
Dimensionality Reduction

• Olive slides: Alpaydin

• Numbered blue slides: Haykin, Neural Networks: A Comprehensive Foundation, Second edition,

Prentice-Hall, Upper Saddle River:NJ, 1999.

• Black slides: extra content.



Why Reduce Dimensionality? 
3 

 Reduces time complexity: Less computation 

 Reduces space complexity: Fewer parameters 

 Saves the cost of observing the feature 

 Simpler models are more robust on small datasets 

 More interpretable; simpler explanation 

 Data visualization (structure, groups, outliers, etc) if 

plotted in 2 or 3 dimensions 



Feature Selection vs Extraction 
4 

 Feature selection: Choosing k<d important features, 

ignoring the remaining d – k 

  Subset selection algorithms 

 Feature extraction: Project the  

  original xi , i =1,...,d dimensions to  

  new k<d dimensions, zj , j =1,...,k 



Subset Selection 
5 

 There are 2d subsets of d features 

 Forward search: Add the best feature at each step 
 Set of features F initially Ø. 

 At each iteration, find the best new feature 
j = argmini E ( F  xi )  

 Add xj to F  if E ( F  xj ) < E ( F )  

 

 Hill-climbing O(d2) algorithm 

 Backward search: Start with all features and remove 
 one at a time, if possible. 

 Floating search (Add k, remove l) 



Principal Components Analysis (PCA)

Note: Q means eigenvector matrix of the covariance matrix, in Haykin slides.



Motivation
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• How can we project the given data so that the variance in the

projected points is maximized?
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Eigenvalues/Eigenvectors

• For a square matrix A, if a vector x and a scalar value λ exists

so that

(A− λI)x = 0

then x is called an eigenvector of A and λ an eigenvalue.

• Note, the above is simply

Ax = λx

• An intuitive meaning is: x is the direction in which applying the

linear transformation A only changes the magnitude of x (by λ)

but not the angle.

• There can be as many as n eigenvector/eigenvalue for an n× n

matrix.
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Eigenvector/Eigenvalue Example

• Red: original data x

• Green: projected data using A =

 3 5

2 1

.

• Blue: Eigenvectors v1=(0.91, 0.42), v2=(-0.76,0.65), λ1 = 5.3, λ2 = −1.3. Octave/Matlab

code: [V,Lamba]=eig(A)

• Magenta: A times eigenvectors.



Eigenvector/Eigenvalue Example 2

• Red: original data x

• Green: projected data using A =

 3 4

4 3

.

• Blue: Eigenvectors; Magenta: A times eigenvectors.

• A is a symmetric matrix, so eigenvectors are orthogonal.



Principal Components Analysis 
8 

 Find a low-dimensional space such that when x is 
projected there, information loss is minimized. 

 The projection of x on the direction of w is: z = wTx 

 Find w such that Var(z) is maximized 

  Var(z) = Var(wTx) = E[(wTx – wTμ)2]  

   = E[(wTx – wTμ)(wTx – wTμ)] 

   = E[wT(x – μ)(x – μ)Tw] 

   = wT E[(x – μ)(x –μ)T]w = wT ∑ w  

 where Var(x)= E[(x – μ)(x –μ)T] = ∑ 
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 Maximize Var(z) subject to ||w||=1 

 

 

∑w1 = αw1 that is, w1 is an eigenvector of ∑ 

Choose the one with the largest eigenvalue for Var(z) to be 
max 

 Second principal component: Max Var(z2), s.t., 
||w2||=1 and orthogonal to w1 

 

 

 

∑ w2 = α w2 that is, w2 is another eigenvector of ∑ 

 and so on. 
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What PCA does 
10 

   z = WT(x – m) 

 where the columns of W are the eigenvectors of ∑ 

and m is sample mean 

 Centers the data at the origin and rotates the axes 



How to choose k ? 
11 
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21

 Proportion of Variance (PoV) explained 

 

 

  

 when λi are sorted in descending order  

 Typically, stop at PoV>0.9 

 Scree graph plots of PoV vs k, stop at “elbow” 
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PCA: Usage

• Project input x to the principal directions:

a = QTx.

• We can also recover the input from the projected point a:

x = (QT )−1a = Qa.

• Note that we don’t need allm principal directions, depending on

how much variance is captured in the first few eigenvalues: We

can do dimensionality reduction.
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PCA: Dimensionality Reduction

• Encoding: We can use the first l eigenvectors to encode x.

[a1, a2, ..., al]
T = [q1,q2, ...,ql]

Tx.

• Note that we only need to calculate l projections a1, a2, ..., al,

where l ≤ m.

• Decoding: Once [a1, a2, ..., al]
T is obtained, we want to

reconstruct the full [x1, x2, ..., xl, ..., xm]T .

x = Qa ≈ [q1,q2, ...,ql][a1, a2, ..., al]
T = x̂.

Or, alternatively

x̂ = Q[a1, a2, ..., al, 0, 0, ..., 0︸ ︷︷ ︸
m− l zeros

]T .

8



PCA: Total Variance

• The total variance of th em components of the data vector is

m∑

j=1

σ2
j =

m∑

j=1

λj .

• The truncated version with the first l components have variance

l∑

j=1

σ2
j =

l∑

j=1

λj .

• The larger the variance in the truncated version, i.e., the smaller

the variance in the remaining components, the more accurate the

dimensionality reduction.
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PCA Example
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inp=[randn(800,2)/9+0.5;randn(1000,2)/6+ones(1000,2)];

Q =

[
0.70285 −0.71134

0.71134 0.70285

]

λ =

[
0.14425 0.00000

0.00000 0.02161

]
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Factor Analysis 
15 

 Find a small number of factors z, which when 
combined generate x : 

  xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi  

 

 where zj, j =1,...,k are the latent factors with  

  E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j ,  

 εi are the noise sources  

  E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 , 

 and vij are the factor loadings 

 



PCA vs FA 
16 

 PCA From x to z     z = WT(x – µ) 

 FA  From z to x   x – µ = Vz + ε  

 

 
x z 

z x 



Factor Analysis 
17 

 In FA, factors zj are stretched, rotated and 

translated to generate x 



Singular Value Decomposition and 

Matrix Factorization 
18 

 Singular value decomposition: X=VAWT 

 V is NxN and contains the eigenvectors of XXT 

 W is dxd and contains the eigenvectors of XTX 

 and A is Nxd and contains singular values on its first 

k diagonal 

 X=u1a1v1
T+...+ukakvk

T where k is the rank of X 



Multidimensional Scaling 
20 
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 Given pairwise distances between N points,  

  dij, i,j =1,...,N 

 place on a low-dim map s.t. distances are preserved 

(by feature embedding) 

 z = g (x | θ ) Find θ that min Sammon stress  



Map of Europe by MDS 
21 

Map from CIA – The World Factbook: http://www.cia.gov/ 



Manifolds

Lars H. Rohwedder, Wikimedia Commons

• A topological space that is locally Euclidean (flat, not curved).

• Dimensionality of the manifold = dimensionality of the Euclidean space it resembles, locally.

– Straight line, wiggly curves, etc. are 1D manifolds.

– Flat plane, surface of sphere, etc. are 2D manifolds.

• Detecting curvature of space: sum of internal angles of triangle = 180o?



Manifold Learning

• A: 2D manifold embedded in 3D embedding space.

• B: Data points extraced from A.

• C: Recovered 2D structure.

• Task: recover C from B, without knowledge of A.



Isomap 
30 

 Geodesic distance is the distance along the 

manifold that the data lies in, as opposed to the 

Euclidean distance in the input space 

  



Geodesic Distance

Geodesic distance = Shortest path.

• A: Manifold with two points.

• B: Euclidean distance between the two points.

• C: Geodesic distance between the two points.



Isomap  
31 

 Instances r and s are connected in the graph if  

||xr-xs||<e or if xs is one of the k neighbors of xr  

The edge length is ||xr-xs|| 

 For two nodes r and s not connected, the distance is 

equal to the shortest path between them 

 Once the NxN distance matrix is thus formed, use 

MDS to find a lower-dimensional mapping 
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Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html 



Locally Linear Embedding 
33 

1. Given xr find its neighbors xs
(r) 

2. Find Wrs that minimize 

 

 

 

3. Find the new coordinates zr that minimize 
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LLE on Optdigits 
35 
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Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html 
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