Support-Vector Machines

e Haykin chapter 6.
® See Alpaydin chapter 13 for similar content.

® Note: Part of this lecture drew material from Ricardo

Gutierrez-Osuna’s Pattern Analysis lectures.



Introduction

® Support vector machine is a linear machine with some very nice

properties.

® The basic idea of SVM is to construct a separating hyperplane
where the margin of separation between positive and negative
examples are maximized.

® Principled derivation: structural risk minimization

— error rate is bounded by: (1) training error-rate and (2)
VC-dimension of the model.

— SVM makes (1) become zero and minimizes (2).



Optimal Hyperplane

For linearly separable patterns { (x;, d;) };L{ (with

d; € {—I—l, —1}):

e The separating hyperplane is w!'x + b = 0:

WTX—I—bZ 0 ford; = +1
T _
w x+b<0 ford; = —1

e Let w,, be the optimal hyperplane and b,, the optimal bias.



Distance to the Optimal Hyperplane

e q
® From WZ x,; = —b,, the distance from the origin to the hyperplane is

calculated as:

—b,
d = ||x;]|| cos(x;, W) =

[wo |l

since

w, x; = [[woll|x:] cos(wo,x:) = —b,



Distance to the Optimal Hyperplane (cont’d)

® The distance from an arbitrary point to the hyperplane can be calculated as:
— When the point is in the positive area:

xT'w, b, xt'w, + b,

r = ||x|| cos(x,w,)—d = + =
[woll  lIwoll [woll

— When the point is in the negative area:

xTw, bo xt'w, + b,

r=d—||lxz|l cos(x.w,) = — — = —
el cosx, wo) = =11~ Twal iwol
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Optimal Hyperplane and Support Vectors

Support Viectors

® Support vectors: input points closest to the separating
hyperplane.

e Margin of separation p: distance between the separating
hyperplane and the closest input point.



Optimal Hyperplane and Support Vectors (cont'd)

® The optimal hyperplane is supposed to maximize the margin of
separation p.

e With that requirement, we can write the conditions that w, and
b, must meet:

wlx4+bo > +1 ford; = +1

wfx—l—bo < —1 ford; = —1

Note: > +1 and < —1, and support vectors are those x(5)
where equality holds (i.e., WZX(S) + bo = +1 or —1).

b)

o Sincer = (Wlx+bo)/||lwo

1/||wo| ifd=+1
“1/||wo| ifd=—1
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Optimal Hyperplane and Support Vectors (cont'd)

Support Viectors

® Margin of separation between two classes is

2
p=2r = :
[woll

® Thus, maximizing the margin of separation between two classes

IS equivalent to minimizing the Euclidean norm of the weight w,!
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Primal Problem: Constrained Optimization

For the training set 7 = {(x;,d;)}i'_, find w and b such that

® they minimize a certain value (1/p) while satisfying a constraint
(all examples are correctly classified):
— Constraint: df,;(WTx,,; +b)>1fort=1,2,...,N.

— Cost function: &(w) = %WTW.

This problem can be solved using the method of Lagrange multipliers
(see next two slides).



Mathematical Aside: Lagrange Multipliers

Turn a constrained optimization problem into an unconstrained
optimization problem by absorbing the constraints into the cost
function, weighted by the Lagrange multipliers.

Example: Find point on the circle 2 + y2 = 1 closest to the point

(2, 3) (adapted from Ballard, An Introduction to Natural Computation,
1997, pp. 119-120).

e Minimize F'(z,y) = (x — 2)? + (y — 3)? subject to the
constraint 2 + y? — 1 = 0.

® Absorb the constraint into the cost function, after multiplying the
Lagrange multiplier c.

F(z,y,0) = (z —2)° + (y — 3)° + a2 +¢° — 1),
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Lagrange Multipliers (cont'd)

Must find ', vy, & that minimizes
F(z,y,a) = (x —2)° + (y — 2)? + a(x® + y* — 1). Setthe
partial derivatives to 0, and solve the system of equations.

OF
— =2(x — 2) +2ax =0
ox
OF
2 =y~ 2) + 20y = 0
Oy
OF
— =z’ 4y’ —1=0
O

Solve for  and y in the 1st and 2nd, and plug in those to the 3rd equation

v=riaw (a) () =
CIj_y_l—l—oz’ > 1 + « 1 + « -

from which we get & = 2+/2 — 1. Thus, (z,y) = (1//2,1//2).
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Primal Problem: Constrained Optimization (cont’d)

Putting the constrained optimization problem into the Lagrangian form,
we get (utilizing the Kunh-Tucker theorem)

N
1
J(w,ba)=-wlw— Zaz [dz(Wsz +b) — 1]
i=1
e From 8’](5\;"?’0‘) = 0:
N
W = Z o;d;X;
i=1




Primal Problem: Constrained Optimization (cont’d)

e Note that when the optimal solution is reached, the following
condition must hold (Karush-Kuhn-Tucker complementary

condition)
QU [di(WTXZ' + b) — 1} =0
foralle = 1,2,..., V.

® Thus, non-zero ;s can be attained only when
|di(wlx; +b) — 1] = 0, i.e., when the c; is associated

with a support vector x(8)]

e Other conditions include c; > 0.
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Primal Problem: Constrained Optimization (cont’d)

® Plugginginw = > .

1=1

o;d;x; and 271,\7:1 a;d; = 0 back into

J(w, b, o), we get the dual problem.

J(w,b,a) =

%WTW — Zi\le % [di(wai +b) — 1]
%WTW Zi\r:1 O‘z'dz'WTXz

{noting wliw = 27],\;1 a;d;w! x;
N _
and from > =7 | a;d; = O}
1 <N T N
=3 2uim1 G diWT X ) Gl
1 N N vodod.xT ~x N .
—5 2z Zj:l ajodid;x; x5+ ) L o

Q(a).

e So, J(w,b,a) = Q(a) (a; > 0).

® This results in the dual problem (next slide).
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Dual Problem

e Given the training sample {(x;,d;)};'_,, find the Lagrange

multipliers {cv; }7Y_, that maximize the objective function:

Qla) = ——YYozzozjd d;ix] x; —I—Zaz

1=1 75=1

subject to the constraints
N
- 2 iz idi =0
- «; > 0foralle =1,2,...,N.

® The problem is stated entirely in terms of the training data

T

(x4, d;), and the dot products X x; play a key role.

15



Solution to the Optimization Problem

Once all the optimal Lagrange mulitpliers «,, ; are found, w, and bo
can be found as follows:

N
W, = E Qo idiX;
i=1
T

and from w x; + b, = d; when x; is a support vector:
bo = d®) — wl'x(s)

Note: calculation of final estimated function does not need any explicit
calculation of w since they can be calculated from the dot product
between the input vectors!

N

ng: E aojidix?x
=1
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Margin of Separation in SVM and VC Dimension

Statistical learning theory shows that it is desirable to reduce both the
error (empirical risk) and the VC dimension of the classifier.

e Vapnik (1995, 1998) showed: Let D be the diameter of the
smallest ball containing all input vectors x;. The set of optimal
hyperplanes defined by WOTX + bo, = 0 has a VC dimension h
bounded from above as

D2
hgmin{{—Q_‘ ,mo}—l—l
0

where [-| is the ceiling, p the margin of separation equal to
2/||wo||, and mq the dimensionality of the input space.

® The implication is that the VC dimension can be controlled
independetly of mq, by choosing an appropriate (large) p!
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Soft-Margin Classification

J
Support Vectors
0

Inside margin, correctly classified
® Some problems can violate the condition:
di(WTX@' + b) > 1
: : AN .
e We can introduce a new set of variables {&; } ;¥ ;:
d;(wlx; +b) >1—¢&
i(Wix; +b) > &

where &; is called the slack variable.
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Soft-Margin Classification (cont'd)

We want to find a separating hyperplane that minimizes:

®(¢) = ZI(@ ~ 1)

where I(£) = 0if & < 0 and 1 otherwise.

Solving the above is NP-complete, so we instead solve an approximation:

P(§) = Z &

Furthermore, the weight vector can be factored in:

1 N
d(x,£) = —wlw + C &
R =1
Controls VC dim N

Controls error

with a control parameter C'. 19



Soft-Margin Classification: Solution

e Following a similar route involving Lagrange multipliers, and a

more restrictive condition of 0 < «; < C, we get the solution:

Ng
W, = E 0o, i diX;
i=1

bo — di(l — 52) — ngi
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Nonlinear SVM

Input space

Feature space

e Nonlinear mapping of an input vector to a high-dimensional
feature space (exploit Cover’s theorem)

e® Construction of an optimal hyperplane for separating the features

identified in the above step.
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Inner-Product Kernel

e Input X is mapped to ¢(x).

e With the weight w (including the bias b), the decision surface in

the feature space becomes (assume g (x) = 1):

wl p(x) =0

® Using the steps in linear SVM, we get
N
W — Zazdch(xz)
i=1
e Combining the above two, we get the decision surface

N
> aidip’ (xi)p(x) = 0.
1=1
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Inner-Product Kernel (cont’'d)

e The inner product ¢! (x)¢(x; ) is between two vectors in the
feature space.

® The calculation of this inner product can be simpified by use of a
inner-product kernel K (x,%;):

K(x,x:) = " (x)¢ Zsog x):p; (%)

where m 1 is the dimension of the feature space. (Note:
K(x,x;) = K(x4,%).)

® 5o, the optimal hyperplane becomes:
N
Z Oéz'dz'K(X, Xz’) =0
1=1
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Inner-Product Kernel (cont’'d)

e Mercer’s theorem states that K (x, X; ) that follow certain
conditions (continuous, symmetric, positive semi-definite) can be
expressed in terms of an inner-product in a nonlinearly mapped

feature space.

e Kernel function K (x, X; ) allows us to calculate the inner
product ¢! (x)¢p(x;) in the mapped feature space without any
explicit calculation of the mapping function ¢o(-).
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Examples of Kernel Functions

Linear: K (x,x;) = x! x;.
Polynomial: K (x,x;) = (x'x; + 1)P.
RBF: K (x, X;) = exp (—# Ix — xi||2).

Two-layer perceptron: K (x,x;) = tanh (BOXTX?; + 51)
(for some Bg and 31).
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Kernel Example
e Expanding
K(x,%x;) = (1 +x x;)°
with X = [CBl, azg]T, X; = [ib‘il, CCi2]T
K(x,%x;) = 1+4aiz] +2z1027:1740
—I—ﬂf:gaﬁfg + 2x1x41 + 22742
= [1,27,V2z122, 75, V221, V222]

[17 x?l) ﬁmilxi27 $?2, \/§$i17 \/§$12]T
= ()" e(x),

where p(x) = [1, azf, V21 xa, :cg, V21,V 2xza]?t .
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Nonlinear SVM: Solution

® The solution is basically the same as the linear case, where

x1'x; is replaced with K (x, x4 ), and an additinoal constraint

that o < C' is added.
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Nonlinear SVM Summary

Project input to high-dimensional space to turn the problem into a

linearly separable problem.

Issues with a projection to higher dimensional feature space:

e Statistical problem: Danger of invoking curse of dimensionality
and higher chance of overfitting

— Use large margins to reduce VC dimension

e Computational problem: computational overhead for calculating
the mapping (- ):

— Solve by using the kernel trick.
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