
Dimensionality Reduction

• Olive slides: Alpaydin

• Numbered blue slides: Haykin, Neural Networks: A Comprehensive Foundation, Second edition,

Prentice-Hall, Upper Saddle River:NJ, 1999.

• Black slides: extra content.



Why Reduce Dimensionality? 
3 

 Reduces time complexity: Less computation 

 Reduces space complexity: Fewer parameters 

 Saves the cost of observing the feature 

 Simpler models are more robust on small datasets 

 More interpretable; simpler explanation 

 Data visualization (structure, groups, outliers, etc) if 

plotted in 2 or 3 dimensions 



Feature Selection vs Extraction 
4 

 Feature selection: Choosing k<d important features, 

ignoring the remaining d – k 

  Subset selection algorithms 

 Feature extraction: Project the  

  original xi , i =1,...,d dimensions to  

  new k<d dimensions, zj , j =1,...,k 



Subset Selection 
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 There are 2d subsets of d features 

 Forward search: Add the best feature at each step 
 Set of features F initially Ø. 

 At each iteration, find the best new feature 
j = argmini E ( F  xi )  

 Add xj to F  if E ( F  xj ) < E ( F )  

 

 Hill-climbing O(d2) algorithm 

 Backward search: Start with all features and remove 
 one at a time, if possible. 

 Floating search (Add k, remove l) 



Principal Components Analysis (PCA)

Note: Q means eigenvector matrix of the covariance matrix, in Haykin slides.



Motivation
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• How can we project the given data so that the variance in the

projected points is maximized?
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Eigenvalues/Eigenvectors

• For a square matrix A, if a vector x and a scalar value λ exists

so that

(A− λI)x = 0

then x is called an eigenvector of A and λ an eigenvalue.

• Note, the above is simply

Ax = λx

• An intuitive meaning is: x is the direction in which applying the

linear transformation A only changes the magnitude of x (by λ)

but not the angle.

• There can be as many as n eigenvector/eigenvalue for an n× n

matrix.
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Eigenvector/Eigenvalue Example

• Red: original data x

• Green: projected data using A =

 3 5

2 1

.

• Blue: Eigenvectors v1=(0.91, 0.42), v2=(-0.76,0.65), λ1 = 5.3, λ2 = −1.3. Octave/Matlab

code: [V,Lamba]=eig(A)

• Magenta: A times eigenvectors.



Eigenvector/Eigenvalue Example 2

• Red: original data x

• Green: projected data using A =

 3 4

4 3

.

• Blue: Eigenvectors; Magenta: A times eigenvectors.

• A is a symmetric matrix, so eigenvectors are orthogonal.



Principal Components Analysis 
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 Find a low-dimensional space such that when x is 
projected there, information loss is minimized. 

 The projection of x on the direction of w is: z = wTx 

 Find w such that Var(z) is maximized 

  Var(z) = Var(wTx) = E[(wTx – wTμ)2]  

   = E[(wTx – wTμ)(wTx – wTμ)] 

   = E[wT(x – μ)(x – μ)Tw] 

   = wT E[(x – μ)(x –μ)T]w = wT ∑ w  

 where Var(x)= E[(x – μ)(x –μ)T] = ∑ 
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 Maximize Var(z) subject to ||w||=1 

 

 

∑w1 = αw1 that is, w1 is an eigenvector of ∑ 

Choose the one with the largest eigenvalue for Var(z) to be 
max 

 Second principal component: Max Var(z2), s.t., 
||w2||=1 and orthogonal to w1 

 

 

 

∑ w2 = α w2 that is, w2 is another eigenvector of ∑ 

 and so on. 

 11111
1

 wwww
w

TT max

   01 122222
2

 wwwwww
w

TTT max



What PCA does 
10 

   z = WT(x – m) 

 where the columns of W are the eigenvectors of ∑ 

and m is sample mean 

 Centers the data at the origin and rotates the axes 



How to choose k ? 
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 Proportion of Variance (PoV) explained 

 

 

  

 when λi are sorted in descending order  

 Typically, stop at PoV>0.9 

 Scree graph plots of PoV vs k, stop at “elbow” 
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PCA: Usage

• Project input x to the principal directions:

a = QTx.

• We can also recover the input from the projected point a:

x = (QT )−1a = Qa.

• Note that we don’t need allm principal directions, depending on

how much variance is captured in the first few eigenvalues: We

can do dimensionality reduction.
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PCA: Dimensionality Reduction

• Encoding: We can use the first l eigenvectors to encode x.

[a1, a2, ..., al]
T = [q1,q2, ...,ql]

Tx.

• Note that we only need to calculate l projections a1, a2, ..., al,

where l ≤ m.

• Decoding: Once [a1, a2, ..., al]
T is obtained, we want to

reconstruct the full [x1, x2, ..., xl, ..., xm]T .

x = Qa ≈ [q1,q2, ...,ql][a1, a2, ..., al]
T = x̂.

Or, alternatively

x̂ = Q[a1, a2, ..., al, 0, 0, ..., 0︸ ︷︷ ︸
m− l zeros

]T .
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PCA: Total Variance

• The total variance of th em components of the data vector is

m∑

j=1

σ2
j =

m∑

j=1

λj .

• The truncated version with the first l components have variance

l∑

j=1

σ2
j =

l∑

j=1

λj .

• The larger the variance in the truncated version, i.e., the smaller

the variance in the remaining components, the more accurate the

dimensionality reduction.
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PCA Example
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inp=[randn(800,2)/9+0.5;randn(1000,2)/6+ones(1000,2)];

Q =

[
0.70285 −0.71134

0.71134 0.70285

]

λ =

[
0.14425 0.00000

0.00000 0.02161

]
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Factor Analysis 
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 Find a small number of factors z, which when 
combined generate x : 

  xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi  

 

 where zj, j =1,...,k are the latent factors with  

  E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j ,  

 εi are the noise sources  

  E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 , 

 and vij are the factor loadings 

 



PCA vs FA 
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 PCA From x to z     z = WT(x – µ) 

 FA  From z to x   x – µ = Vz + ε  

 

 
x z 

z x 



Factor Analysis 
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 In FA, factors zj are stretched, rotated and 

translated to generate x 



Singular Value Decomposition and 

Matrix Factorization 
18 

 Singular value decomposition: X=VAWT 

 V is NxN and contains the eigenvectors of XXT 

 W is dxd and contains the eigenvectors of XTX 

 and A is Nxd and contains singular values on its first 

k diagonal 

 X=u1a1v1
T+...+ukakvk

T where k is the rank of X 



Multidimensional Scaling 
20 
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 Given pairwise distances between N points,  

  dij, i,j =1,...,N 

 place on a low-dim map s.t. distances are preserved 

(by feature embedding) 

 z = g (x | θ ) Find θ that min Sammon stress  



Map of Europe by MDS 
21 

Map from CIA – The World Factbook: http://www.cia.gov/ 



Manifolds

Lars H. Rohwedder, Wikimedia Commons

• A topological space that is locally Euclidean (flat, not curved).

• Dimensionality of the manifold = dimensionality of the Euclidean space it resembles, locally.

– Straight line, wiggly curves, etc. are 1D manifolds.

– Flat plane, surface of sphere, etc. are 2D manifolds.

• Detecting curvature of space: sum of internal angles of triangle = 180o?



Manifold Learning

• A: 2D manifold embedded in 3D embedding space.

• B: Data points extraced from A.

• C: Recovered 2D structure.

• Task: recover C from B, without knowledge of A.



Isomap 
30 

 Geodesic distance is the distance along the 

manifold that the data lies in, as opposed to the 

Euclidean distance in the input space 

  



Geodesic Distance

Geodesic distance = Shortest path.

• A: Manifold with two points.

• B: Euclidean distance between the two points.

• C: Geodesic distance between the two points.



Isomap  
31 

 Instances r and s are connected in the graph if  

||xr-xs||<e or if xs is one of the k neighbors of xr  

The edge length is ||xr-xs|| 

 For two nodes r and s not connected, the distance is 

equal to the shortest path between them 

 Once the NxN distance matrix is thus formed, use 

MDS to find a lower-dimensional mapping 
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Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html 



Locally Linear Embedding 
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1. Given xr find its neighbors xs
(r) 

2. Find Wrs that minimize 

 

 

 

3. Find the new coordinates zr that minimize 
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LLE on Optdigits 
35 
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Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html 
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