
Reinforcement Learning

• Blue slides: Mitchell

• Green slides: Alpaydin

1

Reinforcement Learning (RL)

• How an autonomous agent that sense and act in the environment can learn to choose

optimal actions to achieve its goals.

• Examples: mobile robot, optimization in process control, board games, etc.

• Ingredients: reward/penalty for each action, where the reinforcement signal can be significantly

delayed.

• One approach: Q learning

2

Introduction: Agent

Terminology:

• State: state of the environment, obtained through sensors

• Action: alter the state

• Policy: choosing actions that achieve a particular goal, based on the current state.

• Goal: desired configuration (or state).

Desired policy:

• From any initial state, choose actions that maximize the reward accumulated over time by the

agent.

3

RL Task

s 0
a0

r0
s 1

a1
r1

s 2
a2

r2

Environment

Agent

State Action

...

Reward

• Goal: learn to choose actions that maximize discounted, cumulative award:

r0 + γr1 + γ2r2 + ...,where 0 ≤ γ < 1.

• That is, we want to learn a policy π : S → A that maximizes the above, where S is the set of

states, andA that of actions.

4

Applications and Issues (ALP)

• Game-playing : Sequence of moves to win a game

• Robot in a maze: Sequence of actions to find a goal

• Play video games (Atari 2600, Starcraft, Dota)

• Control robot arms, etc.

• Issue: Rewards are sparse; Credit assignment

s 0
a0

r0
s 1

a1
r1

s 2
a2

r2

Environment

Agent

State Action

...

Reward

5

Single-State RL: K-armed bandit (ALP)

• AmongK levers, choose the one that pays the best.

• Q(a) = value of action a, Reward ra; Choose a∗ ifQ(a∗) = maxaQ(a)

• When reward is deterministic: SetQ(a) = ra.

• When reward is stochastic:

6

Variations of RL Tasks

• Deterministic vs. nondeterministic action outcomes.

• With or without prior knowledge about the effect of action on environmental state.

• Partially or fully known environmental state (e.g., Partially Observable Markov Decision Process

[POMDP]).

7

RL Compared to Other Learning Algorithms

• Planning (in AI)

• Function approximation: π : S → A.

• Differences:

– Delayed reward

– Exploration vs. exploitation

– Partially observable states

– Life-long learning: leveraging on existing knowledge, to make learning of a new complex task

easier.

8

The Learning Task

Markov Decision Process: only immediate state matters.

• State st, action at at time step t.

• Reward from environment: rt = r(st, at)

• State transition by environment: st+1 = δ(st, at)

• r(·, ·) and δ(·, ·) may be unknown to the agent!

• Task: learn π : S → A to select at = π(st).

• Question: how to specify which π to learn?

9

RL as Markov Decision Process (ALP)

• st: state of agent at time t

• at: action taken at time t

• In st, action at is taken, clock ticks and reward rt+1 is received, and state advances to st+1.

• Next state probability: P (st+1|st, at)

• Reward probability: P (rt+1|st, at)

• Initial state and goal given.

• Episode (trial) of actions from initial state to goal.

Sutteon and Barto 1998, Kaelbling et al. 1996.

10

Discounted Cumulative Reward: V π(st)

• Obvious approach is to find π that maximizes the cumulative reward when π is executed:

V π(st) ≡ rt + γrt+1 + γ2rt+2 + ...

≡
∞∑
i=0

γirt+i,

where 0 ≤ γ < 1 is the discount rate.

• π is repeatedly executed: at = π(st), at+1 = π(st+1), ...

• When γ = 0, only the current reward is used.

• When γ → 1, future rewards become more important.

11

Choosing a Policy

• Optimal policy π∗

π∗ = argmax
π

V π(s), ∀s

• Want a policy that does its best for all states.

• Cumulative reward under optimal policy π∗:

V ∗(s) ≡ V π
∗
(s),

for short.

12

Example: Grid World

G
1000

0
0

0
0

0
0

0 0

0 100

• Immediate reward given only when entering the goal stateG.

• Given any initial state, we want to generate an action sequence to maximize V .

13

Grid World: V ∗(s) Values

G
1000

0
0

0
0

0
0

0 0

0 100

G90 100
0

81 90 100

(a) r(s, a) values (b) V ∗(s) values

• Discount rate: γ = 0.9.

• Top middle: 100 + γ0 + γ20 + ... = 100

• Top left: 0 + γ100 + γ20 + ... = 90

• Bottom left: 0 + γ0 + γ2100 + ... = 81

• Note that these values are supposed to be obtained using the optimal policy π∗.

14

Q Learning

• Policy is hard to learn directly, because training experience does not provide< s, a > pairs.

• Only available info: sequence of immediate rewards r(si, ai) for i = 0, 1, 2,

• In this case, it is easier to learn an evaluation function and construct a policy based on that.

15

Optimal Policy using V ∗(s)

G
1000

0
0

0
0

0
0

0 0

0 100

G90 100
0

81 90 100

(a) r(s, a) values (b) V ∗(s) values

• If reward r(s, a), state transition δ(s), and evaluation function V ∗(s) are known the following

gives an optimal policy:

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

• For example, top middle state: move right = 100 + γ0 = 100, move left = 0 + γ90 = 81,

move down = 0 + γ90 = 81.

16

Model-based Learning (ALP)

• If environment, P (st+1|st, at) and P (rt+1|st, at) are known,

• There is no need for exploration.

• Can be solved directly using dynamic programming.

• Solve for

• Optimal policy:

Note: E[X] is expected value ofX .

17

Problems with Policy Based on V ∗(s)

• Requires perfect knowledge of r(s, a) and δ(s, a), to exactly predict the outcome and reward

of a particular action.

• In practice, the above is impossible.

• Thus, even when V ∗(s) is known, π∗(s) cannot be found. Refer to:

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

• Solution: use a surrogate – theQ function.

18

The Q Function

Can we get by without explicit knowledge of r(s, a) and δ(s, a)?

• Q(s, a): evaluation function whose value is the maximum discounted cumulative reward

obtainable when action a is taken in state s:

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

• The derived policy is then:

π∗(s) = argmax
a

Q(s, a)

Note that ifQ(s, a) can be learned without any reference to r(s, a) and δ(s, a), we have

solved our problem.

• Further problem: how to estimateQ(s, a)?

19

Learning the Q Function: Getting Rid of V ∗(δ(s, a))

• Q(s, a) is defined over all possible actions a from state s. But note that one of these actions is

optimal for state s, and thus:

V ∗(s) = max
a′

Q(s, a′)

• With the above,

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

can be rewritten as:

Q(s, a) ≡ r(s, a) + γmax
a′

Q(δ(s, a), a′),

thus getting rid of V ∗(δ(s, a)).

20

Learning the Q Function: Getting Rid of r and δ

In state s, execute action a, and observe immediate reward r and resulting state s′. Then, simply use

those r and s′ you got without worrying about r(s, a) or δ(s, a).

• Initialize the estimate Q̂(s, a) to zero.

• Iteratively update, with estimated function Q̂(s, a):

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′).

21

The Q Learning Algorithm

1. For each s, a, initialize the table entry Q̂(s, a) to zero.

2. Observe the current state s.

3. Do forever:

• Select action a and execute.

• Receive immediate reward r.

• Observe resulting state s′.

• Update table entry for Q̂(s, a) as:

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′).

• s← s′

22

Q Learning Properties

• For deterministic Markov decision processes

• Q̂ converges toQ, when

– process is deterministic MDP,

– r is bounded (and non-negative), and

– actions are chosen so that every state-action pair is visited infinitely often.

23

Example

s 1 s 2 s 3

s 4 s 5 s 6

Robo
73

66 81

100 s 1 s 2 s 3

s 5s 4 s 6

Robo
8166

90 100

(a) Initial state, in s1 (b) Next state, in s2

Arrows represent the Q̂ values.

• Move right (a = aright) and get immediate reward r = 0, with discount rate γ = 0.9:

Q̂(s1, aright) ← r + γmax
a′

Q̂(s2, a
′
)

← 0 + 0.9 max{66, 81, 100}

← 90

• Note that in (b), the Q̂(s1, aright) value is updated from 73 to 90.

24

Exercise, from scratch

s 1 s 2 s 3

s 4 s 5 s 60
t=0

t=1 t=2 t=3
0 0 s 1 s 2 s 3

s 4 s 5 s 6

100

0
t=0

t=1 t=2 t=3
0

(a) Initial stateQ(s, a) = 0 (b) After one iteration

• Robot moved from s4 → s1 → s2 → s3.

• How do the variousQ(s, a) values get updated?

– For the first iteration?

– For the next iteration of s4 → s1 → s2 → s3?

25

Final learned Q̂

G
0

81

90 100

81
90 90

81

100

72

81

72
81

• For this domain, following actions that have maxQ(s, a) will lead you to the goal through an

optimal path.

26

Convergence of Q̂ to Q

• Properties (for non-negative rewards):

∀s, a, n : Q̂n+1(s, a) ≥ Q̂n(s, a)

∀s, a, n : 0 ≤ Q̂n(s, a) ≤ Qn(s, a)

• In general, convergence is guaranteed under three conditions:

1. The system is a deterministic MDP.

2. The reward is bounded (∀s, a) |r(s, a)| < c for a fixed constant c.

3. All (s, a) pairs are visited infinitely often.

27

Proof of Convergence: Sketch

• The table entry Q̂(s, a) with the largest error must have its error reduced by a factor of γ

whenever it is updated.

• The updated Q̂(s, a) will be based on the error-prone Q̂(s, a) only partially. The accurate

immediate reward r used in theQ update rule will help reduce the error.

• Proof: Define a full interval to be an interval during which each table entry 〈s, a〉 is visited.

During each full interval the largest error in Q̂ table is reduced by factor of γ.

28

Convergence of Q

Let Q̂n be table after n updates, and ∆n be the maximum error in Q̂n ; that is

∆n = max
s,a
|Q̂n(s, a)−Q(s, a)|

For any table entry Q̂n(s, a) updated on iteration n+ 1, the error in the revised estimate Q̂n+1(s, a) is

|Q̂n+1(s, a)−Q(s, a)| = |(r + γmax
a′

Q̂n(s
′
, a
′
))

−(r + γmax
a′

Q(s
′
, a
′
))|

= γ|max
a′

Q̂n(s
′
, a
′
)−max

a′
Q(s
′
, a
′
)|

≤ γmax
a′
|Q̂n(s

′
, a
′
)−Q(s

′
, a
′
)|

≤ γ max
s′′,a′

|Q̂n(s
′′
, a
′
)−Q(s

′′
, a
′
)|

|Q̂n+1(s, a)−Q(s, a)| ≤ γ∆n

29

Convergence in Q

• Main result:

|Q̂n+1(s, a)−Q(s, a)| ≤ γ∆n

• That is, error in the updated Q̂(s, a) is less than γ times the max error in the table before the

update.

• Note that γ < 1.0.

• Given initial ∆0, after k visits to 〈s, a〉, the error will be at most γk∆0, and as k →∞,

∆k → 0.

30

Constructing the Policy from the Learned Q

1. Greedy: given state s, pick argmaxaQ(s, a).

• May cause the agent to exploit early successes and ignore interesting possibilities.

• This would prevent the agent from visiting all (s, a) pairs infinitely often.

2. Probabilistic: pick action ai with probability:

P (ai|s) =
kQ̂(s,ai)∑
j k

Q̂(s,aj)

where k > 0 controls exploration (low k) vs. exploitation (high k, greedy).

31

Updating Sequence

No specific order of (s, a) visit is necessary for convergence. However, this can be inefficient.

1. Perform update in reverse order, once the goal has been reached.

2. Store past state-action transitions.

32

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V,Q by taking expected values

V π(s) ≡ E[rt + γrt+1 + γ2rt+2 + . . .]

≡ E
[∞∑
i=0

γirt+i

]

Q(s, a) ≡ E[r(s, a) + γV ∗(δ(s, a))]

33

Nondeterministic Case

Q(s, a) can be redefined as follows:

Q(s, a) ≡ E[r(s, a) + γV ∗(δ(s, a))]

= E[r(s, a)] + γE[V ∗(δ(s, a))]

= E[r(s, a)] + γ
∑
s′
P (s′|s, a)V ∗(s′)

Finally, rewriting it recursively, we get:

Q(s, a) = E[r(s, a)] + γ
∑
s′
P (s′|s, a) max

a′
Q(s′, a′)

34

Nondeterministic Case: Learning

Using the original learning rule can result in oscillation in Q̂(s, a), and thus no convergence. Taking a

decaying weighted average can solve the problem:

Q̂n(s, a)← (1− αn)Q̂n−1(s, a) + αn

[
r + γmax

a′
Q̂n−1(s′, a′)

]
where

αn =
1

1 + visitss(s, a)

and α determines how much the old and new Q̂ values will be used. The αn formula above is known

to allow convergence (there can be other formulas).

35

Temporal Difference Learning

Q learning reduces the difference between Q̂ of a state and its immediate successor (one-step look ahead). This

can be generalized to include more distant successors.

Q learning reduces the difference between Q̂ of a state

• Q̂(st, at) is estimated based Q̂(st+1, ·), where st+1 = δ(st, at).

• One-step look ahead:

Q
(1)

(st, at) ≡ rt + γmax
a

Q̂(st+1, a)

• Two-step look ahead:

Q
(2)

(st, at) ≡ rt + γrt+1 + γ
2

max
a

Q̂(st+2, a)

• n-step look ahead:

Q
(n)

(st, at) ≡ rt + γrt+1 + ...+ γ
(n−1)

rt+n−1 + γ
n

max
a

Q̂(st+n, a)

36

Learning in TD

TD(λ) for learningQ using various lookaheads (0 ≤ λ ≤ 1):

Q
λ
(st, at) ≡ (1 − λ)

[
Q

(1)
(st, at) + λQ

(2)
(st, at) + λ

2
Q

(3)
(st, at) + ...

]

which can be rewritten recursively:

Qλ(st, at)

= (1 − λ)
[
Q(1)(st, at) + λQ(2)(st, at) + λ2Q(3)(st, at) + ...

]
= ...

= rt + γ(1 − λ)maxa Q̂(st+1, a) + γλ
[
rt+1 + γ(1 − λ)maxa Q̂(st+2, a) + ...

]
= rt + γ

[
(1 − λ)maxa Q̂(st+1, a) + λQλ(st+1, at+1)

]

Note: there’s a typo in Mitchell’s book. rt + γ

(1 − λ)maxa Q̂(st︸︷︷︸
typo

, a) + λQλ(st+1, at+1)

37

TD(λ) Properties

Q
λ
(st, at) = rt + γ

[
(1 − λ)max

a
Q̂(st+1, at) + λQ

λ
(st+1, at+1)

]

• TD(0): same asQ(1).

• TD(1): only observed rt+i values are considered.

• WhenQ = Q̂,Qλ values are the same for any 0 ≤ λ ≤ 1.

38

Curious Properties of TD(λ)

Why is TD(λ) not 0 when λ = 1? Note that TD(0)= Q(1).

Q
λ
(st, at) = (1 − λ)

[
Q

(1)
(st, at) + λQ

(2)
(st, at) + λ

2
Q

(3)
(st, at) + ...

]

It’s because of the infinite sum that involve λ:

Q
λ

= (1 − λ)Q(1)
+ (1 − λ)λQ(2)

+ (1 − λ)λ2Q(3)
+ ...

= (1 − λ)(rt + ..) + (1 − λ)λ(rt + γrt+1..) + (1 − λ)λ2(rt + γrt+1 + γ
2
rt+2..) +

= (1 − λ)rt + (1 − λ)λrt + (1 − λ)λ2rt + ...

= (1 − λ)
∞∑
n=0

λ
n
rt + ...

= (1 − λ)
1

1 − λ
rt + ...

= rt + ...

39

TD(λ) Properties

• Sometimes converges faster thanQ learning

• Converges for learning V ∗ for any 0 ≤ λ ≤ 1 (Dayan, 1992)

• Tesauro’s TD-Gammon uses this algorithm

40

Q-learning and variants (ALP)

• Q-learning : use max a from next state

• SARSA : randomly pick a from next state

• SARSA(λ) : uses eligibility traces

41

Q-learning (ALP)

Use maxa′ Q(s′, a′)

42

SARSA (ALP)

UseQ(s′, a′) of a′ picked from current policy.

43

Eligibility Traces (ALP)

• Needed in SARSA(λ)

• Update ALL (s, a) pairs after each action!

• Weight the update with recency information

→ If (s, a) was more recently taken, give more weight.

44

SARSA(λ) (ALP)

Use eligibility trace. λ controls how fast the e.t. degrades.

45

Partially Observable States (ALP)

• The agent does not know its state but receives an observation ot with probability

P (ot+1|st, at), which can be used to infer a belief about the true state.

• Partially Observable MDP = POMDP

46

Subtleties and Ongoing Research

• Replace Q̂ table with neural net or other generalizer : Deep RL!

• Make state and action space continuous : Deep RL!

• Handle case where state is only partially observable (partially observable MDP, or POMDP).

• Design optimal exploration strategies.

• Extend to continuous action, state.

• Learn and use δ̂ : S ×A→ S.

• Relationship to dynamic programming.

• Multi-task learning, Meta learning: Deep RL!

47

