Bayesian Learning

Olive slides: Alpaydin

Black slides: Mitchell.

Bayesian Learning

- Probabilistic approach to inference.
- Quantities of interest are governed by prob. dist. and optimal decisions can be made by reasoning about these prob.
- Learning algorithms that directly deal with probabilities.
- Analysis framework for non-probabilistic methods.

Two Roles for Bayesian Methods

Provides practical learning algorithms:

- Naive Bayes learning
- Bayesian belief network learning
- Combine prior knowledge (prior probabilities) with observed data
- Requires prior probabilities

Provides useful conceptual framework

- Provides "gold standard" for evaluating other learning algorithms
- Additional insight into Occam's razor

Basic Probability Formulas

• *Product Rule*: probability $P(A \land B)$ of a conjunction of two events A and B:

 $P(A,B) = P(B,A) = P(A \land B) = P(A|B)P(B) = P(B|A)P(A)$

• Sum Rule: probability of a disjunction of two events A and B:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

• Theorem of total probability: if events A_1, \ldots, A_n are mutually exclusive with $\sum_{i=1}^n P(A_i) = 1$, then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Bayes Theorem

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h) = prior probability that h holds, before seeing the training data
- P(D) = prior probability of observing training data D
- P(D|h) = probability of observing D in a world where h holds
- P(h|D) = probability of h holding given observed data D
- Some useful tricks:
 - P(h,D) = P(D,h)
 - $P(h|D) = \frac{P(h,D)}{P(D)}$
 - P(D,h)=P(D|h)P(h), from $P(D|h)=\frac{P(D,h)}{P(h)}$

Bayes Theorem: Example

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .001 of the entire population have this cancer.

P(cancer) =	$P(\neg cancer) =$
$P(\oplus cancer) =$	$P(\ominus cancer) =$
$P(\oplus \neg cancer) =$	$P(\ominus \neg cancer) =$

How does $P(cancer|\oplus)$ compare to $P(\neg cancer|\oplus)$?

Bayes Theorem: Example

The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .001 of the entire population have this cancer.

$$\begin{split} P(cancer) &= 0.001, given & P(\neg cancer) = 1 - P(cancer) = 1 - 0.001 = 0.999 \\ P(\oplus | cancer) &= 0.98, given & P(\ominus | cancer) = 1 - P(\oplus | cancer) = 1 - 0.98 = 0.02 \\ P(\oplus | \neg cancer) &= 1 - P(\ominus | \neg cancer) & P(\ominus | \neg cancer) = 0.97, given \\ &= 1 - 0.97 = 0.03 \end{split}$$

How does $P(cancer|\oplus)$ compare to $P(\neg cancer|\oplus)$? $P(cancer|\oplus) = \frac{P(\oplus|cancer)P(cancer)}{P(\oplus)}$ 0.98×0.001 = $P(\oplus)$ 0.00098 = $\overline{P(\oplus, cancer) + P(\oplus, \neg cancer)}$ 0.00098 = $\overline{P(\oplus|cancer)P(cancer) + P(\oplus|\neg cancer)P(\neg cancer)}$ 0.00098 $\frac{1}{0.98 \times 0.001 + 0.03 \times 0.999} = 0.031664$ = (1)7

Conditional Independence

Definition: X is *conditionally independent* of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; that is, if

 $(\forall x_i, y_j, z_k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$

more compactly, we write

$$P(X|Y,Z) = P(X|Z)$$

Example: Thunder is conditionally independent of Rain, given Lightning

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Choosing Hypotheses

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis h_{MAP} :

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$
$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$
$$= \arg \max_{h \in H} P(D|h)P(h)$$

Choosing Hypotheses

• If all hypotheses are equally probable a priori:

$$P(h_i) = P(h_j), \forall h_i, h_j,$$

then, h_{MAP} reduces to:

$$h_{ML} \equiv \operatorname*{argmax}_{h \in H} P(D|h).$$

 \rightarrow Maximum Likelihood hypothesis.

Brute Force MAP Hypothesis Learner

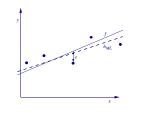
1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = \operatorname*{argmax}_{h \in H} P(h|D)$$

Learning A Real Valued Function



Consider any real-valued target function f

Training examples $\langle x_i, d_i
angle$, where d_i is noisy training value

- $d_i = f(x_i) + e_i$
- e_i is random variable (noise) drawn independently for each x_i according to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis h_{ML} is the one that minimizes the sum of squared errors:

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

Setting up the Stage

• Probability density function:

$$p(x_0) \equiv \lim_{\epsilon \to 0} \frac{1}{\epsilon} P(x_0 \le x < x_0 + \epsilon)$$

• ML hypothesis

$$h_{ML} = \operatorname*{argmax}_{h \in H} p(D|h)$$

- Training instances $\langle x_1, ..., x_m \rangle$ and target values $\langle d_1, ..., d_m \rangle$, where $d_i = f(x_i) + e_i$.
- Assume training examples are mutually independent given *h*,

$$h_{ML} = \operatorname*{argmax}_{h \in H} \prod_{i=1}^{m} p(d_i|h)$$

Note: $p(a,b|c) = p(a|b,c) \cdot p(b|c) = p(a|c) \cdot p(b|c)$

Derivation of ML for Func. Approx.

From $h_{ML} = \operatorname{argmax}_{h \in H} \prod_{i=1}^{m} p(d_i|h)$:

• Since $d_i = f(x_i) + e_i$ and $e_i \sim \mathcal{N}(0, \sigma^2)$, it must be:

$$d_i \sim \mathcal{N}(f(x_i), \sigma^2).$$

– $x \sim \mathcal{N}(\mu, \sigma^2)$ means random variable x is normally distributed with mean μ and variance σ^2 .

• Using pdf of \mathcal{N} :

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(d_i - \mu)^2}{2\sigma^2}}.$$
$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(d_i - h(x_i))^2}{2\sigma^2}}$$

Derivation of ML

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(d_i - h(x_i))^2}{2\sigma^2}}$$

• Get rid of constant factor $\frac{1}{\sqrt{2\pi\sigma^2}}$, and put on log:

$$h_{ML} = \operatorname{argmax}_{h \in H} \ln \prod_{i=1}^{m} e^{-\frac{(d_i - h(x_i))^2}{2\sigma^2}}$$
$$= \operatorname{argmax}_{h \in H} \sum_{i=1}^{m} \ln e^{-\frac{(d_i - h(x_i))^2}{2\sigma^2}}$$
$$= \operatorname{argmax}_{h \in H} \sum_{i=1}^{m} -\frac{(d_i - h(x_i))^2}{2\sigma^2}$$
$$= \operatorname{argmin}_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

•

(2)

Least Square as ML

Assumptions

- Observed training values d_i generated by adding random noise to true target value, where noise has a normal distribution with zero mean.
- All hypotheses are equally probable (uniform prior).
 - Note: it is possible that $MAP \neq ML!$

Limitations

• Possible noise in x_i not accounted for.

Minimum Description Length

Occam's razor: prefer the shortest hypothesis.

$$h_{MAP} = \operatorname{argmax}_{h \in H} P(D|h)P(h)$$

$$h_{MAP} = \operatorname{argmax}_{h \in H} \log_2 P(D|h) + \log_2 P(h)$$

$$h_{MAP} = \operatorname{argmin}_{h \in H} - \log_2 P(D|h) - \log_2 P(h)$$

Surprisingly, the above can be interpreted as h_{MAP} preferring shorter hypotheses, assuming a particular encoding scheme is used for the hypothesis and the data.

According to information theory, the shortest code length for a message occurring with probability p_i is $-\log_2 p_i$ bits.

MDL

$$h_{MAP} = \underset{h \in H}{\operatorname{argmin}} - \log_2 P(D|h) - \log_2 P(h)$$

- $L_C(i)$: description length of message i with respect to code C.
- $-\log_2 P(h)$: description length of h under optimal coding C_H for the hypothesis space H.

$$L_{C_H}(h) = -\log_2 P(h)$$

• $-\log_2 P(D|h)$: description length of training data D given hypothesis h, under optimal encoding $C_{D|H}$.

$$L_{C_{D|H}}(D|h) = -\log_2 P(D|h)$$

• Finally, we get:

$$h_{MAP} = \operatorname*{argmin}_{h \in H} L_{C_{D|H}}(D|h) + L_{C_{H}}(h)$$

MDL

• MAP:

$$h_{MAP} = \operatorname*{argmin}_{h \in H} L_{C_D|H}(D|h) + L_{C_H}(h)$$

• MDL: Choose h_{MDL} such that:

$$h_{MDL} = \operatorname*{argmin}_{h \in H} L_{C_1}(h) + L_{C_2}(D|h)$$

which is the hypothesis that minimizes the **combined length** of the hypothesi itself, and the data described by the hypothesis.

• $h_{MDL} = h_{MAP}$ if $C_1 = C_H$ and $C_2 = C_{D|H}$.

Bayes Optimal Classifier

- What is the most probable hypothesis given the training data, **vs.** What is the most probable classification?
- Example:
 - $P(h_1|D) = 0.4, P(h_2|D) = 0.3, P(h_3|D) = 0.3.$
 - Given a new instance $x, h_1(x) = 1, h_2(x) = 0, h_3(x) = 0.$
 - In this case, probability of x being positive is only 0.4.

Bayes Optimal Classification

If a new instance can take classification $v_j \in V$, then the probability $P(v_j|D)$ of correct classification of new instance being v_j is:

$$P(v_j|D) = \sum_{h_i \in H} P(v_j|h_i)P(h_i|D)$$

Thus, the optimal classification is

$$\operatorname*{argmax}_{v_j \in V} \sum_{h_i \in H} P(v_j | h_i) P(h_i | D).$$

Bayes Optimal Classifier

What is the assumption for the following to work?

$$P(v_j|D) = \sum_{h_i \in H} P(v_j|h_i) P(h_i|D)$$

Let's consider $H = \{h, \neg h\}$:

$$\begin{split} P(v|D) &= P(v,h|D) + P(v,\neg h|D) \\ &= \frac{P(v,h,D)}{P(D)} + \frac{P(v,\neg h,D)}{P(D)} \\ &= \frac{P(v|h,D)P(h|D)P(D)}{P(D)} \\ &+ \frac{P(v|\neg h,D)P(\neg h|D)P(D)}{P(D)} \\ &\quad \{ \text{if } P(v|h,D) = P(v|h), \text{etc.} \} \\ &= P(v|h)P(h|D) + P(v|\neg h)P(\neg h|D) \end{split}$$

Bayes Optimal Classifier: Example

- $P(h_1|D) = 0.4, P(h_2|D) = 0.3, P(h_3|D) = 0.3.$
- Given a new instance x, $h_1(x) = 1$, $h_2(x) = 0$, $h_1(x) = 0$.
 - $P(\ominus|h_1) = 0, P(\oplus|h_1) = 1$, etc.
 - $P(\oplus|D) = 0.4 + 0 + 0, P(\ominus|D) = 0 + 0.3 + 0.3 = 0.6$
 - Thus, $\operatorname{argmax}_{v \in O\{\oplus,\ominus\}} P(v|D) = \ominus$.
- Bayes optimal classifiers maximize the probability that a new instance is correctly classified, given the available data, hypothesis space *H*, and prior probabilities over *H*.
- Some oddities: The resulting hypotheis can be outside of the hypothesis space.

Gibbs Sampling

Finding $\operatorname{argmax}_{v \in V} P(v|D)$ by considering every hypothesis $h \in H$ can be infeasible. A less optimal, but error-bounded version is **Gibbs sampling**:

- 1. Randomly pick $h \in H$ with probability P(h|D).
- 2. Use h to classify the new instance x.

The result is that missclassification rate is at most $2 \times$ that of BOC.

Naive Bayes Classifier

Given attribute values $\langle a_1, a_2, ..., a_n \rangle$, give the classification $v \in V$:

$$v_{MAP} = \operatorname*{argmax}_{v_j \in V} P(v_j | a_1, a_2, ..., a_n)$$

$$v_{MAP} = \operatorname*{argmax}_{v_j \in V} \frac{P(a_1, a_2, ..., a_n | v_j) P(v_j)}{P(a_1, a_2, ..., a_n)}$$

=
$$\operatorname*{argmax}_{v_j \in V} P(a_1, a_2, ..., a_n | v_j) P(v_j)$$

• Want to estimate $P(a_1, a_2, ..., a_n | v_j)$ and $P(v_j)$ from training data.

Naive Bayes

- $P(v_j)$ is easy to calculate: Just count the frequency.
- $P(a_1, a_2, ..., a_n | v_j)$ takes the number of posible instances \times number of possible target values.
- $P(a_1, a_2, ..., a_n | v_j)$ can be approximated as

$$P(a_1, a_2, ..., a_n | v_j) = \prod_i P(a_i | v_j).$$

• From this naive Bayes classifier is defined as:

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)$$

• Naive Bayes only takes number of distinct attribute values \times number of distinct target values.

Naive Bayes uses cond. indep. to justify

$$P(X, Y|Z) = P(X|Y, Z)P(Y|Z)$$
$$= P(X|Z)P(Y|Z)$$

Naive Bayes Algorithm

Naive_Bayes_Learn(*examples*)

For each target value v_j

$$\hat{P}(v_j) \leftarrow \mathsf{estimate} \ P(v_j)$$

For each attribute value a_i of each attribute a

 $\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$

 $Classify_New_Instance(x)$

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_i \hat{P}(x_i | v_j)$$

Naive Bayes: Example

Consider *PlayTennis* again, and new instance:

$$x = \langle Outlk = sun, Temp = cool, Humid = high, Wind = strong \rangle$$

 $V = \{Yes, No\}$

Want to compute:

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_i P(x_i | v_j)$$

$$\begin{split} P(Y) \ P(sun|Y) \ P(cool|Y) \ P(high|Y) \ P(strong|Y) &= .005 \\ P(N) \ P(sun|N) \ P(cool|N) \ P(high|N) \ P(strong|N) &= .021 \\ \\ \text{Thus,} \ v_{NB} &= No \end{split}$$

Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

• ...but it works surprisingly well anyway. Note don't need estimated posteriors $\hat{P}(v_j|x)$ to be correct; need only that

$$\operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_i \hat{P}(a_i | v_j) = \operatorname*{argmax}_{v_j \in V} P(v_j) P(a_1 \dots, a_n | v_j)$$

• Naive Bayes posteriors often unrealistically close to 1 or 0.

Naive Bayes: Subtleties

What if none of the training instances with target value v_j have attribute value a_i ? Then

$$\hat{P}(a_i|v_j)=0$$
, and... $\hat{P}(v_j)\prod_i\hat{P}(a_i|v_j)=0$

Typical solution is Bayesian estimate for $\hat{P}(a_i|v_j)$

$$\hat{P}(a_i|v_j) \leftarrow \frac{n_c + m_p}{n + m}$$

where

- n is number of training examples for which $v = v_j$,
- n_c number of examples for which $v = v_j$ and $a = a_i$
- p is prior estimate for $\hat{P}(a_i|v_j)$
- *m* is weight given to prior (i.e. number of "virtual" examples)

Extra Slides: Will be covered, time permitting

Expectation Maximization (EM)

When to use:

- Data is only partially observable
- Unsupervised clustering (target value unobservable)
- Supervised learning (some instance attributes unobservable)

Some uses:

- Train Bayesian Belief Networks
- Unsupervised clustering (AUTOCLASS)
- Learning Hidden Markov Models

EM for Estimating k Means

Given:

- Instances from X generated by mixture of k Gaussian distributions
- Unknown means $\langle \mu_1, \ldots, \mu_k
 angle$ of the k Gaussians
- Don't know which instance x_i was generated by which Gaussian

Determine:

• Maximum likelihood estimates of $\langle \mu_1, \ldots, \mu_k
angle$

Think of full description of each instance as $y_i = \langle x_i, z_{i1}, z_{i2}
angle$, where

- z_{ij} is 1 if x_i generated by jth Gaussian
- x_i observable
- z_{ij} unobservable

EM for Estimating k Means

EM Algorithm: Pick random initial $h=\langle \mu_1,\mu_2
angle$, then iterate

step: Calculate the expected value $E[z_{ij}]$ of each hidden variable z_{ij} , assuming the current hypothesis $h = \langle \mu_1, \mu_2 \rangle$ holds.

$$E[z_{ij}] = \frac{p(x = x_i | \mu = \mu_j)}{\sum_{n=1}^2 p(x = x_i | \mu = \mu_n)}$$
$$= \frac{e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{n=1}^2 e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2}}$$

step: Calculate a new maximum likelihood hypothesis $h' = \langle \mu'_1, \mu'_2 \rangle$, assuming the value taken on by each hidden variable z_{ij} is its expected value $E[z_{ij}]$ calculated above. Replace $h = \langle \mu_1, \mu_2 \rangle$ by $h' = \langle \mu'_1, \mu'_2 \rangle$.

$$\mu_j \leftarrow \frac{\sum_{i=1}^m E[z_{ij}] \ x_i}{\sum_{i=1}^m E[z_{ij}]}$$

EM Algorithm

- Converges to local maximum likelihood h
- and provides estimates of hidden variables z_{ij}
- In fact, local maximum in $E[\ln P(Y|h)]$
 - Y is complete (observable plus unobservable variables) data
 - Expected value is taken over possible values of unobserved variables in ${\cal Y}$

General EM Problem

Given:

- Observed data $X = \{x_1, \dots, x_m\}$
- Unobserved data $Z = \{z_1, \dots, z_m\}$
- Parameterized probability distribution P(Y|h), where
 - $Y = \{y_1, \ldots, y_m\}$ is the full data $y_i = x_i \cup z_i$
 - h are the parameters

Determine:

• h that (locally) maximizes $E[\ln P(Y|h)]$

General EM Method

Define likelihood function Q(h'|h) which calculates $Y = X \cup Z$ using observed X and current parameters h to estimate Z

$$Q(h'|h) \leftarrow E[\ln P(Y|h')|h, X]$$

EM Algorithm:

Estimation (E) step: Calculate Q(h'|h) using the current hypothesis h and the observed data X to estimate the probability distribution over Y.

$$Q(h'|h) \leftarrow E[\ln P(Y|h')|h, X]$$

Maximization (M) step: Replace hypothesis h by the hypothesis h' that maximizes this Q function.

$$h \leftarrow \operatorname*{argmax}_{h'} Q(h'|h)$$

Derivation of k-Means

- Hypothesis h is parameterized by $\theta = \langle \mu_1 ... \mu_k \rangle$.
- Observed data $X = \{\langle x_i \rangle\}$
- Hidden variables $Z = \{\langle z_{i1}, ..., z_{ik} \rangle\}$:
 - $z_{ik} = 1$ if input x_i is generated by th k-th normal dist.
 - For each input, k entries.
- First, start with defining $\ln p(Y|h)$.

Deriving $\ln P(Y|h)$

$$p(y_i|h') = p(x_i, z_{i1}, z_{i2}, \dots, z_{ik}|h') = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} \sum_{j=1}^{k} z_{ij} (x_i - \mu'_j)^2}$$

Note that the vector $\langle z_{i1},...,z_{ik}
angle$ contains only a single 1 and all the rest are 0.

$$\ln P(Y|h') = \ln \prod_{i=1}^{m} p(y_i|h')$$

= $\sum_{i=1}^{m} \ln p(y_i|h')$
= $\sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} z_{ij} (x_i - \mu'_j)^2 \right)$

Deriving $E[\ln P(Y|h)]$

Since P(Y|h') is a linear function of z_{ij} , and since E[f(z)] = f(E[z]),

$$E[\ln P(Y|h')] = E\left[\sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} z_{ij}(x_i - \mu'_j)^2\right)\right]$$
$$= \sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} E[z_{ij}](x_i - \mu'_j)^2\right)$$

Thus,

$$Q(h'|h) = Q(\langle \mu'_1, ..., \mu'_k \rangle |h)$$

= $\sum_{i=1}^m \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^k E[z_{ij}](x_i - \mu'_j)^2 \right)$

Finding $\operatorname{argmax}_{h'} Q(h'|h)$

With

$$E[z_{ij}] = \frac{e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{n=1}^2 e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2}}$$

we want to find h^\prime such that

$$\underset{h'}{\operatorname{argmax}} Q(h'|h) = \operatorname{argmax}_{h'} \sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} E[z_{ij}](x_i - \mu'_j)^2 \right)$$
$$= \operatorname{argmin}_{h'} \sum_{i=1}^{m} \sum_{j=1}^{k} E[z_{ij}](x_i - \mu'_j)^2,$$

which is minimized by

$$\mu_j \leftarrow \frac{\sum_{i=1}^m E[z_{ij}]x_i}{\sum_{i=1}^m E[z_{ij}]}.$$

Deriving the Update Rule

Set the derivative of the quantity to be minimized to be zero:

$$\frac{\partial}{\partial \mu'_j} \sum_{i=1}^m \sum_{j=1}^k E[z_{ij}] (x_i - \mu'_j)^2$$
$$= \frac{\partial}{\partial \mu'_j} \sum_{i=1}^m E[z_{ij}] (x_i - \mu'_j)^2$$
$$= 2\sum_{i=1}^m E[z_{ij}] (x_i - \mu'_j) = 0$$

$$\sum_{i=1}^{m} E[z_{ij}]x_i - \sum_{i=1}^{m} E[z_{ij}]\mu'_j = 0$$
$$\sum_{i=1}^{m} E[z_{ij}]x_i = \mu'_j \sum_{i=1}^{m} E[z_{ij}]$$
$$\mu'_j = \frac{\sum_{i=1}^{m} E[z_{ij}]x_i}{\sum_{i=1}^{m} E[z_{ij}]}$$

See Bishop (1995) Neural Networks for Pattern Recognition, Oxford U Press. pp. 63-64.

Losses and Risks

Actions: α_i
 Loss of α_i when the state is C_k : λ_{ik}
 Expected risk (Duda and Hart, 1973)
 R(α_i | **x**) = ∑^K_{k=1} λ_{ik} P(C_k | **x**)
 choose α_i if R(α_i | **x**) = min_k R(α_k | **x**)

7

Losses and Risks: 0/1 Loss

$$\lambda_{ik} = \begin{cases} 0 \text{ if } i = k \\ 1 \text{ if } i \neq k \end{cases}$$
$$R(\alpha_i \mid \mathbf{x}) = \sum_{k=1}^{K} \lambda_{ik} P(C_k \mid \mathbf{x})$$
$$= \sum_{k \neq i} P(C_k \mid \mathbf{x})$$
$$= 1 - P(C_i \mid \mathbf{x})$$

For minimum risk, choose the most probable class

Losses and Risks: Reject

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{if } i = K+1, \quad 0 < \lambda < 1 \\ 1 & \text{otherwise} \end{cases}$$
$$R(\alpha_{K+1} \mid \mathbf{x}) = \sum_{k=1}^{K} \lambda P(C_k \mid \mathbf{x}) = \lambda$$
$$R(\alpha_i \mid \mathbf{x}) = \sum_{k \neq i} P(C_k \mid \mathbf{x}) = 1 - P(C_i \mid \mathbf{x})$$

choose C_i if $P(C_i | \mathbf{x}) > P(C_k | \mathbf{x}) \quad \forall k \neq i \text{ and } P(C_i | \mathbf{x}) > 1 - \lambda$ reject otherwise

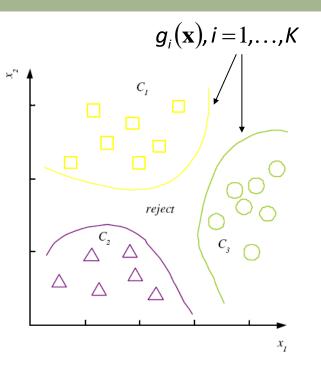
Discriminant Functions

choose C_i if $g_i(\mathbf{x}) = \max_k g_k(\mathbf{x})$

 $g_{i}(\mathbf{x}) = \begin{cases} -R(\alpha_{i} | \mathbf{x}) \\ P(C_{i} | \mathbf{x}) \\ p(\mathbf{x} | C_{i})P(C_{i}) \end{cases}$

K decision regions $\mathcal{R}_1,...,\mathcal{R}_K$

 $\mathcal{R}_i = \{\mathbf{x} \mid \boldsymbol{g}_i(\mathbf{x}) = \max_k \boldsymbol{g}_k(\mathbf{x})\}$



Dichotomizer (K=2) vs Polychotomizer (K>2) $g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$ $choose \begin{cases} C_1 \text{ if } g(\mathbf{x}) > 0 \\ C_2 \text{ otherwise} \end{cases}$ Log odds: $P(C_1 | \mathbf{x})$

Log odds:
$$\log \frac{P(C_1 | \mathbf{x})}{P(C_2 | \mathbf{x})}$$

Utility Theory

Prob of state k given exidence x: P (S_k | x)
Utility of \$\alpha_i\$ when state is k: U_{ik}
Expected utility: EU(\$\alpha_i\$ | x\$) = \sum_k U_{ik} P(S_k | x\$) Choose \$\alpha_i\$ if \$EU(\$\alpha_i\$ | x\$) = max \$EU(\$\alpha_j\$ | x\$)\$

Association Rules

- \Box Association rule: $X \rightarrow Y$
- People who buy/click/visit/enjoy X are also likely to buy/click/visit/enjoy Y.
- □ A rule implies association, not necessarily causation.

Association measures

Support (X → Y): P(X,Y) = ^{#{customerswho bought X and Y}}/_{#{customers}}
Confidence (X → Y): P(Y | X) = ^{P(X,Y)}/_{P(X)}
Lift (X → Y): = ^{P(X,Y)}/_{P(X)P(Y)} = ^{P(Y | X)}/_{P(Y)}

References

42-9