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What Is Deep Learning?

• Learning higher level abstractions/representations from data.

• Motivation: how the brain represents and processes sensory information in a hierarchical manner.

From LeCun’s Deep Learning Tutorial

2



Brief Intro to Neural Networks
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Deep learning is based on neural networks.

• Weighted sum followed by nonlinear activation function.

• Weights changed w/ gradient descent (η = learning rate,E=err):

wij ← wij − η
∂E

∂wij
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Intro to Neural Network: Backpropagation
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Weightwji is updated as: wji ← wji + ηδjai, where

• ai : activity at input side of weightwji.

• Hidden to output weights (thick red weight). Tk is target value.

δk = (Tk − ak)σ′(netk)

• Deeper weights (green line in figure above).

δj =

[∑
k

wkjδk

]
σ′(netj)
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What Neurons Do in a Neural Network

Two points of view (both are valid):

• Function approximation

• Decision boundary

* Represent input features – more on this later.
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Function Approximation

• Assume one input unit (scalar value).

• Depending on # of hidden layers, # of hidden units, etc., function with any complex shape can be

learned. Ex: y = sin(x).
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Example: y = sin(x)

• Top: sin(x) nnet: Model=[# of units, activation func, [next layer spec], ... ]

• Bottom: sin(x) vs. the hidden unit’s output of last hidden layer.
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Ex: y = sin(x) Model=[2,tanh:1,linear]

x0

  

y

• One hidden layer with 2 units, One output unit. [2,tanh:1,linear]

• Bottom plot: Hidden neurons represent sigmoids.

• Top plot: Output unit is a linear combination of two sigmoids.
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Ex: y = sin(x) Model=[20,tanh:3,tanh:1,linear]
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y

• 2nd hidden layer represents linear combination of 20 sigmoids.



Ex: y = sin(x) Model=[20,tanh:5,tanh:1,linear]
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• Out-of-range inputs illustrate the limitation of DL.



Ex: y = sin(x) Model=[30,tanh:1,linear]

x0

                              

y

• Does a single hidden layer suffice? – Yes, with enough neurons.



Decision Boundary
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Perceptrons (step function activation) can only represent linearly separable functions.

• Output of the perceptron:

W0 × I0 + W1 × I1 − t > 0, then output is 1

W0 × I0 + W1 × I1 − t ≤ 0, then output is − 1

If activation function is sigmoid, decision is a smooth ramp.
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Decision Boundary
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• Rearranging

W0 × I0 + W1 × I1 − t > 0, then output is 1,

we get (if W1 > 0)

I1 >
−W0

W1

× I0 +
t

W1

,

where points above the line, the output is 1, and -1 for those below the line. Compare with

y =
−W0

W1

× x +
t

W1

.



Limitation of Perceptrons
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• Only functions where the -1 points and 1 points are clearly separable can be represented by

perceptrons.

• The geometric interpretation is generalizable to functions of n arguments, i.e. perceptron with n

inputs plus one threshold (or bias) unit.
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Generalizing to n-Dimensions
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http://mathworld.wolfram.com/Plane.html

• ~n = (a, b, c), ~x = (x, y, z), ~x0 = (x0, y0, z0).

• Equation of the plane: ~n · (~x− ~x0) = 0

• In short, ax+ by+ cz + d = 0, where a, b, c can serve as the weight, and d = −~n · ~x0 as

the bias.

• For n-D input space, the decision boundary becomes a (n− 1)-D hyperplane (1-D less than

the input space).



Linear Separability
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• Functions/Inputs that can or cannot be separated by a linear boundary.
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Decision Boundary in Multilayer Networks
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• Example: XOR
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• Multiple decision regions.
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Decision Boundary Demo with Tensorflow Playground

• http://playground.tensorflow.org
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Deep Learning

• Complex models with large number of parameters

– Hierarchical representations

– More parameters = more accurate on training data

– Simple learning rule for training (gradient-based).

• Lots of data

– Needed to get better generalization performance.

– High-dimensional input need exponentially many inputs (curse of dimensionality).

• Lots of computing power: GPGPU, etc.

– Training large networks can be time consuming.
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Deep Learning, in the Context of AI/ML

From LeCun’s Deep Learning Tutorial
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The Rise of Deep Learning

Made popular in recent years

• Geoffrey Hinton et al. (2006).

• Andrew Ng & Jeff Dean (Google Brain team, 2012).

• Schmidhuber et al.’s deep neural networks (won many competitions and in some cases showed

super human performance; 2011–). Recurrent neural networks using LSTM (Long Short-Term

Memory).

• Google Deep Mind: Atari 2600 games (2015), AlphaGo (2016).

• ICLR, International Conference on Learning Representations: First meeting in 2013.
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Long History (in Hind Sight)

• Fukushima’s Neocognitron (1980).

• LeCun et al.’s Convolutional neural networks (1989).

• Schmidhuber’s work on stacked recurrent neural networks (1993). Vanishing gradient problem.

• See Schmidhuber’s extended review: Schmidhuber, J. (2015). Deep learning in neural networks:

An overview. Neural Networks, 61, 85-117.
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History: Fukushima’s Neocognitron

• Appeared in journal Biological Cybernetics (1980).

• Multiple layers with local receptive fields.

• S cells (trainable) and C cells (fixed weight).

• Deformation-resistent recognition.
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History: LeCun’s Colvolutional Neural Nets

• Convolution kernel (weight sharing) + Subsampling

• Fully connected layers near the end.

• Became a main-stream method in deep learning.

24



Motivating Deep Learning: Tensorflow Demo

• http://playground.tensorflow.org

• Demo to explore why deep nnet is powerful and how it is limited.
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Current Trends

Focusing on ground-breaking works in Deep Learning:

• Convolutional neural networks

• Deep Q-learning Network (extensions to reinforcement learning)

• Deep recurrent neural networks using (LSTM)

• Applications to diverse domains.

– Vision, speech, video, NLP, etc.

• Lots of open source tools available.
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Deep Convolutional Neural Networks (1)

• Krizhevsky et al. (2012)

• Applied to ImageNet competition (1.2 million images, 1,000 classes).

• Network: 60 million parameters and 650,000 neurons.

• Top-1 and top-5 error rates of 37.5% and 17.0%.

• Trained with backprop.
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Deep Convolutional Neural Networks (2)

• Learned kernels (first convolutional layer).

• Resembles mammalian RFs: oriented Gabor patterns, color opponency (red-green, blue-yellow).
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Deep Convolutional Neural Networks (3)

• Higher layers represent progressively more complex features.

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (4)

• Left: Bold = correct label. 5 ranked labels: model’s estimation.

• Right: Test (1st column) vs. training images with closest hidden representation to the test data.
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Deep Convolutional Neural Networks (5)

• Depth inflation: Deeper is better!

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (6)

• Not just depth but architecture also matters!

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (7)

• Computation vs. performance

* From Yann LeCun’s Harvard lecture (2019)
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Deep Reinforcement Learning

• Deep = can process complex sensory input

• Reinforcement learning = can choose complex actions
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Current Status of Deep Reinforcement Learning

• Rapidly advancing subfield of reinforcement learning.

• Replace various components of RL with deep neural networks:

– Convolutional neural network for input processing

– value function (e.g. Q function), policy function (π(s))

• Various innovations:

– Experience replay (replay buffer)

– Multitask learning, transfer learning, meta learning, immitation learning,
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Variations in Deep Reinforcement Learning

• Value-based: fitQ(st, at), and construct π(st) based on it (e.g. ε-greedy). DQN is an example

• Policy gradient: fit π(st) directly

• Actor-critic: fitQ(st, at) and use that to improve fit of π(st)

• Model-based RL: directly model p(st+1|st, at), then plan.

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-4.pdf https://www.youtube.com/watch?v=zR11FLZ-O9M
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Deep Q-Network (DQN)

Google Deep Mind (Mnih et al. Nature 2015). [?]

• One of the earliest deep learning method applied to a reinforcement learning domain (Q as in

Q-learning).

• Applied to Atari 2600 video game playing.
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DQN Overview

• Input: video frames; Output: Q(s, a); Reward: game score.

• Network outputQ(s, a): action-value function

– Value of taking action a when in state s.
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DQN Overview

• Input preprocessing φ(st): takes 4 video frames and stack up.

• Experience replay (collect and replay state, action, reward, and resulting state

< st, at, rt, st+1 >)

• Delayed (periodic) update of target Q̂.

– Moving target Q̂ value used to compute target reward value yt (loss function L,

parameterized by weights θi).

– Gradient descent:
∂L

∂θi

• ε-greedy policy based on the learnedQ(s, a).
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DQN Algorithm
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DQN Results

• Superhuman performance on over half of the games.
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DQN Hidden Layer Representation (t-SNE map)

• Similar perception, similar reward clustered.
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DQN Operation

• Value vs. game state; Game state vs. action value.



DQN: Summary

• Convolutional network part enables continous video input.

• Weights trained end-to-end.

• OutputsQ(s, a).

• Limitations: cannot do complex planning requiring long term memory, e.g., Montezuma’s revenge

game.

44



Alternatives to Deep Reinforcement Learning

• Evolution strategies (OpenAI)

• Deep Neuroevolution (Uber, OpenAI)

– NEAT (NeuroEvolution of Augmenting Topologies) – Stanley and Miikkulainen

Source: https://openai.com/blog/evolution-strategies/, https://arxiv.org/abs/1712.06567
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Deep Recurrent Neural Networks
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Feedforward Recurrent

• Feedforward networks: No memory of past input.

• Recurrent networks:

– Good: Past input affects present output.

– Bad: Cannot remember far into the past.
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RNN Training: Backprop in Time

• Can unfold recurrent loop: Make it into a feedforward net.

• Use the same backprop algorithm for training.

• Again, cannot remember too far into the past.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

• LSTM to the rescue (Hochreiter and Schmidhuber, 1997).

• Built-in recurrent memory that can be written (Input gate), reset (Forget gate), and outputted

(Output gate).

From http://www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
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Long Short-Term Memory

• Long-term retention possible with LSTM.

From http://www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
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Long Short-Term Memory in Action

RNN Vanilla RNN Unit

LSTM Unit

• Unfold in time and use backprop as usual.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Applications

• Applications: Sequence classification, Sequence translation.

From http://machinelearning.ru
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LSTM Applications

• Applications: Sequence prediction

From https://blog.acolyer.org/2017/03/23/recurrent-neural-network-models/
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LSTM Applications

• Applications: Sequence classification, Sequence prediction, Sequence translation.

From http://machinelearning.ru
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RNN with Attention Mechanism

• RNN uses the last hidden vector from the encoder as input to the decoder.

• RNN with Attention (Bahdanau et. al. 2015):

– Uses weighted sum of all hidden vectors, not just the last one from the decoder.

– Uses the states of the encoder and the hidden vectors to compute the weighting of the

hidden vectors (the attention weight): simple FFW net is used.

– The attention weights dynamically change based on the input and output.

– Attention weights are determined by the FFW net (trained, end-to-end).

Source: Bahdanau, Cho, and Bengio (ICLR 2015)

Source: figs: Nir Arbel https://medium.datadriveninvestor.com/
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RNN with Attention: Example (NMT)

• x-axis: source language; y-axis: target language

• pixels: attention weight αij (j-th source to i-th target)

Source: Bahdanau, Cho, and Bengio (ICLR 2015)
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Deep Learning Applications: Vision

• ConvNet sweepting image recognition challenges.

From LeCun’s Deep Learning Tutorial
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Deep Learning Applications: Speech

• Deep learning led to major improvement in speech recognition.

From LeCun’s Deep Learning Tutorial
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Deep Learning Applications: Speech

• ConvNet can also be applied to speech recognition.

• Use spectrogram and treat it like a 2D image.

• SOTA: end-to-end attention-based RNN (w/ LSTM, GRU, ...)

From LeCun’s Deep Learning Tutorial
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Deep Learing Applications: NLP

• Based on encoding/decoding and attention.

From https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
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Deep Learing Applications: NLP

• Google’s LSTM-based machine translation.

Wu et al. arXiv:1609.08144 (2016).

How attention works: https://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
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Deep Learning for NLP: Transformers

Multihead Self-attention Scaled Dot-Product Attention Transformer

• Highly parallelizable, Reduces serial computation

• Multi-head self-attention + position-encoding/position-wise FFW

• Organized over Query, Key, Value (Q,K,V)

Source: https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09

Source: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... , and Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

61

https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09


Deep Learning for NLP: Transformers & BERT

from Devlin et al. 2018

• BERT, based on Transformer: Powerful new approach for NLP
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Deep Learning for NLP: BERT pretraining

• BERT learns a language model based on a large corpus of unlabled data (Wikipedia, etc.).

• Two sentences go in as input, and output depends on the task, below.

• Task 1: Masked Language Model

– Predict masked words from a sentence: My dog is [MASK]→ My dog is hairy.

• Task 2: Next sentence prediction

– Check if the second sentence follows the first sentence in the text (binary classification).

Source: https://medium.com/swlh/bert-pre-training-of-transformers-for-language-understanding-5214fba4a9af

Source: https://medium.com/dair-ai/a-light-introduction-to-bert-2da54f96b68c
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Deep Learning for NLP: Transformers & BERT

• Transformer-based NLP led to big leap in performance.

https:

//medium.com/synapse-dev/understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db
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Very Big Transformers: OpenAI’s GPT-3

• GPT-3: Generative Pre-Trained Transformer

• Huge model: 175 billion parameters

• Extremely high quality text generation.

• Example: https://philosopherai.com/ (not free any longer: some examples below)
– https://philosopherai.com/philosopher/can-consciousness-survive-after-death-c3bbf5

– https://philosopherai.com/philosopher/is-the-universe-fundamentally-computational-9df1fc

– https:

//philosopherai.com/philosopher/isnt-buddhism-more-of-a-philosophical-system-than-830bcf

Source: https://arxiv.org/abs/2005.14165 https://openai.com/blog/gpt-3-apps/

65

https://philosopherai.com/
https://philosopherai.com/philosopher/can-consciousness-survive-after-death-c3bbf5
https://philosopherai.com/philosopher/is-the-universe-fundamentally-computational-9df1fc
https://philosopherai.com/philosopher/isnt-buddhism-more-of-a-philosophical-system-than-830bcf
https://philosopherai.com/philosopher/isnt-buddhism-more-of-a-philosophical-system-than-830bcf
https://arxiv.org/abs/2005.14165
https://openai.com/blog/gpt-3-apps/


More Advanced Topics

• Generative Adversarial Networks (GAN): style transfer, data augmentation, deep fake, etc.

• Graph Neural Networks (GNN): molecular fingerprinting, combinatorial optimization, vision, etc.

• Meta learning, Transfer learning, Multi-task learning, Imitation learning

• Optimizers: Adam, RMSprop, etc. https://ruder.io/optimizing-gradient-descent/

• Applications: autonomous driving, chat bots, retail, etc.

• Continous learning, semisupervised learning, active learning, federated learning

• Model compression, Model distillation
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Limitations of Deep Learning

• Requires massive amounts of (labeled) data.

• Long training time. Large trained models.

• Catastrophic forgetting.

• Designing good model is done mostly manually.

• Vulnerable to adversarial inputs.

• Hard to explain how it works / what it learned.

67



Overcoming Limitations of DL

Pretty much well known problems, and solutions emerging.

• Data: Active learning, Core sets, data augmentation, etc.

• Computing time: Train with reduced data. Compact models.

• Large trained models: Compression, distillation

• Catastrophic forgetting: Various approaches, not perfect yet.

• Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.

• Adversarial inputs: Adversarial training, defensive distillation, ...

• Explainability: DARPA XAI effort - explanation generation, Bayesian program induction, semantic

associations, etc.
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Advanced/Fundamental Issues in Deep Learning

• Reasoning, Common-sense reasoning, Causality

• Self-supervised learning, Combining unsupervised and supervised/reinforcement learning

• Human-like learning

• Meaning/semantic-level processing

• Problem posing, Coping with new tasks

• Tool construction and tool use

• Open-endedness, Artificial General Intelligence (AGI)
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Summary

• Deep convolutional networks (DNN): High computational demand, over the board great

performance in vision tasks.

• Deep Q-Network: unique apporach to reinforcement learning. End-to-end machine learning.

Super-human performance.

• Deep recurrent neural networks: sequence learning. LSTM is a powerful mechanism.

• Transformers, based on self-attention, surpasses RNNs, and even infringe on CNN territory.

• Diverse applications. Top performance.

• Lots of practical and fundamental limits

• Flood of deep learning tools available.
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