Dimensionality Reduction

e Olive slides: Alpaydin

o Numbered blue slides: Haykin, Neural Networks: A Comprehensive Foundation, Second edition,
Prentice-Hall, Upper Saddle River:NJ, 1999.

o Black slides: extra content.



Why Reduce Dimensionality?
s q |
Reduces time complexity: Less computation
Reduces space complexity: Fewer parameters
Saves the cost of observing the feature
Simpler models are more robust on small datasets

More interpretable; simpler explanation
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Data visualization (structure, groups, outliers, etc) if
plotted in 2 or 3 dimensions



Feature Selection vs Extraction

. q |
1 Feature selection: Choosing k<d important features,
ignoring the remaining d — k
Subset selection algorithms
0 Feature extraction: Project the
original x. , i =1,...,d dimensions to

new k<d dimensions, z;, | =1,....k



Subset Selection
I

71 There are 29 subsets of d features

11 Forward search: Add the best feature at each step
0 Set of features F initially @.
o At each iteration, find the best new feature
= argmin, E ( F U x;)

0Addx toF if E(FUX; )<E(F)

o Hill-climbing O(d?) algorithm
1 Backward search: Start with all features and remove
one at a time, if possible.

71 Floating search (Add k, remove )



Principal Components Analysis (PCA)

Note: () means eigenvector matrix of the covariance matrix, in Haykin slides.



Motivation

" Cloud.dat |

e How can we project the given data so that the variance in the

projected points is maximized?



Eigenvalues/Eigenvectors

For a square matrix A, if a vector x and a scalar value \ exists
so that
(A—-A)x=0

then x is called an eigenvector of A and )\ an eigenvalue.

Note, the above is simply

Ax = )\x

An intuitive meaning is: X is the direction in which applying the
linear transformation A only changes the magnitude of x (by \)
but not the angle.

There can be as many as 1 eigenvector/eigenvalue foran n. X n
matrix.
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Eigenvector/Eigenvalue Example

8

o
Red: original data x
Green: projected data using A = [ 2 i ]
Blue: Eigenvectors v1=(0.91, 0.42), v2=(-0.76,0.65), A1 = 5.3, Ao = —1.3. Octave/Matlab

code: [V, Lamba]=eig (A)

Magenta: A times eigenvectors.



Eigenvector/Eigenvalue Example 2

8

Red: original data x
: : 3 4
Green: projected data using A = [ L s ]

Blue: Eigenvectors; Magenta: A times eigenvectors.

A is a symmetric matrix, so eigenvectors are orthogonal.



Principal Components Analysis
IS

7 Find a low-dimensional space such that when x is

projected there, information loss is minimized.

Tx

-1 The projection of x on the directionof wis: z=w
o Find w such that Var(z) is maximized
Var(z) = Var(w'x) = E[(w'x — w')?]
= El(w'x = wl)(w'x — w)]
= E[w'(x — M) (x — M)'w]
= w'E[(x— p)(x —M)lw = w' 3} w
where Var(x)=E[(x — ) (x—=p)] = >



Maximize Var(z) subjectto | |[w]| | =1

ma XW, ZW, — a(WI W, —1)
1
> w, = aw;, that is, w, is an eigenvector of )

Choose the one with the largest eigenvalue for Var(z) to be
max

Second principal component: Max Var(z,), s.t.,
| I[w,| | =1 and orthogonal to w;,

maxw.,w, — a(wng —1)— ,B(WQW1 — O)

Wo

> w, = a w, that is, w, is another eigenvector of )

and so on.



What PCA does

z=W'(x —m)
where the columns of W are the eigenvectors of )
and m is sample mean

Centers the data at the origin and rotates the axes
A A
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How to choose k ¢
I

o1 Proportion of Variance (PoV) explained
A+A, 4+ A
A+ + A+ A

when A are sorted in descending order
o Typically, stop at PoV>0.9
11 Scree graph plots of PoV vs k, stop at “elbow”
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(a) Scree graph for Optdigits
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Second Eigenvector
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PCA: Usage

® Project input x to the principal directions:
a=Q'x.
e We can also recover the input from the projected point a:
x = (Q1) 'a = Qa.

e Note that we don’t need all m principal directions, depending on
how much variance is captured in the first few eigenvalues: We

can do dimensionality reduction.



PCA: Dimensionality Reduction

e Encoding: We can use the first [ eigenvectors to encode x.
T T
[CLl,CLQ,...,CLl] — [q17q27"'7ql] X.

e Note that we only need to calculate [ projections a1, a2, ..., a;,
where [ < m.

|7 is obtained, we want to

]T

e Decoding: Once [a1, a2, ..., q;
reconstruct the full [x1, X2, ..., z}, ..., Tm

T ~
X = Qa% [ql,qQ,...,QZ][al,CLQ,...,al] — X.
Or, alternatively
A T
x = Qlay,a9,...,a;, 0,0,....,0 ]".

m — [ zeros



PCA: Total Variance

e The total variance of th e components of the data vector is
m m
2 _ :
E o = E Aj.

e The truncated version with the first [ components have variance

l l
§ 2 _ § :
j=1 j=1

® The larger the variance in the truncated version, i.e., the smaller
the variance in the remaining components, the more accurate the

dimensionality reduction.



PCA Example
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-0.2 I I I I
-0.5 0 0.5 1 1.5 2

line 1 o

inp=[randn (800,2)/9+0.5; randn (1000, 2) /6+0ones (1000,2)];

0.70285 —0.71134
0.71134 0.70285

0.14425 0.00000

0.00000 0.02161
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Factor Analysis

FEEEE N 1
o Find a small number of factors z, which when
combined generate x :

X;= M, = vyzy T vz, T T vz TE

where z;, | =1,... k are the latent factors with

E[ z;]=0, Var(z)=1, Cov(z; , z)=0,i # |,
€, are the noise sources

E[ € ]= W, Cov(g;, €) =0,i # |, Cov(g,, z) =0,
and v;. are the factor loadings



PCA vs FA

o PCA From x to z z=W'(x—-p)
o FA From z to x x—M=Vz+E&

X ) Xy z, z, z,
X

factors
Z
lw l V U

nm variables
variables X
Z z; Z, z i X I X 5 X 4
PCA FA



Factor Analysis

1 InFA, factors z; are stretched, rotated and
translated to generate x

A A

o o

N =

—

A : :

N
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Singular Value Decomposition and
Matrix Factorization

: X=VAW’
V is NxN and contains the eigenvectors of XX’
W is dxd and contains the eigenvectors of X'X

and A is Nxd and contains singular values on its first
k diagonal

X=uv,a,v,+...+u.a,v," where k is the rank of X



Multidimensional Scaling

o4
o1 Given pairwise distances between N points,

diyij =1,...,N
place on a low-dim map s.t. distances are preserved
(by feature embedding)
nz=g(x | @) Find 8 that min Sammon stress
2" —-7°|— X" =%’

) x|

:ZQ!@KX 16)-glx*16) -[x - x[f

2
e x|




Map of Europe by MDS
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Map from CIA — The World Factbook: http://www.cia.gov/



Manifolds
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Lars H. Rohwedder, Wikimedia Commons

® A topological space that is locally Euclidean (flat, not curved).

e Dimensionality of the manifold = dimensionality of the Euclidean space it resembles, locally.
— Straight line, wiggly curves, etc. are 1D manifolds.

— Flat plane, surface of sphere, etc. are 2D manifolds.

e Detecting curvature of space: sum of internal angles of triangle = 180°?



Manifold Learning

o o Choi, et. al
J. Pattern Recognition {2007)

A: 2D manifold embedded in 3D embedding space.
B: Data points extraced from A.
C: Recovered 2D structure.

Task: recover C from B, without knowledge of A.



Isomap

o4 |
1 Geodesic distance is the distance along the

manifold that the data lies in, as opposed to the
Euclidean distance in the input space

P Geodesic
. distance

Euclidean ™.
distance My



Geodesic Distance

Geodesic distance = Shortest path.
e A: Manifold with two points.
e B: Euclidean distance between the two points.

e C: Geodesic distance between the two points.



Isomap
N
7 Instances r and s are connected in the graph if
| | x™-x*| | <€ or if x*is one of the k neighbors of x"
The edge length is | | x™-x®| |

71 For two nodes r and s not connected, the distance is
equal to the shortest path between them

71 Once the NxN distance matrix is thus formed, use
MDS to find a lower-dimensional mapping
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Optdigits after Isomap (with neighborhood graph).
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Matlab source from http: //web.mit.edu/cocosci /isomap /isomap.html



Locally Linear Embedding

s q
1. Given x" find its neighbors x°

2. Find W, that minimize

2

EWI[X)=)"

r S
X —ZW,SX(,)
S

3. Find the new coordinates z" that minimize

2

E(z|W)=>"

r S
' =) W,z
S



Xa

Iy
[

X space z space



LLE on Optdigits

Matlab source from hitp://www.cs.toronto.edu/~roweis/lle /code.html
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