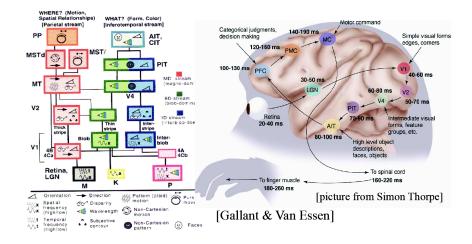
Deep Learning

Machine Learning Lecture
Spring 2021

Yoonsuck Choe

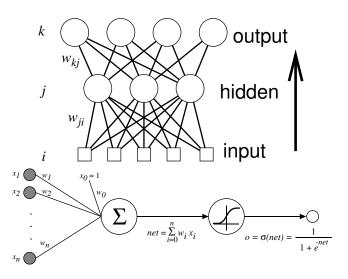
What Is Deep Learning?

- Learning higher level abstractions/representations from data.
- Motivation: how the brain represents and processes sensory information in a hierarchical manner.
 - The ventral (recognition) pathway in the visual cortex has multiple stages
 - Retina LGN V1 V2 V4 PIT AIT



From LeCun's Deep Learning Tutorial

Brief Intro to Neural Networks

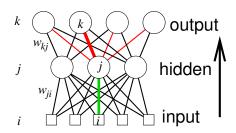


Deep learning is based on neural networks.

- Weighted sum followed by nonlinear activation function.
- Weights changed w/ gradient descent (η = learning rate, E=err):

$$w_{ij} \leftarrow w_{ij} - \eta \frac{\partial E}{\partial w_{ij}}$$

Intro to Neural Network: Backpropagation



Weight w_{ji} is updated as: $w_{ji} \leftarrow w_{ji} + \eta \delta_j a_i$, where

- ullet a_i : activity at input side of weight w_{ji} .
- $\bullet\,$ Hidden to output weights (thick red weight). T_k is target value.

$$\delta_k = (T_k - a_k)\sigma'(net_k)$$

Deeper weights (green line in figure above).

$$\delta_j = \left[\sum_k w_{kj} \delta_k\right] \sigma'(net_j)$$

What Neurons Do in a Neural Network

Two points of view (both are valid):

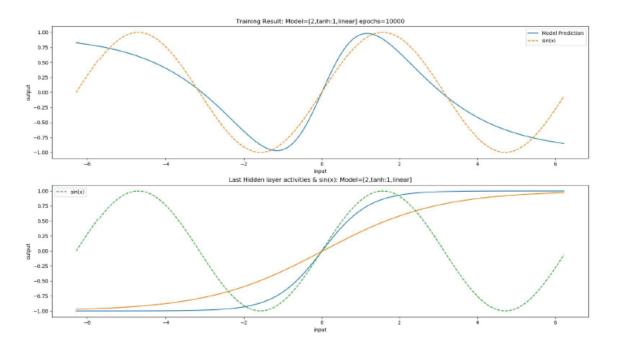
- Function approximation
- Decision boundary

^{*} Represent input features – more on this later.

Function Approximation

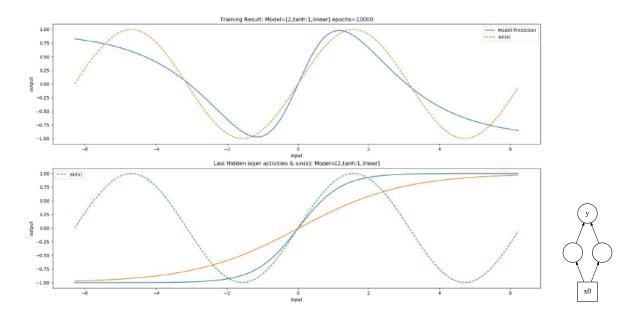
- Assume one input unit (scalar value).
- ullet Depending on # of hidden layers, # of hidden units, etc., function with any complex shape can be learned. Ex: $y=\sin(x)$.

Example: $y = \sin(x)$



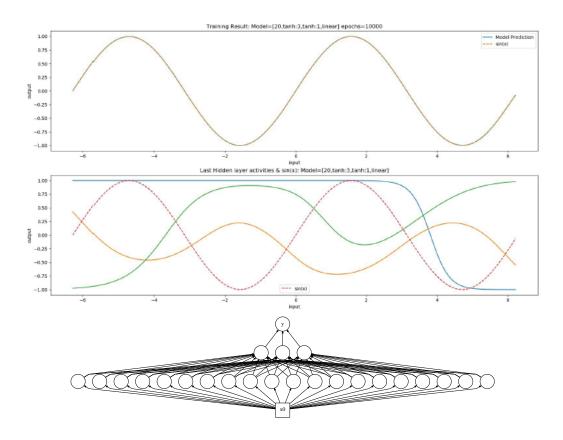
- $\bullet \;\; {\rm Top:} \; \sin(x) \; {\rm nnet:} \; {\rm Model=} \mbox{[\# of units, activation func, [next layer spec], ...]}$
- $\bullet \;\; \mathrm{Bottom} \colon \sin(x)$ vs. the hidden unit's output of last hidden layer.

Ex: $y = \sin(x)$ Model=[2,tanh:1,linear]



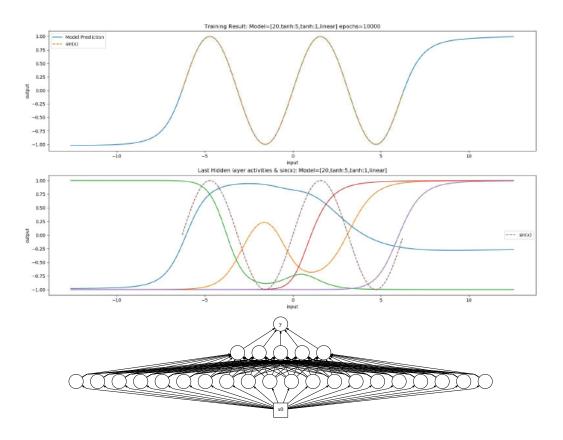
- One hidden layer with 2 units, One output unit. [2,tanh:1,linear]
- Bottom plot: Hidden neurons represent sigmoids.
- Top plot: Output unit is a linear combination of two sigmoids.

Ex: $y = \sin(x)$ Model=[20,tanh:3,tanh:1,linear]



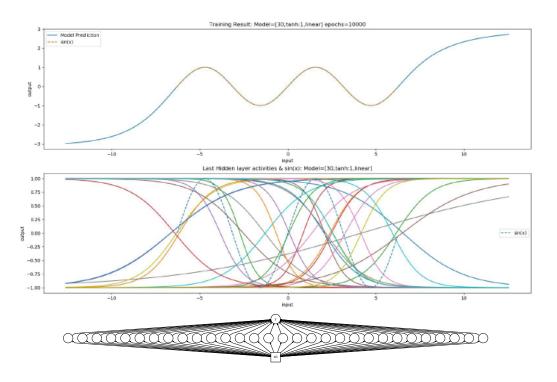
• 2nd hidden layer represents linear combination of 20 sigmoids.

Ex: $y = \sin(x)$ Model=[20,tanh:5,tanh:1,linear]



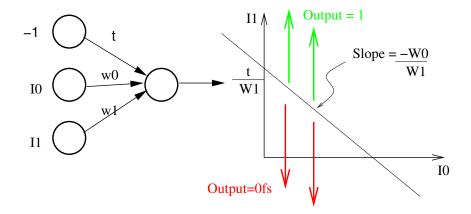
• Out-of-range inputs illustrate the limitation of DL.

Ex: $y = \sin(x)$ Model=[30,tanh:1,linear]



• Does a single hidden layer suffice? – Yes, with enough neurons.

Decision Boundary



Perceptrons (step function activation) can only represent linearly separable functions.

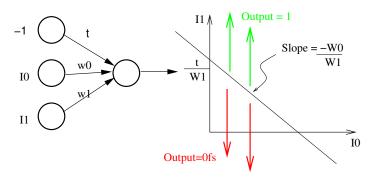
• Output of the perceptron:

$$W_0 imes I_0 + W_1 imes I_1 - t > 0$$
, then output is 1

$$W_0 \times I_0 + W_1 \times I_1 - t \leq 0$$
, then output is -1

If activation function is sigmoid, decision is a smooth ramp.

Decision Boundary



Rearranging

$$W_0 \times I_0 + W_1 \times I_1 - t > 0$$
, then output is 1,

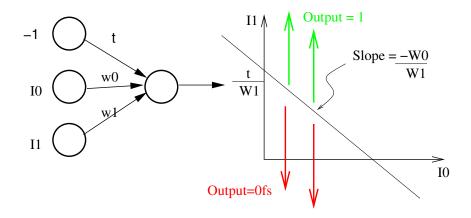
we get (if $W_1 > 0$)

$$I_1 > \frac{-W_0}{W_1} \times I_0 + \frac{t}{W_1},$$

where points above the line, the output is 1, and -1 for those below the line. Compare with

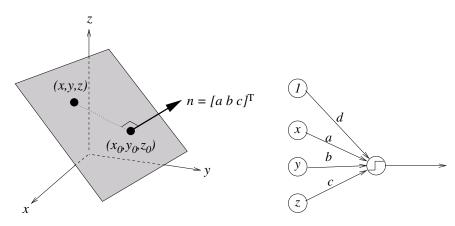
$$y = \frac{-W_0}{W_1} \times x + \frac{t}{W_1}.$$

Limitation of Perceptrons



- Only functions where the -1 points and 1 points are clearly separable can be represented by perceptrons.
- ullet The geometric interpretation is generalizable to functions of n arguments, i.e. perceptron with n inputs plus one threshold (or bias) unit.

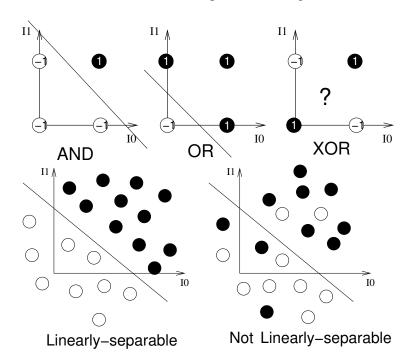
Generalizing to n-Dimensions



http://mathworld.wolfram.com/Plane.html

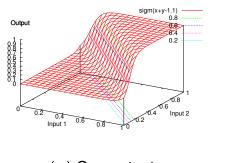
- $\vec{n} = (a, b, c), \vec{x} = (x, y, z), \vec{x_0} = (x_0, y_0, z_0).$
- $\bullet \;$ Equation of the plane: $\vec{n} \cdot (\vec{x} \vec{x_0}) = 0$
- In short, ax+by+cz+d=0, where a,b,c can serve as the weight, and $d=-\vec{n}\cdot\vec{x_0}$ as the bias.
- ullet For n-D input space, the decision boundary becomes a (n-1)-D hyperplane (1-D less than the input space).

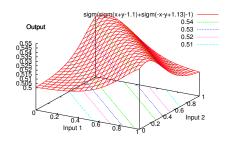
Linear Separability



• Functions/Inputs that can or cannot be separated by a linear boundary.

Decision Boundary in Multilayer Networks

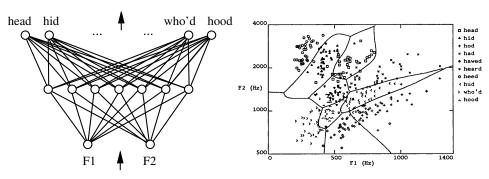




(a) One output

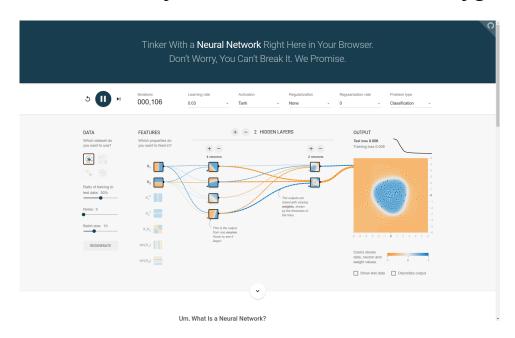
(b) Two hidden, one output

Example: XOR



Multiple decision regions.

Decision Boundary Demo with Tensorflow Playground

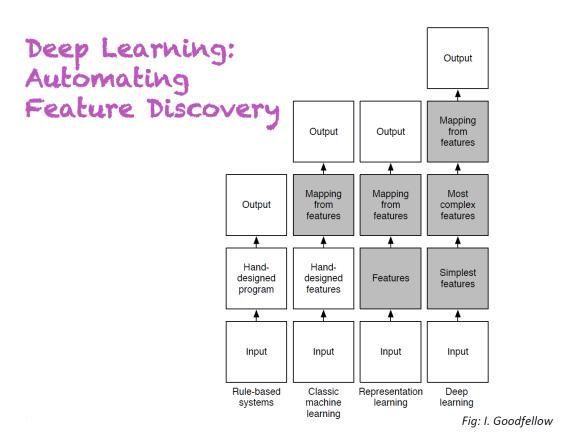


• http://playground.tensorflow.org

Deep Learning

- Complex models with large number of parameters
 - Hierarchical representations
 - More parameters = more accurate on training data
 - Simple learning rule for training (gradient-based).
- Lots of data
 - Needed to get better generalization performance.
 - High-dimensional input need exponentially many inputs (curse of dimensionality).
- Lots of computing power: GPGPU, etc.
 - Training large networks can be time consuming.

Deep Learning, in the Context of AI/ML



From LeCun's Deep Learning Tutorial

The Rise of Deep Learning

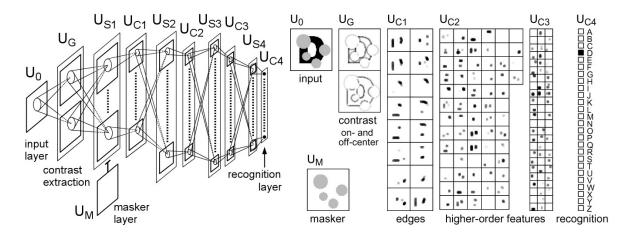
Made popular in recent years

- Geoffrey Hinton et al. (2006).
- Andrew Ng & Jeff Dean (Google Brain team, 2012).
- Schmidhuber et al.'s deep neural networks (won many competitions and in some cases showed super human performance; 2011–). Recurrent neural networks using LSTM (Long Short-Term Memory).
- Google Deep Mind: Atari 2600 games (2015), AlphaGo (2016).
- ICLR, International Conference on Learning Representations: First meeting in 2013.

Long History (in Hind Sight)

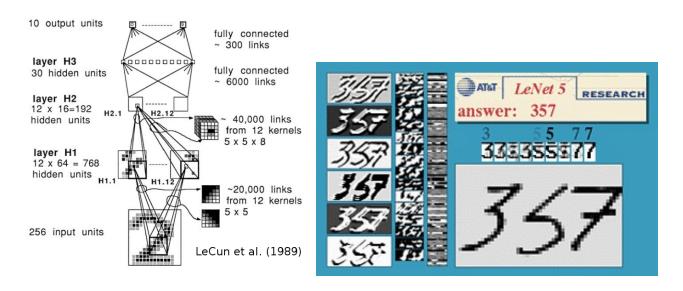
- Fukushima's Neocognitron (1980).
- LeCun et al.'s Convolutional neural networks (1989).
- Schmidhuber's work on stacked recurrent neural networks (1993). Vanishing gradient problem.
- See Schmidhuber's extended review: Schmidhuber, J. (2015). Deep learning in neural networks: An overview. *Neural Networks*, 61, 85-117.

History: Fukushima's Neocognitron



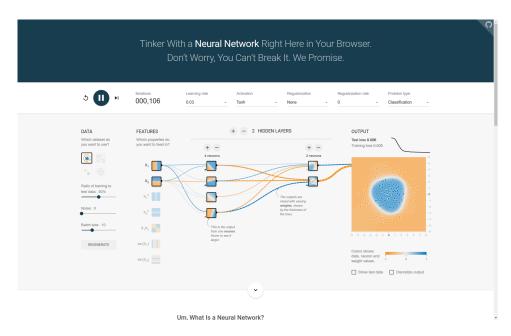
- Appeared in journal *Biological Cybernetics* (1980).
- Multiple layers with local receptive fields.
- S cells (trainable) and C cells (fixed weight).
- Deformation-resistent recognition.

History: LeCun's Colvolutional Neural Nets



- Convolution kernel (weight sharing) + Subsampling
- Fully connected layers near the end.
- Became a main-stream method in deep learning.

Motivating Deep Learning: Tensorflow Demo



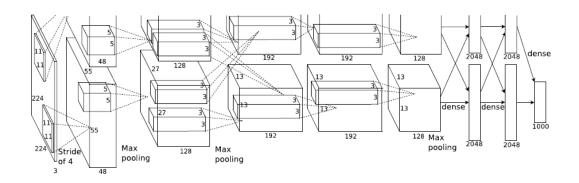
- http://playground.tensorflow.org
- Demo to explore why deep nnet is powerful and how it is limited.

Current Trends

Focusing on ground-breaking works in Deep Learning:

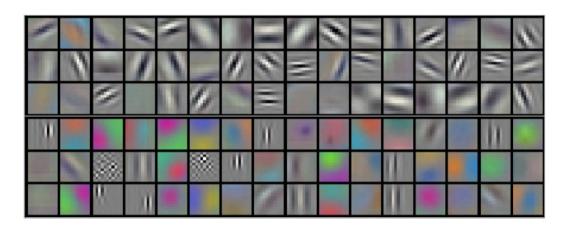
- Convolutional neural networks
- Deep Q-learning Network (extensions to reinforcement learning)
- Deep recurrent neural networks using (LSTM)
- Applications to diverse domains.
 - Vision, speech, video, NLP, etc.
- Lots of open source tools available.

Deep Convolutional Neural Networks (1)



- Krizhevsky et al. (2012)
- Applied to ImageNet competition (1.2 million images, 1,000 classes).
- Network: 60 million parameters and 650,000 neurons.
- Top-1 and top-5 error rates of 37.5% and 17.0%.
- Trained with backprop.

Deep Convolutional Neural Networks (2)



- Learned kernels (first convolutional layer).
- Resembles mammalian RFs: oriented Gabor patterns, color opponency (red-green, blue-yellow).

Deep Convolutional Neural Networks (3)

Natural is data is compositional => it is efficiently representable hierarchically

Low-Level High-Level Feature

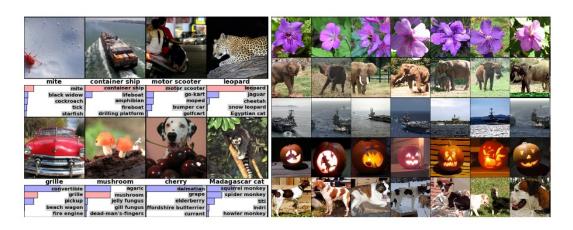
Trainable Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Higher layers represent progressively more complex features.

^{*} From Yann LeCun's Harvard lecture (2019)

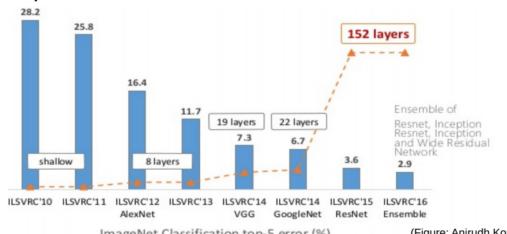
Deep Convolutional Neural Networks (4)



- Left: Bold = correct label. 5 ranked labels: model's estimation.
- Right: Test (1st column) vs. training images with closest hidden representation to the test data.

Deep Convolutional Neural Networks (5)

Depth inflation



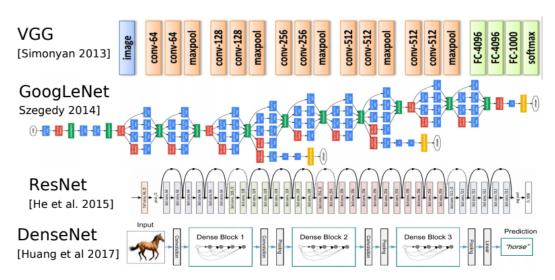
ImageNet Classification top-5 error (%)

(Figure: Anirudh Koul)

• Depth inflation: Deeper is better!

^{*} From Yann LeCun's Harvard lecture (2019)

Deep Convolutional Neural Networks (6)

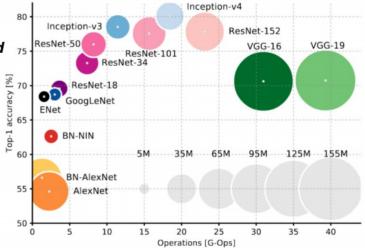


Not just depth but architecture also matters!

^{*} From Yann LeCun's Harvard lecture (2019)

Deep Convolutional Neural Networks (7)

- Canziani 2016]
- ResNet50 and ResNet 100 are used routinely in production.



• Computation vs. performance

^{*} From Yann LeCun's Harvard lecture (2019)

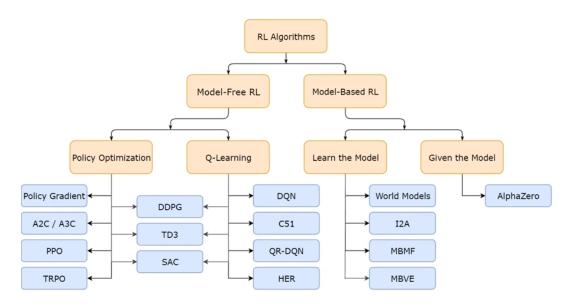
Deep Reinforcement Learning

- Deep = can process complex sensory input
- Reinforcement learning = can choose complex actions

Current Status of Deep Reinforcement Learning

- Rapidly advancing subfield of reinforcement learning.
- Replace various components of RL with deep neural networks:
 - Convolutional neural network for input processing
 - value function (e.g. Q function), policy function $(\pi(s))$
- Various innovations:
 - Experience replay (replay buffer)
 - Multitask learning, transfer learning, meta learning, immitation learning,

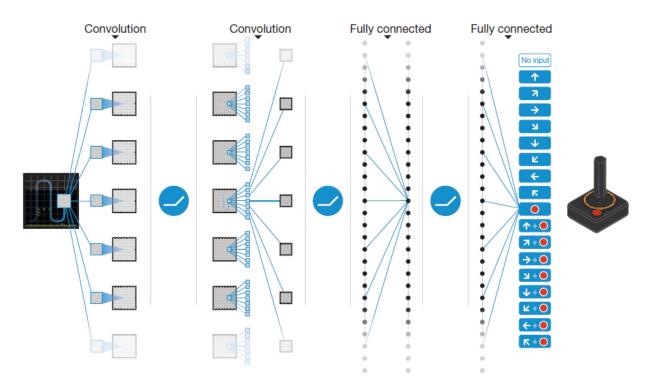
Variations in Deep Reinforcement Learning



- ullet Value-based: fit $Q(s_t,a_t)$, and construct $\pi(s_t)$ based on it (e.g. ϵ -greedy). DQN is an example
- Policy gradient: fit $\pi(s_t)$ directly
- ullet Actor-critic: fit $Q(s_t,a_t)$ and use that to improve fit of $\pi(s_t)$
- Model-based RL: directly model $p(s_{t+1}|s_t,a_t)$, then plan.

//rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-4.pdf https://www.youtube.com/watch?v=zR11FLZ-09M

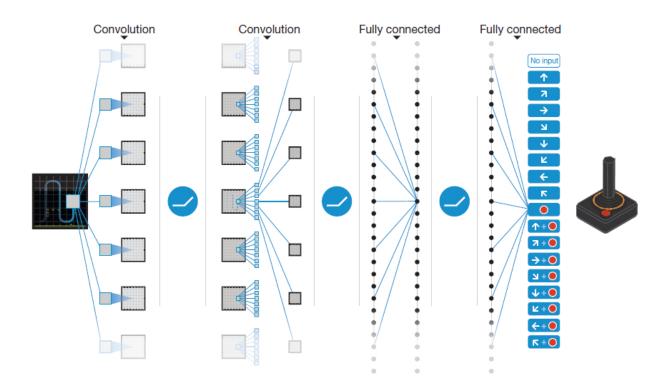
Deep Q-Network (DQN)



Google Deep Mind (Mnih et al. Nature 2015). [?]

- ullet One of the earliest deep learning method applied to a *reinforcement learning* domain (Q as in Q-learning).
- Applied to Atari 2600 video game playing.

DQN Overview



- Input: video frames; Output: Q(s,a); Reward: game score.
- $\bullet \;$ Network output Q(s,a): action-value function
 - Value of taking action a when in state s.

DQN Overview

- ullet Input preprocessing $\phi(s_t)$: takes 4 video frames and stack up.
- Experience replay (collect and replay state, action, reward, and resulting state $< s_t, a_t, r_t, s_{t+1} >$)
- Delayed (periodic) update of target \hat{Q} .
 - Moving target \hat{Q} value used to compute target reward value y_t (loss function L, parameterized by weights θ_i).
 - Gradient descent:

$$\frac{\partial L}{\partial \theta_i}$$

 $\bullet \ \ \epsilon\text{-greedy policy based on the learned } Q(s,a).$

DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

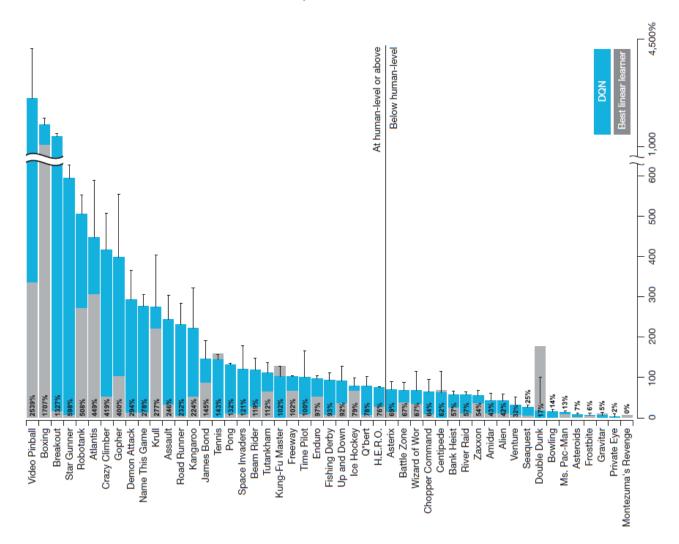
Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

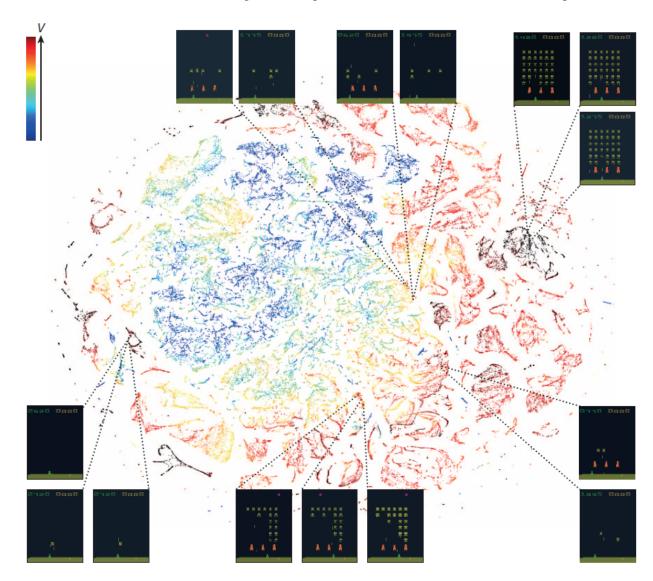
End For

DQN Results



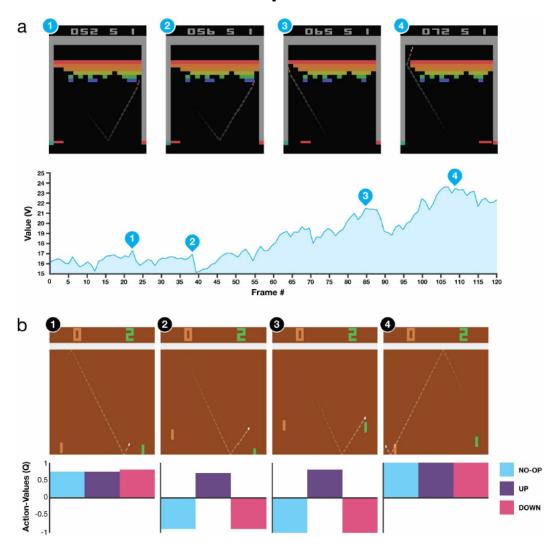
Superhuman performance on over half of the games.

DQN Hidden Layer Representation (t-SNE map)



• Similar perception, similar reward clustered.

DQN Operation



• Value vs. game state; Game state vs. action value.

DQN: Summary

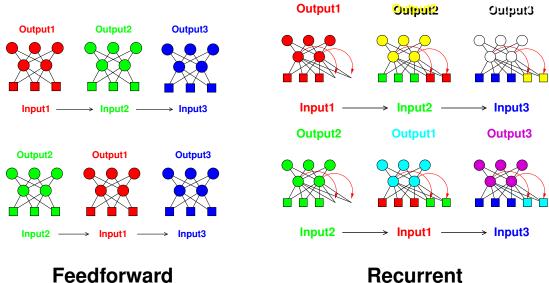
- Convolutional network part enables continous video input.
- Weights trained end-to-end.
- Outputs Q(s,a).
- Limitations: cannot do complex planning requiring long term memory, e.g., Montezuma's revenge game.

Alternatives to Deep Reinforcement Learning

- Evolution strategies (OpenAI)
- Deep Neuroevolution (Uber, OpenAI)
 - NEAT (Neuro Evolution of Augmenting Topologies) Stanley and Miikkulainen

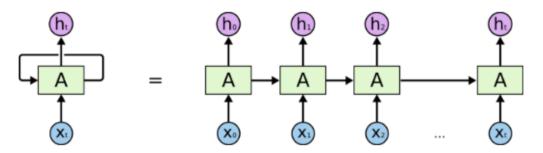
Source: https://openai.com/blog/evolution-strategies/,https://arxiv.org/abs/1712.06567

Deep Recurrent Neural Networks



- Recurrent
- Feedforward networks: No memory of past input.
- Recurrent networks:
 - Good: Past input affects present output.
 - Bad: Cannot remember far into the past.

RNN Training: Backprop in Time

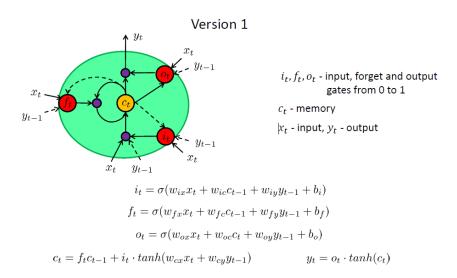


An unrolled recurrent neural network.

- Can unfold recurrent loop: Make it into a feedforward net.
- Use the same backprop algorithm for training.
- Again, cannot remember too far into the past.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

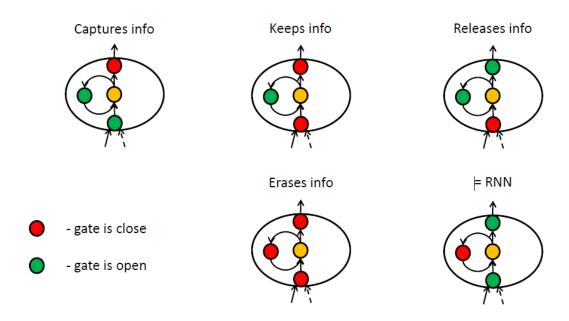
Long Short-Term Memory



- LSTM to the rescue (Hochreiter and Schmidhuber, 1997).
- Built-in recurrent memory that can be written (Input gate), reset (Forget gate), and outputted (Output gate).

From http://www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf

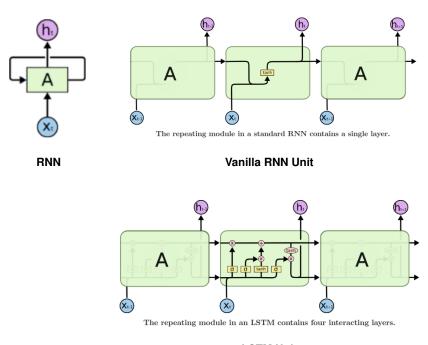
Long Short-Term Memory



• Long-term retention possible with LSTM.

From http://www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf

Long Short-Term Memory in Action

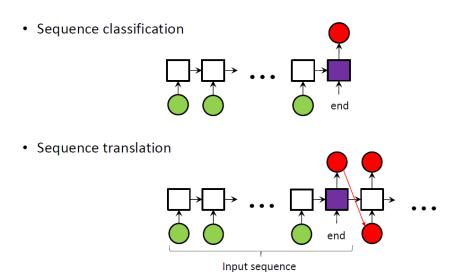


LSTM Unit

• Unfold in time and use backprop as usual.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Applications



• Applications: Sequence classification, Sequence translation.

From http://machinelearning.ru

LSTM Applications

handwriting -> handwriting

Next pen position (we predict parameters):

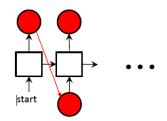
x1,x2 - mixture of bivariate Gaussians

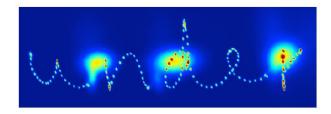
x3 - Bernoulli distribution

Current pen position:

x1,x2 – pen offset

x3 – is it end of the stroke



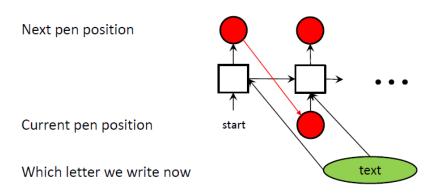


• Applications: Sequence prediction

From https://blog.acolyer.org/2017/03/23/recurrent-neural-network-models/

LSTM Applications

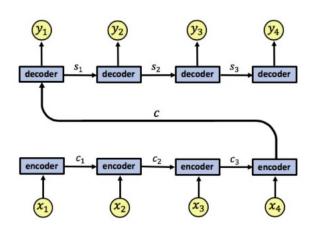
text -> handwriting

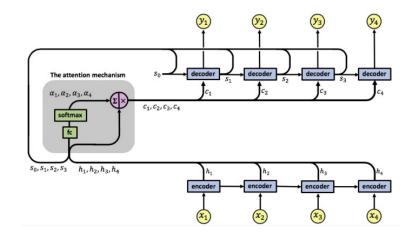


• Applications: Sequence classification, Sequence prediction, Sequence translation.

From http://machinelearning.ru

RNN with Attention Mechanism



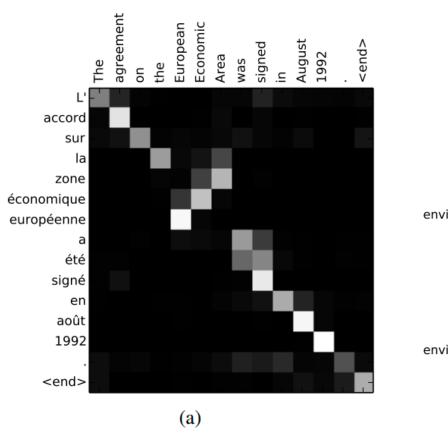


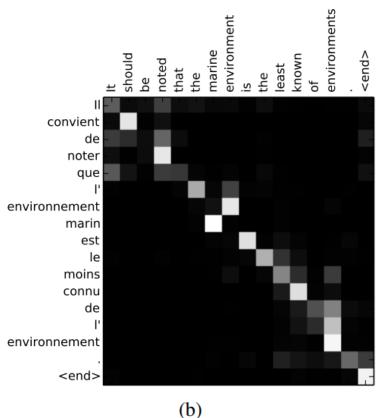
- RNN uses the last hidden vector from the encoder as input to the decoder.
- RNN with Attention (Bahdanau et. al. 2015):
 - Uses weighted sum of all hidden vectors, not just the last one from the decoder.
 - Uses the states of the encoder and the hidden vectors to compute the weighting of the hidden vectors (the attention weight): simple FFW net is used.
 - The attention weights dynamically change based on the input and output.
 - Attention weights are determined by the FFW net (trained, end-to-end).

Source: Bahdanau, Cho, and Bengio (ICLR 2015)

Source: figs: Nir Arbel https://medium.datadriveninvestor.com/

RNN with Attention: Example (NMT)





• x-axis: source language; y-axis: target language

ullet pixels: attention weight $lpha_{ij}$ (j-th source to i-th target)

Source: Bahdanau, Cho, and Bengio (ICLR 2015)

Deep Learning Applications: Vision

- Give the name of the dominant object in the image
- Top-5 error rates: if correct class is not in top 5, count as error
 - ▶ Red:ConvNet, blue: no ConvNet

2012 Teams	%error		2013 Teams	%error		2014 Teams	%error
Supervision (Toronto)	15.3		Clarifai (NYU spinoff)	11.7		GoogLeNet	6.6
ISI (Tokyo)	26.1		NUS (singapore)	12.9		VGG (Oxford)	7.3
VGG (Oxford)	26.9	١	Zeiler-Fergus (NYU)	13.5		MSRA	8.0
XRCE/INRIA	27.0	١	A. Howard	13.5	١	A. Howard	8.1
UvA (Amsterdam)	29.6	١	OverFeat (NYU)	14.1	١	DeeperVision	9.5
INRIA/LEAR	33.4		UvA (Amsterdam)	14.2		NUS-BST	9.7
			Adobe	15.2		TTIC-ECP	10.2
			VGG (Oxford)	15.2	,	XYZ	11.2
			VGG (Oxford)	23.0		UvA	12.1

• ConvNet sweepting image recognition challenges.

From LeCun's Deep Learning Tutorial

Deep Learning Applications: Speech

The dramatic impact of Deep Learning on Speech Recognition (according to Microsoft)

100%

100%

10%

10%

1990

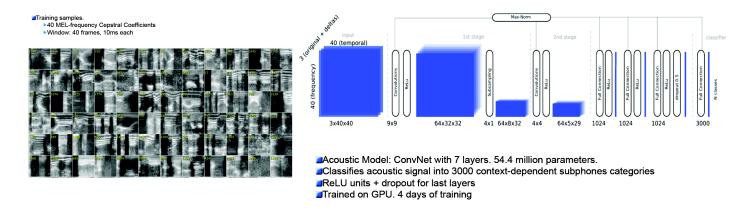
2000

2010

• Deep learning led to major improvement in speech recognition.

From LeCun's Deep Learning Tutorial

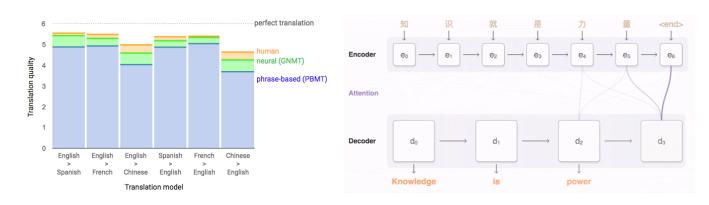
Deep Learning Applications: Speech



- ConvNet can also be applied to speech recognition.
- Use spectrogram and treat it like a 2D image.
- SOTA: end-to-end attention-based RNN (w/ LSTM, GRU, ...)

From LeCun's Deep Learning Tutorial

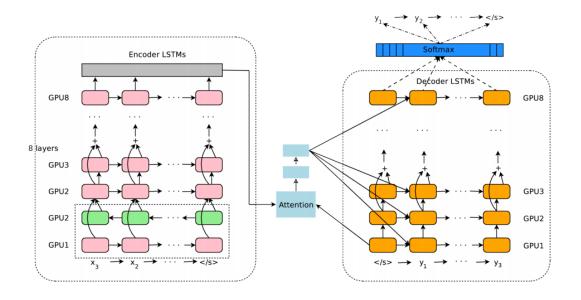
Deep Learing Applications: NLP



• Based on encoding/decoding and attention.

From https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Deep Learing Applications: NLP



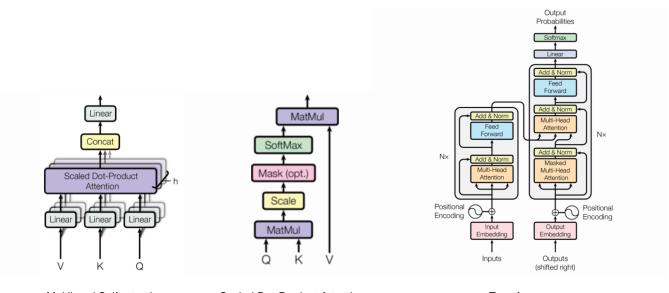
• Google's LSTM-based machine translation.

Wu et al. arXiv:1609.08144 (2016).

How attention works: https://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Deep Learning for NLP: Transformers



- Multihead Self-attention
- Scaled Dot-Product Attention

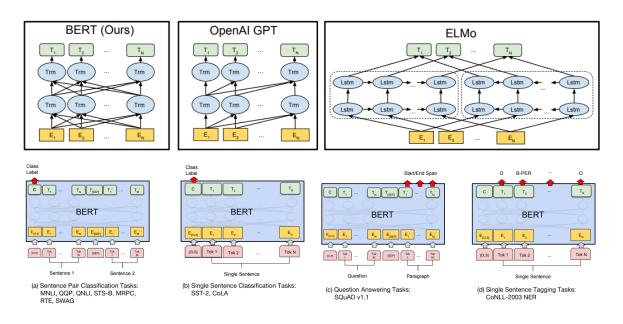
Transformer

- Highly parallelizable, Reduces serial computation
- Multi-head self-attention + position-encoding/position-wise FFW
- Organized over Query, Key, Value (Q,K,V)

thttps://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09

rce: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... , and Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

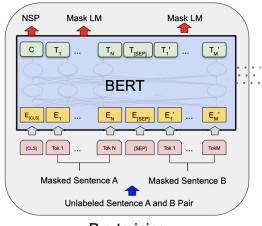
Deep Learning for NLP: Transformers & BERT



from Devlin et al. 2018

• BERT, based on Transformer: Powerful new approach for NLP

Deep Learning for NLP: BERT pretraining



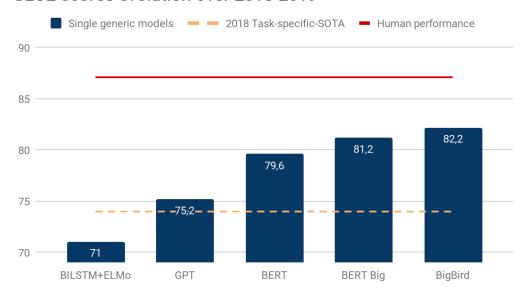
- Pre-training
- BERT learns a language model based on a large corpus of unlabled data (Wikipedia, etc.).
- Two sentences go in as input, and output depends on the task, below.
- Task 1: Masked Language Model
 - Predict masked words from a sentence: My dog is [MASK] \rightarrow My dog is hairy.
- Task 2: Next sentence prediction
 - Check if the second sentence follows the first sentence in the text (binary classification).

ource: https://medium.com/swlh/bert-pre-training-of-transformers-for-language-understanding-5214fba4a9af

Source: https://medium.com/dair-ai/a-light-introduction-to-bert-2da54f96b68c

Deep Learning for NLP: Transformers & BERT

GLUE scores evolution over 2018-2019



• Transformer-based NLP led to big leap in performance.

https:

//medium.com/synapse-dev/understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db

Very Big Transformers: OpenAl's GPT-3

- GPT-3: Generative Pre-Trained Transformer
- Huge model: 175 billion parameters
- Extremely high quality text generation.
- Example: https://philosopherai.com/ (not free any longer: some examples below)
 - https://philosopherai.com/philosopher/can-consciousness-survive-after-death-c3bbf5
 - https://philosopherai.com/philosopher/is-the-universe-fundamentally-computational-9df1fc
 - https:

//philosopherai.com/philosopher/isnt-buddhism-more-of-a-philosophical-system-than-830bcf

Source: https://arxiv.org/abs/2005.14165 https://openai.com/blog/gpt-3-apps/

More Advanced Topics

- Generative Adversarial Networks (GAN): style transfer, data augmentation, deep fake, etc.
- Graph Neural Networks (GNN): molecular fingerprinting, combinatorial optimization, vision, etc.
- Meta learning, Transfer learning, Multi-task learning, Imitation learning
- Optimizers: Adam, RMSprop, etc. https://ruder.io/optimizing-gradient-descent/
- Applications: autonomous driving, chat bots, retail, etc.
- Continous learning, semisupervised learning, active learning, federated learning
- Model compression, Model distillation

Limitations of Deep Learning

- Requires massive amounts of (labeled) data.
- Long training time. Large trained models.
- Catastrophic forgetting.
- Designing good model is done mostly manually.
- Vulnerable to adversarial inputs.
- Hard to explain how it works / what it learned.

Overcoming Limitations of DL

Pretty much well known problems, and solutions emerging.

- Data: Active learning, Core sets, data augmentation, etc.
- Computing time: Train with reduced data. Compact models.
- Large trained models: Compression, distillation
- Catastrophic forgetting: Various approaches, not perfect yet.
- Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.
- Adversarial inputs: Adversarial training, defensive distillation, ...
- Explainability: DARPA XAI effort explanation generation, Bayesian program induction, semantic associations, etc.

Advanced/Fundamental Issues in Deep Learning

- Reasoning, Common-sense reasoning, Causality
- Self-supervised learning, Combining unsupervised and supervised/reinforcement learning
- Human-like learning
- Meaning/semantic-level processing
- Problem posing, Coping with new tasks
- Tool construction and tool use
- Open-endedness, Artificial General Intelligence (AGI)

Summary

- Deep convolutional networks (DNN): High computational demand, over the board great performance in vision tasks.
- Deep Q-Network: unique apporach to reinforcement learning. End-to-end machine learning.
 Super-human performance.
- Deep recurrent neural networks: sequence learning. LSTM is a powerful mechanism.
- Transformers, based on self-attention, surpasses RNNs, and even infringe on CNN territory.
- Diverse applications. Top performance.
- Lots of practical and fundamental limits
- Flood of deep learning tools available.