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What Is Deep Learning?

Learning higher level abstractions/representations from data.

Motivation: how the brain represents and processes sensory information in a hierarchical manner.

# The ventral (recognition) pathway in the visual cortex has multiple stages
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From LeCun’s Deep Learning Tutorial



Brief Intro to Neural Networks

Deep learning is based on neural networks.
e Weighted sum followed by nonlinear activation function.

e Weights changed w/ gradient descent (1) = learning rate, F'=err):
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Intro to Neural Network: Backpropagation

Weight w;; is updated as: wj; <— w;; + nd;a;, where
® a; : activity at input side of weight w ;.
e Hidden to output weights (thick red weight). 1. is target value.

6 = (T — ar)o’ (nety,)

® Deeper weights (green line in figure above).
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What Neurons Do in a Neural Network

Two points of view (both are valid):
e Function approximation
e Decision boundary

* Represent input features — more on this later.



Function Approximation

® Assume one input unit (scalar value).

e Depending on # of hidden layers, # of hidden units, etc., function with any complex shape can be
learned. Ex: y = sin(x).



Example: y = sin(x)

Trairing Result; Madel=[2 tanh: 1, inear] apocns=10000

—— Model Frediction
anie
i

o —

- - - 1] 1 s &

input
Laesr Hidden layer activites & sinix): Mosel=[2 tanh:1, linear]

== mnix] — p E—
- — = o 1 L] 6

Top: sin(x) nnet: Model=[# of units, activation func, [next layer spec], ... |

Bottom: sin () vs. the hidden unit’s output of last hidden layer.




Ex: y = sin(x) Model=[2,tanh:1,linear]

Traiming Resull; Model=[2 tanh;1,linear] epochs= 10000

200 e — Hadel Frediction
anl

ourput
e
B
£
e,
-
P

input
Last Hidden layer activites & sinlx): Model=[2 tamh:]1, linear]

utput
!

® One hidden layer with 2 units, One output unit. [2,tanh:1,linear]
e Bottom plot: Hidden neurons represent sigmoids.

® Top plot: Output unit is a linear combination of two sigmoids.



Ex: y = sin(xz) Model=[20,tanh:3,tanh:1,linear]

Training Resull: Mogel=|20,tanh:3,tani: L linear] epochs=10000
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® 2nd hidden layer represents linear combination of 20 sigmoids.




Ex: y = sin(xz) Model=[20,tanh:5,tanh:1,linear]

Training Resull: Mogel=|20,tanh:5,tanm: L linear] epochs=10000
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o Out-of-range inputs illustrate the limitation of DL.



Ex: y = sin(x) Model=[30,tanh:1,linear]

Trairang Resull: Mode =] 30,tan e Llinear] epachs=10000
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® Does a single hidden layer suffice? — Yes, with enough neurons.



Decision Boundary
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Perceptrons (step function activation) can only represent linearly separable functions.

o Output of the perceptron:
Wo X Iop + W71 X I1 —t > 0, thenoutputis 1

Wo X Io+ W1 X I1 —t <0, thenoutputis — 1

If activation function is sigmoid, decision is a smooth ramp.
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Decision Boundary

I
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® Rearranging
Wo X Io + W71 X I1 —t > 0, thenoutputis 1,

we get (if W1 > 0)

— W,
I > 0

t
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where points above the line, the output is 1, and -1 for those below the line. Compare with




Limitation of Perceptrons
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e Only functions where the -1 points and 1 points are clearly separable can be represented by

perceptrons.

® The geometric interpretation is generalizable to functions of n arguments, i.e. perceptron with 1

inputs plus one threshold (or bias) unit.
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Generalizing to n-Dimensions

http://mathworld.wolfram.com/Plane.html

n=(a,b,c),Z=(x,y,2),20 = (x0, Y0, 20)-
Equation of the plane: 77 - (¥ — zp) = 0

In short, ax + by + cz + d = 0, where a, b, ¢ can serve as the weight,and d = —n - z as

the bias.

For n-D input space, the decision boundary becomes a (n — 1)-D hyperplane (1-D less than

the input space).



Linear Separability
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e Functions/Inputs that can or cannot be separated by a linear boundary.
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Decision Boundary in Multilayer Networks
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e Multiple decision regions.
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Decision Boundary Demo with Tensorflow Playground

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

o teratons Learning rate Actvation Reguiarzation Reguiarzation rate Problem type
»
000,106 003 Tanh -~ None ) Classification

DATA FEATURES

+
|

3 B

REDE]

Um. What Is a Neural Network?

e http://playground.tensorflow.org
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http://playground.tensorflow.org

Deep Learning

e Complex models with large number of parameters
— Hierarchical representations
— More parameters = more accurate on training data

— Simple learning rule for training (gradient-based).

e |ots of data
— Needed to get better generalization performance.

— High-dimensional input need exponentially many inputs (curse of dimensionality).

e Lots of computing power: GPGPU, etc.

— Training large networks can be time consuming.
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Deep Learning, in the Context of Al/ML
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1. Goodfellow

From LeCun’s Deep Learning Tutorial



The Rise of Deep Learning

Made popular in recent years
e Geoffrey Hinton et al. (2006).
o Andrew Ng & Jeff Dean (Google Brain team, 2012).

e Schmidhuber et al’s deep neural networks (won many competitions and in some cases showed
super human performance; 2011-). Recurrent neural networks using LSTM (Long Short-Term
Memory).

e Google Deep Mind: Atari 2600 games (2015), AlphaGo (2016).

e ICLR, International Conference on Learning Representations: First meeting in 2013.
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Long History (in Hind Sight)

Fukushima’s Neocognitron (1980).
LeCun et al.'s Convolutional neural networks (1989).
Schmidhuber’s work on stacked recurrent neural networks (1993). Vanishing gradient problem.

See Schmidhuber’s extended review: Schmidhuber, J. (2015). Deep learning in neural networks:

An overview. Neural Networks, 61, 85-117.
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History: Fukushima’s Neocognitron
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Appeared in journal Biological Cybernetics (1980).
Multiple layers with local receptive fields.
S cells (trainable) and C cells (fixed weight).

Deformation-resistent recognition.
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History: LeCun’s Colvolutional Neural Nets

10 output units

fully connected
~ 300 links
layer H3

30 hidden units fully connected

~ 6000 links
layer H2

12 x 16=192 gy _ ror — P
hidden units  {X ~ 40,000 links : J B answer: 357
from 12 kernels
SxbB

layer H1
12 x 64 = 768
hidden units 1

~20,000 links
from 12 kernels

77 ] m 5x5
256 input units wl\%-

e Convolution kernel (weight sharing) + Subsampling

e Fully connected layers near the end.

e Became a main-stream method in deep learning.
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Motivating Deep Learning: Tensorflow Demo

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

»
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e http://playground.tensorflow.org

e Demo to explore why deep nnet is powerful and how it is limited.

25


http://playground.tensorflow.org

Current Trends

Focusing on ground-breaking works in Deep Learning:
e Convolutional neural networks
® Deep Q-learning Network (extensions to reinforcement learning)
® Deep recurrent neural networks using (LSTM)

e Applications to diverse domains.

— Vision, speech, video, NLP, etc.

e Lots of open source tools available.
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Deep Convolutional Neural Networks (1)

2048

Krizhevsky et al. (2012)

Applied to ImageNet competition (1.2 million images, 1,000 classes).
Network: 60 million parameters and 650,000 neurons.

Top-1 and top-5 error rates of 37.5% and 17.0%.

Trained with backprop.
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Deep Convolutional Neural Networks (2)

e | earned kernels (first convolutional layer).

e Resembles mammalian RFs: oriented Gabor patterns, color opponency (red-green, blue-yellow).
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Deep Convolutional Neural Networks (3)

# Natural is data is compositional => it is efficiently representable hierarchically

Low-Level Mid-LeveI__ High-Level | | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

e Higher layers represent progressively more complex features.

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (4)

ic
chouj jus
dead-man's-fingers

e Left: Bold = correct label. 5 ranked labels: model’s estimation.

e Right: Test (1st column) vs. training images with closest hidden representation to the test data.
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Deep Convolutional Neural Networks (5)

» Depth inflation
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ImageNet Classification top-5 error (%) (Figure: Anirudh Koul)

e Depth inflation: Deeper is better!

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (6)

VGG 3
[Simonyan 2013] @ E

GooglLeNet
Szegedy 2014]

z
8

ResNet
[He et al. 2015]
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e Not just depth but architecture also matters!

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (7)

» [Canziani 2016] 5 o
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e Computation vs. performance

* From Yann LeCun’s Harvard lecture (2019)
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Deep Reinforcement Learning

® Deep = can process complex sensory input

e Reinforcement learning = can choose complex actions
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Current Status of Deep Reinforcement Learning

e Rapidly advancing subfield of reinforcement learning.

® Replace various components of RL with deep neural networks:
— Convolutional neural network for input processing

— value function (e.g. Q function), policy function (7 (s))

e \Various innovations:
— Experience replay (replay buffer)

— Multitask learning, transfer learning, meta learning, immitation learning,
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Variations in Deep Reinforcement Learning

RL Algorithms
|
{ R}
Model-Free RL Model-Based RL
{ } { )
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient <— — DQN —> World Models Lb AlphaZero
> DDPG <
A2C / A3C <— — c51 — I2A
— TD3 Da—
PPO « —> QR-DQN —> MBMF
> SAC <
TRPO «— —> HER ' > MBVE

e Value-based: fit ()(s¢, a+ ), and construct 7 (s; ) based on it (e.g. e-greedy). DQN is an example
e Policy gradient: fit 7m(.s¢ ) directly
e Actor-critic: fit Q) (s¢, at) and use that to improve fit of 7 (s¢)

e Model-based RL: directly model p(s¢1|s¢, at), then plan.

//rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec—4.pdf https://www.youtube.com/watch?v=zR11FLZ—-09M
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Deep Q-Network (DQN)
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Google Deep Mind (Mnih et al. Nature 2015). [?]

e One of the earliest deep learning method applied to a reinforcement learning domain (() as in

(0-learning).

e Applied to Atari 2600 video game playing.
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DQN Overview
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e Input: video frames; Output: () (s, a); Reward: game score.

e Network output () (s, a): action-value function

— Value of taking action a when in state s.
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DQN Overview

Input preprocessing qﬁ(st): takes 4 video frames and stack up.

Experience replay (collect and replay state, action, reward, and resulting state
< St,Qt,Tt, St+1 >)
Delayed (periodic) update of target Q

— Moving target Q value used to compute target reward value v (loss function L,
parameterized by weights ;).

— Gradient descent:
OL

00,
e-greedy policy based on the learned Q) (s, a).
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DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a;
otherwise select a; =argmax, Q(¢(s;).a; 0)
Execute action g, in emulator and observe reward r, and image x; ; ;
Set s;+1=s5¢,a1,%¢+1 and preprocess ¢, . ; =P (s¢41)
Store transition (cﬁt,at,rt,q’)r +1) in D
Sample random minibatch of transitions ((f)-,aj,rj,(f)j +1> from D

7 if episode terminates at step j+ 1
Sety; = rj +7 maxy Q(¢j+1,a’; 9_) otherwise
2
Perform a gradient descent step on (yj -0 ((ﬁ-,aj; Q) ) with respect to the

network parameters 0

Every C steps reset Q= Q
End For
End For
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DQN Results
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DQN Hidden Layer Representation (t-SNE map)

e Similar perception, similar reward clustered.
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DQN Operation
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DQN: Summary

Convolutional network part enables continous video input.
Weights trained end-to-end.
Outputs Q (s, a).

Limitations: cannot do complex planning requiring long term memory, e.g., Montezuma’s revenge

game.
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Alternatives to Deep Reinforcement Learning

e Evolution strategies (OpenAl)

® Deep Neuroevolution (Uber, OpenAl)

— NEAT (NeuroEvolution of Augmenting Topologies) — Stanley and Miikkulainen

Source: https://openai.com/blog/evolution—-strategies/ | https://arxiv.org/abs/1712.06567
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Deep Recurrent Neural Networks

Output1 Output? Outnutl
Outputi Output2 Output3
Inputi —— Input2 —— Input3 Inputi{ ———— Input2 —— Input3
Output2 Output3
Output2 Outputi Output3
Input2 —— Inputt ——— Input3 Input2 ———— Inputi —— Input3
Feedforward Recurrent

® Feedforward networks: No memory of past input.

e Recurrent networks:
— Good: Past input affects present output.

— Bad: Cannot remember far into the past.
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RNN Training: Backprop in Time

®
& . b

= A — A » A —m

i
6 ® & © o

An unrolled recurrent neural network.

e Can unfold recurrent loop: Make it into a feedforward net.
e Use the same backprop algorithm for training.

e Again, cannot remember too far into the past.

Fig fromhttp://colah.github.io/posts/2015-08-Understanding—LSTMs/
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Long Short-Term Memory

Version 1

Tt

£ - Y1

it [, 0¢ - input, forget and output
gates fromOto 1

¢ - memory
b - input, y; - output

TS Y1
L

Ty Y1

it = 0(Wip Ty + WicCi—1 + Wiyyr—1 + b;)
fo = o(wpay + wieci—y +wpyy—1 + by)
0p = O (WopTt + Woelt + Woylt—1 + by)

cr = fici—1 + s - tanh(weg e + Weyli—1) yr = 0 - tanh(cy)

® |LSTM to the rescue (Hochreiter and Schmidhuber, 1997).

e Built-in recurrent memory that can be written (Input gate), reset (Forget gate), and outputted
(Output gate).

Fromhttp://www.machinelearning.ru/wiki/images/6/6c/RNN_and_ LSTM _16102015.pdf
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Long Short-Term Memory

Captures info Keeps info Releases info
\ 35 ;\ \
\ A v
Erases info = RNN

@ -gateisclose

@ -sateisopen
\ v
A \

® |ong-term retention possible with LSTM.

Fromhttp://www.machinelearning.ru/wiki/images/6/6c/RNN_and_ LSTM _16102015.pdf
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Long Short-Term Memory in Action

® e e o
Gp [ A TAF AT
& b o &
RNN Vanilla RNN Unit
(& ®) @
t I 1
ISR IR
© ® ®

The repeating module in an LSTM contains four interacting layers.

LSTM Unit

e Unfold in time and use backprop as usual.

Fig fromhttp://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Applications

* Sequence classification

end

* Sequence translation

end
I
Input sequence

® Applications: Sequence classification, Sequence translation.

Fromhttp://machinelearning.ru
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LSTM Applications

handwriting -> handwriting

Next pen position (we predict parameters):
x1,x2 - mixture of hivariate Gaussians
x3 - Bernoulli distribution

Current pen position:
Xx1,x2 — pen offset
x3 —is it end of the stroke

® Applications: Sequence prediction

Fromhttps://blog.acolyer.org/2017/03/23/recurrent-neural-network-models/
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LSTM Applications

text -> handwfriting

Next pen position

Current pen position

Which letter we write now

® Applications: Sequence classification, Sequence prediction, Sequence translation.

Fromhttp://machinelearning.ru
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RNN with Attention Mechanism
®» ® ® > & @

] I I I il s dl] e
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® RNN uses the last hidden vector from the encoder as input to the decoder.

e RNN with Attention (Bahdanau et. al. 2015):
— Uses weighted sum of all hidden vectors, not just the last one from the decoder.

— Uses the states of the encoder and the hidden vectors to compute the weighting of the
hidden vectors (the attention weight): simple FFW net is used.

— The attention weights dynamically change based on the input and output.

Attention weights are determined by the FFW net (trained, end-to-end).
Source: Bahdanau, Cho, and Bengio (ICLR 2015)

Source: figs: Nir Arbel ht t ps : //medium.datadriveninvestor.com/
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RNN with Attention: Example (NMT)
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® Xx-axis: source language; y-axis: target language

e pixels: attention weight cv;; (7-th source to -th target)

Source: Bahdanau, Cho, and Bengio (ICLR 2015)
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Deep Learning Applications: Vision

# Give the name of the dominant object in the image

& Top-5 error rates: if correct class is not in top 5, count as error
P Red:ConvNet, blue: no ConvNet

e ConvNet sweepting image recognition challenges.

From LeCun’s Deep Learning Tutorial
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Deep Learning Applications: Speech

The dramatic impact of Dee
Learning on Speech Recognition

according ko Microsoft)
100%

Using DL

10% \

4%

Word error rate on Switchboard

2%

1%

1990 2000 2010

e Deep learning led to major improvement in speech recognition.

From LeCun’s Deep Learning Tutorial
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Deep Learning Applications: Speech

#Training samples.
40 MEL-frequency Cepstral Coefficients

{(O
»Window: 40 frames, 10ms each
N
® 40 (temporal

H HIE
£ HIE
H HlE
3 2
5
8

3x40x40 9x9 64x32x32 4x1 64x8x32  4x4 64x5x29 1024 1024 1024 3000

#Acoustic Model: ConvNet with 7 layers. 54.4 million parameters.
#Classifies acoustic signal into 3000 context-dependent subphones categories
#Rel U units + dropout for last layers

#Trained on GPU. 4 days of training

e ConvNet can also be applied to speech recognition.
® Use spectrogram and treat it like a 2D image.

e SOTA: end-to-end attention-based RNN (w/ LSTM, GRU, ...)

From LeCun’s Deep Learning Tutorial
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Deep Learing Applications: NLP

6 perfect translation
* ) 4

[ — o —
> . . Encoder €p | @ | ez | es v oy | @, »| e
£ 4 | neural (GNMT)
g |
= phrase-based (PBMT)
g 3
&
]
g 2
" |

1

Decoder do : dy . d-

English  English  English  Spanish  French  Chinese
> > >

> > >
Spanish  French  Chinese  English  English  English J L ‘

Translation model

e Based on encoding/decoding and attention.

Fromhttps://research.googleblog.com/2016/09/a-neural-network—for-machine.html
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Deep Learing Applications: NLP

Encoder LSTMs

GPUSB

Bilayers

GPU3

GPU2

GPU2 ©

GPU1 |

e Google’s LSTM-based machine translation.

How attention works: https://jalammar.github.io/

,n%

f

—'—> Attention

v, T oy, =

+—

oy,

GPUB

GPU3
GPU2

GPU1

Wu et al. arXiv:1609.08144 (2016).

visualizing-neural-machine-translation-mechanics-of-seg2seq-models-with—attention/
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Deep Learning for NLP: Transformers

Qutput
Probabilities

Linear

Feed
Forward

Multi-Head

Feed Attention
Forward Nx
p N e
Multi-Head Multi-Head
Scaled Dot-Product h Attention Attention
Attention A r LY )
—
tl l il - ~
o 1 o | Posmolnal ) A Positional
Linear PH Linear PH Linear Encoding Encoding
| Input | Output I
Embedding Embedding
Inputs Outputs
vV K Q (shifted right)
Multihead Self-attention Scaled Dot-Product Attention Transformer

e Highly parallelizable, Reduces serial computation
e Multi-head self-attention + position-encoding/position-wise FFW

e Organized over Query, Key, Value (Q,K,V)
: |https://medium.com/@adityathiruvengadam/transformer—architecture—-attention-is—all-you—-need-aeccd9f50d09

rce: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... , and Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
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Deep Learning for NLP: Transformers & BERT

BERT (Ours) OpenAl GPT

Class

Class
Label Label Start/End Span
<>

BERT

| I I I

BERT

[le]- [a]le]=]

= -

i {r iy

Single Sentence

1T

Sentence 1 Sentence 2

Question Paragraph Single Sentence
@ ?\/mt?n;eaiaggﬁsggg?EO%?;éS: ©) 22_?!; Sggt;nce Classifioation Tasks: (c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
RTE éWAG: ’ " ’ ’ SQUAD v1.1

CoNLL-2003 NER
from Devlin et al. 2018

BERT, based on Transformer: Powerful new approach for NLP

62



Deep Learning for NLP: BERT pretraining

NSP Mask LM Mask LM —\\\\\
@« 5

BERT
S N I P X

Masked Sentence A Masked Sentence B

«
Unlabeled Sentence A and B Pair

Pre-training

e BERT learns a language model based on a large corpus of unlabled data (Wikipedia, etc.).
® Two sentences go in as input, and output depends on the task, below.

e Task 1: Masked Language Model
— Predict masked words from a sentence: My dog is [MASK] — My dog is hairy.

e Task 2: Next sentence prediction

— Check if the second sentence follows the first sentence in the text (binary classification).
ource: https://medium.com/swlh/bert—-pre-training-of-transformers—for-language—-understanding-5214fbadaarf

Source: https://medium.com/dair—ai/a-1light—introduction-to—-bert-2da54f96b68c
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Deep Learning for NLP: Transformers & BERT

GLUE scores evolution over 2018-2019

B Single generic models 2018 Task-specific-SOTA == Human performance

90

85

80

75

70

BILSTM+ELMo GPT BERT BERT Big BigBird

e Transformer-based NLP led to big leap in performance.

https:
//medium.com/synapse-dev/understanding-bert-transformer—-attention-isnt-all-you-need-5839ebd396db
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Very Big Transformers: OpenAl’s GPT-3

GPT-3: Generative Pre-Trained Transformer
Huge model: 175 billion parameters

Extremely high quality text generation.

Example: https://philosopherai.com/ (notfree any longer: some examples below)
— https://philosopherai.com/philosopher/can—-consciousness—-survive-after-death-c3bbf5

- https://philosopherai.com/philosopher/is—the-universe-fundamentally-computational—-9dflfc
- https:
//philosopherai.com/philosopher/isnt-buddhism-more-of-a-philosophical-system—than-830bcf

Source: https://arxiv.org/abs/2005.14165 https://openai.com/blog/gpt—3—apps/
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More Advanced Topics

Generative Adversarial Networks (GAN): style transfer, data augmentation, deep fake, etc.
Graph Neural Networks (GNN): molecular fingerprinting, combinatorial optimization, vision, etc.
Meta learning, Transfer learning, Multi-task learning, Imitation learning

Optimizers: Adam, RMSprop, etC. nttps://ruder.io/optimizing-gradient-descent/

Applications: autonomous driving, chat bots, retail, etc.

Continous learning, semisupervised learning, active learning, federated learning

Model compression, Model distillation
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Limitations of Deep Learning

Requires massive amounts of (labeled) data.
Long training time. Large trained models.
Catastrophic forgetting.

Designing good model is done mostly manually.
Vulnerable to adversarial inputs.

Hard to explain how it works / what it learned.
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Overcoming Limitations of DL

Pretty much well known problems, and solutions emerging.
e Data: Active learning, Core sets, data augmentation, etc.
e Computing time: Train with reduced data. Compact models.
e Large trained models: Compression, distillation
e Catastrophic forgetting: Various approaches, not perfect yet.
e Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.
® Adversarial inputs: Adversarial training, defensive distillation, ...

e Explainability: DARPA XAl effort - explanation generation, Bayesian program induction, semantic

associations, etc.
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Advanced/Fundamental Issues in Deep Learning

Reasoning, Common-sense reasoning, Causality

Self-supervised learning, Combining unsupervised and supervised/reinforcement learning
Human-like learning

Meaning/semantic-level processing

Problem posing, Coping with new tasks

Tool construction and tool use

Open-endedness, Artificial General Intelligence (AGI)
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Summary
Deep convolutional networks (DNN): High computational demand, over the board great
performance in vision tasks.

Deep Q-Network: unique apporach to reinforcement learning. End-to-end machine learning.

Super-human performance.

Deep recurrent neural networks: sequence learning. LSTM is a powerful mechanism.
Transformers, based on self-attention, surpasses RNNs, and even infringe on CNN territory.
Diverse applications. Top performance.

Lots of practical and fundamental limits

Flood of deep learning tools available.
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