
Bayesian Learning

• Olive slides: Alpaydin

• Black slides: Mitchell.
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Bayesian Learning

• Probabilistic approach to inference.

• Quantities of interest are governed by prob. dist. and optimal decisions can be made by

reasoning about these prob.

• Learning algorithms that directly deal with probabilities.

• Analysis framework for non-probabilistic methods.
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Two Roles for Bayesian Methods

Provides practical learning algorithms:

• Naive Bayes learning

• Bayesian belief network learning

• Combine prior knowledge (prior probabilities) with observed data

• Requires prior probabilities

Provides useful conceptual framework

• Provides “gold standard” for evaluating other learning algorithms

• Additional insight into Occam’s razor
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Basic Probability Formulas

• Product Rule: probability P (A ∧B) of a conjunction of two events A and B:

P (A,B) = P (B,A) = P (A ∧B) = P (A|B)P (B) = P (B|A)P (A)

• Sum Rule: probability of a disjunction of two events A and B:

P (A ∨B) = P (A) + P (B)− P (A ∧B)

• Theorem of total probability: if eventsA1, . . . , An are mutually exclusive with∑n
i=1 P (Ai) = 1, then

P (B) =

n∑
i=1

P (B|Ai)P (Ai)
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Bayes Theorem

P (h|D) =
P (D|h)P (h)

P (D)

• P (h) = prior probability that h holds, before seeing the training data

• P (D) = prior probability of observing training dataD

• P (D|h) = probability of observingD in a world where h holds

• P (h|D) = probability of h holding given observed dataD

• Some useful tricks:

– P (h,D) = P (D,h)

– P (h|D) =
P (h,D)
P (D)

– P (D,h) = P (D|h)P (h), from P (D|h) = P (D,h)
P (h)
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Bayes Theorem: Example

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct

positive result in only 98% of the cases in which the disease is actually present, and a

correct negative result in only 97% of the cases in which the disease is not present.

Furthermore, .001 of the entire population have this cancer.

P (cancer) = P (¬cancer) =

P (⊕|cancer) = P (	|cancer) =

P (⊕|¬cancer) = P (	|¬cancer) =

How does P (cancer|⊕) compare to P (¬cancer|⊕)?
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Bayes Theorem: Example

The test returns a correct positive result in only 98% of the cases in which the disease is

actually present, and a correct negative result in only 97% of the cases in which the

disease is not present. Furthermore, .001 of the entire population have this cancer.

P (cancer) = 0.001, given P (¬cancer) = 1− P (cancer) = 1− 0.001 = 0.999

P (⊕|cancer) = 0.98, given P (	|cancer) = 1− P (⊕|cancer) = 1− 0.98 = 0.02

P (⊕|¬cancer) = 1− P (	|¬cancer) P (	|¬cancer) = 0.97, given

= 1− 0.97 = 0.03

How does P (cancer|⊕) compare to P (¬cancer|⊕)?

P (cancer|⊕) =
P (⊕|cancer)P (cancer)

P (⊕)

=
0.98× 0.001

P (⊕)

=
0.00098

P (⊕, cancer) + P (⊕,¬cancer)

=
0.00098

P (⊕|cancer)P (cancer) + P (⊕|¬cancer)P (¬cancer)

=
0.00098

0.98× 0.001 + 0.03× 0.999
= 0.031664

(1)
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Conditional Independence

Definition: X is conditionally independent of Y given Z if the probability distribution
governingX is independent of the value of Y given the value of Z ; that is, if

(∀xi, yj , zk) P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk)

more compactly, we write

P (X|Y, Z) = P (X|Z)

Example: Thunder is conditionally independent ofRain, given Lightning

P (Thunder|Rain, Lightning) = P (Thunder|Lightning)
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Choosing Hypotheses

P (h|D) =
P (D|h)P (h)

P (D)

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis hMAP :

hMAP = argmax
h∈H

P (h|D)

= argmax
h∈H

P (D|h)P (h)

P (D)

= argmax
h∈H

P (D|h)P (h)
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Choosing Hypotheses

• If all hypotheses are equally probable a priori:

P (hi) = P (hj), ∀hi, hj ,

then, hMAP reduces to:

hML ≡ argmax
h∈H

P (D|h).

→ Maximum Likelihood hypothesis.
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Brute Force MAP Hypothesis Learner

1. For each hypothesis h inH , calculate the posterior probability

P (h|D) =
P (D|h)P (h)

P (D)

2. Output the hypothesis hMAP with the highest posterior probability

hMAP = argmax
h∈H

P (h|D)
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Learning A Real Valued Function

hML

f

e

y

x

Consider any real-valued target function f

Training examples 〈xi, di〉, where di is noisy training value

• di = f(xi) + ei

• ei is random variable (noise) drawn independently for each xi according to some Gaussian

distribution with mean=0

Then the maximum likelihood hypothesis hML is the one that minimizes the sum of squared errors:

hML = arg min
h∈H

m∑
i=1

(di − h(xi))2
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Setting up the Stage

• Probability density function:

p(x0) ≡ lim
ε→0

1

ε
P (x0 ≤ x < x0 + ε)

• ML hypothesis

hML = argmax
h∈H

p(D|h)

• Training instances 〈x1, ..., xm〉 and target values 〈d1, ..., dm〉, where di = f(xi) + ei.

• Assume training examples are mutually independent given h,

hML = argmax
h∈H

m∏
i=1

p(di|h)

Note: p(a, b|c) = p(a|b, c) · p(b|c) = p(a|c) · p(b|c)
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Derivation of ML for Func. Approx.

From hML = argmaxh∈H
∏m
i=1 p(di|h):

• Since di = f(xi) + ei and ei ∼ N (0, σ2), it must be:

di ∼ N (f(xi), σ
2).

– x ∼ N (µ, σ2) means random variable x is normally distributed with mean µ and variance

σ2.

• Using pdf ofN :

hML = argmax
h∈H

m∏
i=1

1
√
2πσ2

e
− (di−µ)

2

2σ2 .

hML = argmax
h∈H

m∏
i=1

1
√
2πσ2

e
− (di−h(xi))

2

2σ2 .
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Derivation of ML

hML = argmax
h∈H

m∏
i=1

1
√
2πσ2

e
− (di−h(xi))

2

2σ2 .

• Get rid of constant factor 1√
2πσ2

, and put on log:

hML = argmax
h∈H

ln
m∏
i=1

e
− (di−h(xi))

2

2σ2

= argmax
h∈H

m∑
i=1

ln e
− (di−h(xi))

2

2σ2

= argmax
h∈H

m∑
i=1

−
(di − h(xi))2

2σ2

= argmin
h∈H

m∑
i=1

(di − h(xi))2 (2)
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Least Square as ML

Assumptions

• Observed training values di generated by adding random noise to true target value, where noise

has a normal distribution with zero mean.

• All hypotheses are equally probable (uniform prior).

– Note: it is possible thatMAP 6=ML!

Limitations

• Possible noise in xi not accounted for.
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Minimum Description Length

Occam’s razor: prefer the shortest hypothesis.

hMAP = argmax
h∈H

P (D|h)P (h)

hMAP = argmax
h∈H

log2 P (D|h) + log2 P (h)

hMAP = argmin
h∈H

− log2 P (D|h)− log2 P (h)

Surprisingly, the above can be interpreted as hMAP preferring shorter hypotheses, assuming a

particular encoding scheme is used for the hypothesis and the data.

According to information theory, the shortest code length for a message occurring with probability pi
is− log2 pi bits.
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MDL

hMAP = argmin
h∈H

− log2 P (D|h)− log2 P (h)

• LC(i): description length of message i with respect to codeC .

• − log2 P (h): description length of h under optimal codingCH for the hypothesis spaceH .

LCH (h) = − log2 P (h)

• − log2 P (D|h): description length of training dataD given hypothesis h, under optimal encodingCD|H .

LCD|H (D|h) = − log2 P (D|h)

• Finally, we get:

hMAP = argmin
h∈H

LCD|H (D|h) + LCH (h)
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MDL

• MAP:

hMAP = argmin
h∈H

LCD|H (D|h) + LCH (h)

• MDL: Choose hMDL such that:

hMDL = argmin
h∈H

LC1
(h) + LC2

(D|h)

which is the hypothesis that minimizes the combined length of the hypotheis itself, and the data

described by the hypothesis.

• hMDL = hMAP if C1 = CH and C2 = CD|H .
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Bayes Optimal Classifier

• What is the most probable hypothesis given the training data, vs. What is the most probable

classification?

• Example:

– P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) = 0.3.

– Given a new instance x, h1(x) = 1, h2(x) = 0, h3(x) = 0.

– In this case, probability of x being positive is only 0.4.
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Bayes Optimal Classification

If a new instance can take classification vj ∈ V , then the probability P (vj |D) of correct

classification of new instance being vj is:

P (vj |D) =
∑
hi∈H

P (vj |hi)P (hi|D)

Thus, the optimal classification is

argmax
vj∈V

∑
hi∈H

P (vj |hi)P (hi|D).
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Bayes Optimal Classifier

What is the assumption for the following to work?

P (vj |D) =
∑
hi∈H

P (vj |hi)P (hi|D)

Let’s considerH = {h,¬h}:

P (v|D) = P (v, h|D) + P (v,¬h|D)

=
P (v, h,D)

P (D)
+
P (v,¬h,D)

P (D)

=
P (v|h,D)P (h|D)P (D)

P (D)

+
P (v|¬h,D)P (¬h|D)P (D)

P (D)

{if P (v|h,D) = P (v|h), etc.}

= P (v|h)P (h|D) + P (v|¬h)P (¬h|D)
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Bayes Optimal Classifier: Example

• P (h1|D) = 0.4, P (h2|D) = 0.3, P (h3|D) = 0.3.

• Given a new instance x, h1(x) = 1, h2(x) = 0, h1(x) = 0.

– P (	|h1) = 0, P (⊕|h1) = 1, etc.

– P (⊕|D) = 0.4 + 0 + 0, P (	|D) = 0 + 0.3 + 0.3 = 0.6

– Thus, argmaxv∈O{⊕,	} P (v|D) = 	.

• Bayes optimal classifiers maximize the probability that a new instance is correctly classified,

given the available data, hypothesis spaceH , and prior probabilities overH .

• Some oddities: The resulting hypotheis can be outside of the hypothesis space.
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Gibbs Sampling

Finding argmaxv∈V P (v|D) by considering every hypothesis h ∈ H can be infeasible. A less

optimal, but error-bounded version is Gibbs sampling:

1. Randomly pick h ∈ H with probability P (h|D).

2. Use h to classify the new instance x.

The result is that missclassification rate is at most 2× that of BOC.
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Naive Bayes Classifier

Given attribute values 〈a1, a2, ..., an〉, give the classification v ∈ V :

vMAP = argmax
vj∈V

P (vj |a1, a2, ..., an)

vMAP = argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)

P (a1, a2, ..., an)

= argmax
vj∈V

P (a1, a2, ..., an|vj)P (vj)

• Want to estimate P (a1, a2, ..., an|vj) and P (vj) from training data.
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Naive Bayes

• P (vj) is easy to calculate: Just count the frequency.

• P (a1, a2, ..., an|vj) takes the number of posible instances× number of possible target

values.

• P (a1, a2, ..., an|vj) can be approximated as

P (a1, a2, ..., an|vj) =
∏
i

P (ai|vj).

• From this naive Bayes classifier is defined as:

vNB = argmax
vj∈V

P (vj)
∏
i

P (ai|vj)

• Naive Bayes only takes number of distinct attribute values× number of distinct target values.

Naive Bayes uses cond. indep. to justify

P (X,Y |Z) = P (X|Y, Z)P (Y |Z)

= P (X|Z)P (Y |Z)
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Naive Bayes Algorithm

Naive Bayes Learn(examples)

For each target value vj

P̂ (vj)← estimate P (vj)

For each attribute value ai of each attribute a

P̂ (ai|vj)← estimate P (ai|vj)

Classify New Instance(x)

vNB = argmax
vj∈V

P̂ (vj)
∏
i

P̂ (xi|vj)
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Naive Bayes: Example

Consider PlayTennis again, and new instance:

x = 〈Outlk = sun, Temp = cool,Humid = high,Wind = strong〉

V = {Y es,No}

Want to compute:

vNB = argmax
vj∈V

P (vj)
∏
i

P (xi|vj)

P (Y ) P (sun|Y ) P (cool|Y ) P (high|Y ) P (strong|Y ) = .005

P (N) P (sun|N) P (cool|N) P (high|N) P (strong|N) = .021

Thus, vNB = No
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Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

P (a1, a2 . . . an|vj) =
∏
i

P (ai|vj)

• ...but it works surprisingly well anyway. Note don’t need estimated posteriors P̂ (vj |x) to be

correct; need only that

argmax
vj∈V

P̂ (vj)
∏
i

P̂ (ai|vj) = argmax
vj∈V

P (vj)P (a1 . . . , an|vj)

• Naive Bayes posteriors often unrealistically close to 1 or 0.
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Naive Bayes: Subtleties

What if none of the training instances with target value vj have attribute value ai? Then

P̂ (ai|vj) = 0, and...

P̂ (vj)
∏
i

P̂ (ai|vj) = 0

Typical solution is Bayesian estimate for P̂ (ai|vj)

P̂ (ai|vj)←
nc +mp

n+m

where

• n is number of training examples for which v = vj ,

• nc number of examples for which v = vj and a = ai

• p is prior estimate for P̂ (ai|vj)

• m is weight given to prior (i.e. number of “virtual” examples)
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Extra Slides: Will be covered, time permitting
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Expectation Maximization (EM)

When to use:

• Data is only partially observable

• Unsupervised clustering (target value unobservable)

• Supervised learning (some instance attributes unobservable)

Some uses:

• Train Bayesian Belief Networks

• Unsupervised clustering (AUTOCLASS)

• Learning Hidden Markov Models
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EM for Estimating k Means

Given:

• Instances fromX generated by mixture of k Gaussian distributions

• Unknown means 〈µ1, . . . , µk〉 of the k Gaussians

• Don’t know which instance xi was generated by which Gaussian

Determine:

• Maximum likelihood estimates of 〈µ1, . . . , µk〉

Think of full description of each instance as yi = 〈xi, zi1, zi2〉, where

• zij is 1 if xi generated by jth Gaussian

• xi observable

• zij unobservable
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EM for Estimating k Means

EM Algorithm: Pick random initial h = 〈µ1, µ2〉, then iterate

E step: Calculate the expected valueE[zij ] of each hidden variable zij , assuming the current hypothesis

h = 〈µ1, µ2〉 holds.

E[zij ] =
p(x = xi|µ = µj)∑2
n=1 p(x = xi|µ = µn)

=
e
− 1

2σ2
(xi−µj)

2

∑2
n=1 e

− 1
2σ2

(xi−µn)2

M step: Calculate a new maximum likelihood hypothesis h′ = 〈µ′1, µ
′
2〉, assuming the value taken on by each

hidden variable zij is its expected valueE[zij ] calculated above. Replace h = 〈µ1, µ2〉 by

h′ = 〈µ′1, µ
′
2〉.

µj ←
∑m
i=1 E[zij ] xi∑m
i=1 E[zij ]
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EM Algorithm

Converges to local maximum likelihood h

and provides estimates of hidden variables zij

In fact, local maximum inE[lnP (Y |h)]

• Y is complete (observable plus unobservable variables) data

• Expected value is taken over possible values of unobserved variables in Y
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General EM Problem

Given:

• Observed dataX = {x1, . . . , xm}

• Unobserved data Z = {z1, . . . , zm}

• Parameterized probability distribution P (Y |h), where

– Y = {y1, . . . , ym} is the full data yi = xi ∪ zi
– h are the parameters

Determine:

• h that (locally) maximizesE[lnP (Y |h)]
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General EM Method

Define likelihood functionQ(h′|h) which calculates Y = X ∪ Z using observedX and current parameters h

to estimateZ

Q(h
′|h)← E[lnP (Y |h′)|h,X]

EM Algorithm:

Estimation (E) step: CalculateQ(h′|h) using the current hypothesis h and the observed dataX to estimate

the probability distribution over Y .

Q(h
′|h)← E[lnP (Y |h′)|h,X]

Maximization (M) step: Replace hypothesis h by the hypothesis h′ that maximizes thisQ function.

h← argmax
h′

Q(h
′|h)
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Derivation of k-Means

• Hypothesis h is parameterized by θ = 〈µ1...µk〉.

• Observed dataX = {〈xi〉}

• Hidden variables Z = {〈zi1, ..., zik〉}:
– zik = 1 if input xi is generated by th k-th normal dist.

– For each input, k entries.

• First, start with defining ln p(Y |h).
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Deriving lnP (Y |h)

p(yi|h
′
) = p(xi, zi1, zi2, ..., zik|h

′
) =

1√
2πσ2

e
− 1

2σ2
∑k
j=1 zij(xi−µ

′
j)

2

Note that the vector 〈zi1, ..., zik〉 contains only a single 1 and all the rest are 0.

lnP (Y |h′) = ln
m∏
i=1

p(yi|h′)

=
m∑
i=1

ln p(yi|h′)

=
m∑
i=1

ln
1

√
2πσ2

−
1

2σ2

k∑
j=1

zij(xi − µ′j)
2


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Deriving E[lnP (Y |h)]

Since P (Y |h′) is a linear function of zij , and sinceE[f(z)] = f(E[z]),

E[lnP (Y |h′)] = E

 m∑
i=1

ln
1√

2πσ2
−

1

2σ2

k∑
j=1

zij(xi − µ
′
j)

2



=
m∑
i=1

ln
1√

2πσ2
−

1

2σ2

k∑
j=1

E[zij ](xi − µ
′
j)

2



Thus,

Q(h
′|h) = Q(〈µ′1, ..., µ

′
k〉|h)

=

m∑
i=1

ln
1

√
2πσ2

−
1

2σ2

k∑
j=1

E[zij ](xi − µ′j)
2


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Finding argmaxh′ Q(h′|h)

With

E[zij ] =
e
− 1

2σ2
(xi−µj)

2

∑2
n=1 e

− 1
2σ2

(xi−µn)2

we want to find h′ such that

argmax
h′

Q(h
′|h) = argmax

h′

m∑
i=1

ln
1√

2πσ2
−

1

2σ2

k∑
j=1

E[zij ](xi − µ
′
j)

2



= argmin
h′

m∑
i=1

k∑
j=1

E[zij ](xi − µ
′
j)

2
,

which is minimized by

µj ←
∑m
i=1 E[zij ]xi∑m
i=1 E[zij ]

.
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Deriving the Update Rule

Set the derivative of the quantity to be minimized to be zero:

∂

∂µ′
j

m∑
i=1

k∑
j=1

E[zij ](xi − µ
′
j)

2

=
∂

∂µ′
j

m∑
i=1

E[zij ](xi − µ
′
j)

2

= 2

m∑
i=1

E[zij ](xi − µ
′
j) = 0

m∑
i=1

E[zij ]xi −
m∑
i=1

E[zij ]µ
′
j = 0

m∑
i=1

E[zij ]xi = µ
′
j

m∑
i=1

E[zij ]

µ
′
j =

∑m
i=1 E[zij ]xi∑m
i=1

E[zij ]

See Bishop (1995) Neural Networks for Pattern Recognition, Oxford U Press. pp. 63–64.
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Losses and Risks 

 Actions: αi   

 Loss of αi when the state is Ck : λik  

 Expected risk (Duda and Hart, 1973) 
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Losses and Risks: 0/1 Loss 
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For minimum risk, choose the most probable class 



Losses and Risks: Reject 
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Discriminant Functions 

  Kigi ,, , 1x   xx kkii ggC max if  choose 

    xxx kkii gg max| R

 

 

 

   









ii

i

i

i

CPCp

CP

R

g

|

|

|

x

x

x

x



11 

K decision regions R1,...,RK 



K=2 Classes 

 Dichotomizer (K=2) vs Polychotomizer (K>2) 

 g(x) = g1(x) – g2(x) 

 

 

 

 Log odds:  
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Utility Theory 

 Prob of state k given exidence x: P (Sk|x) 

 Utility of αi when state is k: Uik 

 Expected utility: 
   
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xx
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j

ii
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Association Rules 

 Association rule: X  Y 

 People who buy/click/visit/enjoy X are also likely to 

buy/click/visit/enjoy Y. 

 A rule implies association, not necessarily causation. 

14 



Association measures 
15 

 Support (X  Y):  

  

 

 Confidence (X  Y): 

 

 

 Lift (X  Y): 

 

 
 

 customers

 and  bought  whocustomers

#

#
,

YX
YXP 

 
 

 
 X

YX

XP

YXP
XYP

 bought  whocustomers

 and  bought  whocustomers

|

#

#

)(

,





 
)(

)|(

)()(

,

YP

XYP

YPXP

YXP




References

42-9


