History (in Hind Sight)

- Fukushima’s Neocognitron (1980).
History: Fukushima’s Neocognitron

- Appeared in journal *Biological Cybernetics* (1980).
- Multiple layers with local receptive fields.
- S cells (trainable) and C cells (fixed weight).
- Deformation-resistant recognition.
• Convolution kernel (weight sharing) + Subsampling

• Fully connected layers near the end.

• Became a main-stream method in deep learning.
Motivating Deep Learning: Tensorflow Demo

- http://playground.tensorflow.org
- Demo to explore why deep nnet is powerful and how it is limited.
Current Trends

Focusing on ground-breaking works in Deep Learning:

- Convolutional neural networks
- Deep Q-learning Network (extensions to reinforcement learning)
- Deep recurrent neural networks using (LSTM)
- Applications to diverse domains.
 - Vision, speech, video, NLP, etc.
- Lots of open source tools available.
Deep Convolutional Neural Networks (1)

- Krizhevsky et al. (2012)
- Applied to ImageNet competition (1.2 million images, 1,000 classes).
- Network: 60 million parameters and 650,000 neurons.
- Top-1 and top-5 error rates of 37.5% and 17.0%.
- Trained with backprop.
Deep Convolutional Neural Networks (2)

- Learned kernels (first convolutional layer).
- Resembles mammalian RFs: oriented Gabor patterns, color opponency (red-green, blue-yellow).
Deep Convolutional Neural Networks (3)

* Natural is data is compositional \Rightarrow it is efficiently representable hierarchically

- Higher layers represent progressively more complex features.

* From Yann LeCun's Harvard lecture (2019)
Deep Convolutional Neural Networks (4)

- Left: Bold = correct label. 5 ranked labels: model’s estimation.
- Right: Test (1st column) vs. training images with closest hidden representation to the test data.
Deep Convolutional Neural Networks (5)

- Depth inflation: Deeper is better!

* From Yann LeCun's Harvard lecture (2019)
Deep Convolutional Neural Networks (6)

- Not just depth but architecture also matters!

* From Yann LeCun's Harvard lecture (2019)
Deep Convolutional Neural Networks (7)

- [Canziani 2016]
- ResNet50 and ResNet 100 are used routinely in production.

- Computation vs. performance

* From Yann LeCun’s Harvard lecture (2019)
Deep Reinforcement Learning

- Deep = can process complex sensory input
- Reinforcement learning = can choose complex actions
Current Status of Deep Reinforcement Learning

- Rapidly advancing subfield of reinforcement learning.

- Replace various components of RL with deep neural networks:
 - Convolutional neural network for input processing
 - Value function (e.g. Q function), policy function ($\pi(s)$)

- Various innovations:
 - Experience replay (replay buffer)
 - Multitask learning, transfer learning, meta learning, imitation learning,
Variations in Deep Reinforcement Learning

- Value-based: fit $Q(s_t, a_t)$, and construct $\pi(s_t)$ based on it (e.g. ϵ-greedy). DQN is an example

- Policy gradient: fit $\pi(s_t)$ directly

- Actor-critic: fit $Q(s_t, a_t)$ and use that to improve fit of $\pi(s_t)$

- Model-based RL: directly model $p(s_{t+1}|s_t, a_t)$, then plan.

Deep Q-Network (DQN)

- One of the earliest deep learning method applied to a reinforcement learning domain (Q as in Q-learning).

- Applied to Atari 2600 video game playing.
DQN Overview

- Input: video frames; Output: $Q(s, a)$; Reward: game score.
- Network output $Q(s, a)$: action-value function
 - Value of taking action a when in state s.

```
DQN Overview

- Input preprocessing $\phi(s_t)$: takes 4 video frames and stack up.

- Experience replay (collect and replay state, action, reward, and resulting state $<s_t, a_t, r_t, s_{t+1}>$)

- Delayed (periodic) update of target $\hat{Q}$.
  - Moving target $\hat{Q}$ value used to compute target reward value $y_t$ (loss function $L$, parameterized by weights $\theta_i$).
  - Gradient descent:
    $$\frac{\partial L}{\partial \theta_i}$$

- $\epsilon$-greedy policy based on the learned $Q(s, a)$. 

DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory $D$ to capacity $N$
Initialize action-value function $Q$ with random weights $\theta$
Initialize target action-value function $\hat{Q}$ with weights $\theta^{-} = \theta$

For episode = 1, $M$ do
    Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$
    For $t = 1, T$ do
        With probability $\varepsilon$ select a random action $a_t$
        otherwise select $a_t = \text{argmax}_a Q(\phi(s_t), a; \theta)$
        Execute action $a_t$ in emulator and observe reward $r_t$ and image $x_{t+1}$
        Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
        Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in $D$
        Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from $D$
        Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^{-}) & \text{otherwise} \end{cases}$
        Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters $\theta$
        Every $C$ steps reset $\hat{Q} = Q$
    End For
End For
- Superhuman performance on over half of the games.
DQN Hidden Layer Representation (t-SNE map)

- Similar perception, similar reward clustered.
- Value vs. game state; Game state vs. action value.
DQN: Summary

- Convolutional network part enables continuous video input.
- Weights trained end-to-end.
- Outputs $Q(s, a)$.
- Limitations: cannot do complex planning requiring long term memory, e.g., Montezuma’s revenge game.
Alternatives to Deep Reinforcement Learning

- Evolution strategies (OpenAI)
- Deep Neuroevolution (Uber, OpenAI)
  - NEAT (NeuroEvolution of Augmenting Topologies) – Stanley and Miikkulainen

Deep Recurrent Neural Networks

Feedforward

- Feedforward networks: No memory of past input.

Recurrent

- Recurrent networks:
  - Good: Past input affects present output.
  - Bad: Cannot remember far into the past.
RNN Training: Backprop in Time

- Can unfold recurrent loop: Make it into a feedforward net.
- Use the same backprop algorithm for training.
- Again, cannot remember too far into the past.

Fig from [http://colah.github.io/posts/2015-08-Understanding-LSTMs/](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
Long Short-Term Memory

- LSTM to the rescue (Hochreiter and Schmidhuber, 1997).
- Built-in recurrent memory that can be written (Input gate), reset (Forget gate), and outputted (Output gate).

Long Short-Term Memory

- Long-term retention possible with LSTM.

Long Short-Term Memory in Action

- Unfold in time and use backprop as usual.

Fig from [http://colah.github.io/posts/2015-08-Understanding-LSTMs/](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
LSTM Applications

- Sequence classification

- Sequence translation

Applications: Sequence classification, Sequence translation.

From [http://machinelearning.ru](http://machinelearning.ru)
LSTM Applications

handwriting -> handwriting

Next pen position (we predict parameters):
x1, x2 - mixture of bivariate Gaussians
x3 - Bernoulli distribution

Current pen position:
x1, x2 - pen offset
x3 - is it end of the stroke

Applications: Sequence prediction

LSTM Applications

Applications: Sequence classification, Sequence prediction, Sequence translation.

From http://machinelearning.ru
RNN with Attention Mechanism

- RNN uses the last hidden vector from the encoder as input to the decoder.

- RNN with Attention (Bahdanau et. al. 2015):
  - Uses weighted sum of all hidden vectors, not just the last one from the decoder.
  - Uses the states of the encoder and the hidden vectors to compute the weighting of the hidden vectors (the attention weight): simple FFW net is used.
  - The attention weights dynamically change based on the input and output.
  - Attention weights are determined by the FFW net (trained, end-to-end).

Source: Bahdanau, Cho, and Bengio (ICLR 2015)

Source: figs: Nir Arbel [https://medium.datadriveninvestor.com/]
RNN with Attention: Example (NMT)

- x-axis: source language; y-axis: target language
- pixels: attention weight $\alpha_{ij}$ ($j$-th source to $i$-th target)

Source: Bahdanau, Cho, and Bengio (ICLR 2015)
Deep Learning Applications: Vision

ConvNet sweeping image recognition challenges.

From LeCun’s Deep Learning Tutorial
Deep Learning Applications: Speech

- Deep learning led to major improvement in speech recognition.

From LeCun’s Deep Learning Tutorial
Deep Learning Applications: Speech

- ConvNet can also be applied to speech recognition.
- Use spectrogram and treat it like a 2D image.
- SOTA: end-to-end attention-based RNN (w/ LSTM, GRU, ...)

From LeCun’s Deep Learning Tutorial
Deep Learning Applications: NLP

- Based on encoding/decoding and attention.

Deep Learning Applications: NLP

- Google’s LSTM-based machine translation.


Deep Learning for NLP: Transformers

- Highly parallelizable, Reduces serial computation
- Multi-head self-attention + position-encoding/position-wise FFW
- Organized over Query, Key, Value (Q,K,V)


Source: https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09
Deep Learning for NLP: Transformers & BERT

- BERT, based on Transformer: Powerful new approach for NLP
Deep Learning for NLP: BERT pretraining

- BERT learns a language model based on a large corpus of unlabeled data (Wikipedia, etc.).

- Two sentences go in as input, and output depends on the task, below.

- Task 1: Masked Language Model
  - Predict masked words from a sentence: My dog is [MASK] → My dog is hairy.

- Task 2: Next sentence prediction
  - Check if the second sentence follows the first sentence in the text (binary classification).

Source: [https://medium.com/swlh/bert-pre-training-of-transformers-for-language-understanding-5214fba4a9af](https://medium.com/swlh/bert-pre-training-of-transformers-for-language-understanding-5214fba4a9af)

Source: [https://medium.com/dair-ai/a-light-introduction-to-bert-2da54f96b88c](https://medium.com/dair-ai/a-light-introduction-to-bert-2da54f96b88c)
Deep Learning for NLP: Transformers & BERT

GLUE scores evolution over 2018-2019

- Single generic models
- 2018 Task-specific-SOTA
- Human performance

- Transformer-based NLP led to big leap in performance.

https://medium.com/synapse-dev/understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db
Very Big Transformers: OpenAI’s GPT-3

- GPT-3: Generative Pre-Trained Transformer
- Huge model: 175 billion parameters
- Extremely high quality text generation.
- Example: https://philosopherai.com/ (not free any longer: some examples below)
  - https://philosopherai.com/philosopher/is-the-universe-fundamentally-computational-9df1fc
  - https://philosopherai.com/philosopher/isnt-buddhism-more-of-a-philosophical-system-than-830bcf

More Advanced Topics

• Generative Adversarial Networks (GAN): style transfer, data augmentation, deep fake, etc.

• Graph Neural Networks (GNN): molecular fingerprinting, combinatorial optimization, vision, etc.

• Meta learning, Transfer learning, Multi-task learning, Imitation learning

• Optimizers: Adam, RMSprop, etc. [https://ruder.io/optimizing-gradient-descent/](https://ruder.io/optimizing-gradient-descent/)

• Applications: autonomous driving, chat bots, retail, etc.

• Continuous learning, semisupervised learning, active learning, federated learning

• Model compression, Model distillation
Limitations of Deep Learning

- Requires massive amounts of (labeled) data.
- Long training time. Large trained models.
- Catastrophic forgetting.
- Designing good model is done mostly manually.
- Vulnerable to adversarial inputs.
- Hard to explain how it works / what it learned.
Overcoming Limitations of DL

Pretty much well known problems, and solutions emerging.

- Data: Active learning, Core sets, data augmentation, etc.
- Computing time: Train with reduced data. Compact models.
- Large trained models: Compression, distillation
- Catastrophic forgetting: Various approaches, not perfect yet.
- Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.
- Adversarial inputs: Adversarial training, defensive distillation, ...
- Explainability: DARPA XAI effort - explanation generation, Bayesian program induction, semantic associations, etc.
Advanced/Fundamental Issues in Deep Learning

- Reasoning, Common-sense reasoning, Causality
- Self-supervised learning, Combining unsupervised and supervised/reinforcement learning
- Human-like learning
- Meaning/semantic-level processing
- Problem posing, Coping with new tasks
- Tool construction and tool use
- Open-endedness, Artificial General Intelligence (AGI)
Summary

- Deep convolutional networks (DNN): High computational demand, over the board great performance in vision tasks.


- Deep recurrent neural networks: sequence learning. LSTM is a powerful mechanism.

- Transformers, based on self-attention, surpasses RNNs, and even infringe on CNN territory.

- Diverse applications. Top performance.

- Lots of practical and fundamental limits

- Flood of deep learning tools available.