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Bayesian Learning

Probabilistic approach to inference.

Quantities of interest are governed by prob. dist. and optimal decisions can be made by

reasoning about these prob.
Learning algorithms that directly deal with probabilities.

Analysis framework for non-probabilistic methods.



Two Roles for Bayesian Methods

Provides practical learning algorithms:
e Naive Bayes learning
e Bayesian belief network learning
e Combine prior knowledge (prior probabilities) with observed data

e Requires prior probabilities

Provides useful conceptual framework
e Provides “gold standard” for evaluating other learning algorithms

e Additional insight into Occam’s razor



Basic Probability Formulas

® Product Rule: probability PP (A N B ) of a conjunction of two events A and B:
P(A,B) = P(B,A) = P(AA B) = P(A|B)P(B) = P(B|A)P(A)
® Sum Rule: probability of a disjunction of two events A and B:

P(AV B) = P(A)+ P(B) — P(ANB)

e Theorem of total probability: if events A1, ..., A,, are mutually exclusive with
> P(A;) =1, then

n

P(B) =) P(B|A;)P(A)
i—1



Bayes Theorem

P(DJh)P(h)

P(D) = =5

P(h) = prior probability that & holds, before seeing the training data
P (D) = prior probability of observing training data 1D
P(D]|h) = probability of observing DD in a world where A holds
P(h|D) = probability of & holding given observed data DD
Some useful tricks:

- P(h,D) = P(D,h)

- P(h|D) = 5

- P(D,h) = P(D|h)P(h),rom P(D|h) = ZL2:




Bayes Theorem: Example

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct
positive result in only 98 % of the cases in which the disease is actually present, and a
correct negative result in only 97% of the cases in which the disease is not present.

Furthermore, .001 of the entire population have this cancer.

P(cancer) = P(—cancer) =
P(®|cancer) = P(6|cancer) =
P(®|—cancer) = P(©|—-cancer) =

How does P (cancer|®) compare to P(—cancer|d)?



Bayes Theorem: Example

The test returns a correct positive result in only 98% of the cases in which the disease is
actually present, and a correct negative result in only 97% of the cases in which the
disease is not present. Furthermore, .001 of the entire population have this cancer.

P(cancer) = 0.001, given P(—cancer) =1 — P(cancer) =1 — 0.001 = 0.999
P(®|cancer) = 0.98, given P(&S|cancer) =1 — P(®|cancer) =1 — 0.98 = 0.02
P(®|—cancer) =1 — P(&S|—cancer) P(6|-cancer) = 0.97, given
=1-0.97=10.03
How does P (cancer|®) compare to P(—cancer|d)?

P(cancer|®) P(®|cancer)P(cancer)

P(®)

098 x 0.001

- P

B 0.00098

-~ P(®, cancer) + P(®, ~cancer)

B 0.00098

~ P(®|cancer)P(cancer) + P(®|-~cancer)P(—cancer)
0.00098

= = 0.031664
0.98 x 0.001 + 0.03 x 0.999

; (1)




Conditional Independence

Definition: X is conditionally independent of Y given Z if the probability distribution
governing X is independent of the value of Y~ given the value of Z; that is, if

(Vei,yj,2k) P(X =x;|Y =y, Z = 21) = P(X = z;|Z = 2)

more compactly, we write

P(X|Y, Z) = P(X|2)

Example: T'hunder is conditionally independent of Rain, given Lightning

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)



Choosing Hypotheses

P(D|h)P(h)

P(h|D) = D)

Generally want the most probable hypothesis given the training data

Maximum a posteriori hypothesis h s 4 p:

hyap = argmax P(h|D)

heH
P(D|h)P(h)
= arg max
heH  P(D)

_ P(D|R)P(h
a@%%(l)()



Choosing Hypotheses

e If all hypotheses are equally probable a priori:
P(h;) = P(h;),Vhi, hj,

then, h s A p reduces to:

harr, = argmax P(D)h).
he H

— Maximum Likelihood hypothesis.
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Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H , calculate the posterior probability

P(D[h)P(h)

P(h|D) = BD)

2. Output the hypothesis h s 4 p with the highest posterior probability

harap = argmax P(h|D)
he H
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Learning A Real Valued Function

Consider any real-valued target function f
Training examples (x;, d; ), where d; is noisy training value
o d; = f(:Cz) + e;

® ¢, is random variable (noise) drawn independently for each x; according to some Gaussian

distribution with mean=0

Then the maximum likelihood hypothesis 5 /1, is the one that minimizes the sum of squared errors:

har = arg min > (di — h(z4))?
—1

1=
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Setting up the Stage

e Probability density function:

1
p(xo) = lim —P(zg < x < xg + €)

e—0 €

e ML hypothesis

harr, = argmax p(D)|h)
he H

e Training instances (x1, ..., Ty, ) and target values (d1, ..., dy, ), where d; = f(x;) + e;.

e Assume training examples are mutually independent given h,

m

har = argmax | | p(di|h)
heH

1=

Note: p(a, blc) = p(a|b, c) - p(blc) = p(alc) - p(blc)
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Derivation of ML for Func. Approx.

From hprr, = argmaxy, c g [ [~ p(d;|h):

e Sinced; = f(x;) +e;ande; ~ N(0,0?), it must be:
di ~ N (f(xi),0%).

- x ~N(u, 02) means random variable x is normally distributed with mean & and variance

o2,

e Using pdf of \V:

" H 1 _ (di—g)Q
M = argmax —€ 20
heH 1 V2mo?
_ (di—h(z;)?
hpyrr, = argmax 202

he H H Y 2w o2

1=
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m
hparr, = argmax H

1

2o

® (et rid of constant factor

harr

Derivation of ML

d;—h(x;))>2
1 _ (dg 2O_(Qz))

———e
1 V2rmo?

, and put on log:

m o (d;—h(z;))?
argmax In | | e 202
heH i=1
m (d;—h(z;))?
— (A 2
argmaxg Ine 202
heH

=1

T (di — h(zy))?
argmax Z —
— 202
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Least Square as ML

Assumptions

e Observed training values d; generated by adding random noise to true target value, where noise

has a normal distribution with zero mean.

e All hypotheses are equally probable (uniform prior).

— Note: it is possible that M/ AP # M L!
Limitations

® Possible noise in x; not accounted for.
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Minimum Description Length

Occam’s razor: prefer the shortest hypothesis.

hyrap = argmax P(D|h)P(h)
he H

hyap = argmaxlogy P(D|h) + log, P(h)
he H

hyfap = argmin —log, P(D|h) — logy P(h)
he H

Surprisingly, the above can be interpreted as h 5 4 p preferring shorter hypotheses, assuming a

particular encoding scheme is used for the hypothesis and the data.

According to information theory, the shortest code length for a message occurring with probability p;
is — log, p; bits.
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MDL

hyrap = argmin — log, P(D|h) — log, P(h)
heH

L ¢ (7): description length of message % with respect to code C'.

— log, P(h): description length of / under optimal coding C'f7 for the hypothesis space H .
Loy (h) = —log, P(h)
— log, P(D|h): description length of training data [ given hypothesis /2, under optimal encoding C'15 | 7 -

Loy, (DIh) = —logy P(D|h)

Finally, we get:

hyrap = argmin Lo

(D|h) + Lcy; (h)
heH

D|H
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MDL

e MAP:

hyprap = aI;LgH;IiH Loy (Dlh) + Loy, (h)
e

e MDL: Choose h s pJ, such that:

hyrpr = argmin Lo, (h) + L, (D]h)
he H

which is the hypothesis that minimizes the combined length of the hypotheis itself, and the data
described by the hypothesis.

e hyypr, = hpapitCh = Cand Co = CD|H-
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Bayes Optimal Classifier

e What is the most probable hypothesis given the training data, vs. What is the most probable

classification?

e Example:
- P(h1|D) =04, P(h2|D) = 0.3, P(h3|D) = 0.3.
— Given a new instance x, hi(z) = 1, ha(z) = 0, ha(z) = 0.

— In this case, probability of &« being positive is only 0.4.
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Bayes Optimal Classification

If a new instance can take classification v; € V/, then the probability (v ;|D) of correct

classification of new instance being v is:
P(vi| D) = Z P(vj|hi) P(hi| D)

Thus, the optimal classification is

argmax Z P(vjlh;)P(h;i| D).
i€V hieH
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Bayes Optimal Classifier

What is the assumption for the following to work?

P(v;|D) = > P(vj|h;)P(h;|D)

Let's consider H = {h, —h}:

P(v|D)

h,eH

P(v, h|D) + P(v, —h|D)
P(v,h,D)  P(v,—h, D)

P(D) P(D)
P(v|lh, D)P(h|D)P(D)

P(D)

P(v|=h, D)P(~h|D)P(D)
! P(D)
{it P(v|h, D) = P(v|h), etc.}
P(v|h)P(h|D) + P(v|=h)P(—=h|D)
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Bayes Optimal Classifier: Example

P(h1|D) = 0.4, P(ha|D) = 0.3, P(h3|D) = 0.3.

Given a new instance x, h1(x) = 1, ho(x) = 0, h1 () = 0.
- P(6|h1) =0, P(b|h1) = 1, ete.
- P(®|D)=0.4+0+0,P(5|D) =0+0.3+0.3=0.6
- Thus, argmax, co(q,o) P(v[D) = ©.

Bayes optimal classifiers maximize the probability that a new instance is correctly classified,
given the available data, hypothesis space H, and prior probabilities over H .

Some oddities: The resulting hypotheis can be outside of the hypothesis space.
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Gibbs Sampling
Finding argmax, 1, P(v|D) by considering every hypothesis i € I can be infeasible. A less
optimal, but error-bounded version is Gibbs sampling:
1. Randomly pick h € H with probability P (h|D).
2. Use h to classify the new instance .

The result is that missclassification rate is at most 2 X that of BOC.

24



Naive Bayes Classifier

Given attribute values (al, aa, ..., an>, give the classification v € V:
VM AP — argmax P(Uj |CL1, ag, ..., an)
v cVv

P(CLl,CLQ, cee a'n|UJ)P(UJ)

VMAP = argmax
'UjEV P(CLl,CLQ,...,CLn)
= argmax P(a1,a2,...,an|vj)P(v;)
vjEV
e Want to estimate P(a1, a2, ..., an|v;) and P(v; ) from training data.

25



Naive Bayes

e P(v;)is easy to calculate: Just count the frequency.

e P(ai,a2,...,an|v;) takes the number of posible instances X number of possible target
values.
e P(ai,a2,...,an|v;) can be approximated as

P(ar, az, ., anlv;) = [ Plaslvy):
7

e From this naive Bayes classifier is defined as:

vNp = argmax P(v;) H P(a;|vy)
v; eV .

i
e Naive Bayes only takes number of distinct attribute values X number of distinct target values.
Naive Bayes uses cond. indep. to justify
P(X,Y|Z) = PX|Y,2)P(Y|Z)
— P(X|Z)P(Y|2)
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Naive Bayes Algorithm

Naive_Bayes_Learn(examples)
For each target value v;
P(v;) < estimate P(v;)
For each attribute value a; of each attribute a

P(ai|v;) < estimate P(a;|v;)

Classify_New_Instance(x)

VN B = argmax p(vj) H P(azz\v])

’UjGV i
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Naive Bayes: Example

Consider PlayTennis again, and new instance:

x = (Outlk = sun, Temp = cool, Humid = high, Wind = strong)
V ={Yes, No}

Want to compute:

vyp = argmax P(v;) H P(x;|vj)
UV, .

FEV i

P(Y) P(sun|Y) P(cool|Y) P(high|Y') P(strong|Y) = .005
P(N) P(sun|N) P(cool|N) P(high|N) P(strong|N) = .021

Thus, vy = No

28



Naive Bayes: Subtleties

1. Conditional independence assumption is often violated

P(al,ag ) ..an|vj) = Hp(ai|vj)
)

e ...but it works surprisingly well anyway. Note don’t need estimated posteriors f’(vj ) to be
correct; need only that

argmax P(v;) H P(ai|fuj) = argmax P(v;)P(a1 ..., an|vj)
v;eV i v; eV

e Naive Bayes posteriors often unrealistically close to 1 or 0.
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Naive Bayes: Subtleties

What if none of the training instances with target value v; have attribute value a;? Then

ﬁ(ai|vj) = 0, and...

ﬁ(vj)Hp(aij) =0

Typical solution is Bayesian estimate for P (a;|v;)

Pa;|v;) « Ne + mp
n—+m
where
e 1 is number of training examples for which v = v,
® 1. number of examples for which v = v, anda = a;

® p is prior estimate for P(ai |v;)

® 1 is weight given to prior (i.e. number of “virtual” examples)

30



Extra Slides: Will be covered, time permitting
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Expectation Maximization (EM)

When to use:

e Data is only partially observable

® Unsupervised clustering (target value unobservable)

® Supervised learning (some instance attributes unobservable)
Some uses:

e Train Bayesian Belief Networks

® Unsupervised clustering (AUTOCLASS)

® Learning Hidden Markov Models

32



EM for Estimating © Means

Given:
e Instances from X generated by mixture of k Gaussian distributions
e Unknown means (ft1, . . ., (4 ) of the k Gaussians
e Don’t know which instance @ ; was generated by which Gaussian
Determine:

e Maximum likelihood estimates of (41, . . ., fix )

Think of full description of each instance as y; = (x;, z;1, Z;2), where
® z;;is1if x; generated by jth Gaussian
® 1, observable

® z;; unobservable

33



EM for Estimating © Means

EM Algorithm: Pick random initial & = (41, 12 ), then iterate

step: Calculate the expected value F/ [zZ j] of each hidden variable z; ;, assuming the current hypothesis
h = (u1, p2) holds.
p(x = zi|p = py)
2
anl p(r =xi|p = pn)

1 2
—2072(9%—113')

Elz;;] =

e

1 2
2 — 5 (z;—un)
Zn:l e 20

step: Calculate a new maximum likelihood hypothesis b/ = <M/1 , ,u’2 ), assuming the value taken on by each
hidden variable z; ; is its expected value F[z; ;| calculated above. Replace h = (ft1, j12) by

h' = <,u/1, :u/2>

L >oivy Blzij] @
’ 2ot Elzij]
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EM Algorithm

Converges to local maximum likelihood h

and provides estimates of hidden variables z; ;

In fact, local maximum in E'[ln P(Y |h)]
e Y is complete (observable plus unobservable variables) data

e Expected value is taken over possible values of unobserved variables in Y

35



General EM Problem

Given:
e Observeddata X = {x1,...,Tm}
e Unobserveddata Z = {z1,...,2m}

e Parameterized probability distribution P(Y'|h), where
- Y ={y1,...,ym}isthefull datay; = x; U z;

— h are the parameters
Determine:

e | that (locally) maximizes F/[In P(Y'|h)]
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General EM Method

Define likelihood function Q (h’|h) which calculates Y = X U Z using observed X and current parameters h
to estimate Z

Q(h'|h) < E[ln P(Y|h')|h, X]

EM Algorithm:

Estimation (E) step: Calculate Q(h’ | h) using the current hypothesis / and the observed data X to estimate
the probability distribution over Y .

Q(K|h) + E[ln P(Y|h')|h, X]
Maximization (M) step: Replace hypothesis h by the hypothesis h' that maximizes this () function.

h + argmax Q(h'|h)
h/

37



Derivation of k-Means

Hypothesis h is parameterized by 6 = (p1... 005 ).
Observed data X = {(z;)}

Hidden variables Z = {(z;1, ..., Z;k) }:
— z;1. = Llifinput x; is generated by th k-th normal dist.

— For each input, £ entries.

First, start with defining In p(Y'|h).
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Deriving In P(Y'|h)

1 k /12
T 552 25=1 Zij(xi—ny)

/ ’
p(y;lh") = p(x;, 21,22, -+ 2j|h ) = 26
2o

Note that the vector (zil, ey zzk> contains only a single 1 and all the rest are 0.

mP(Y[R) = In][plh)
1=1
= > Inp(yilh)
=1
m k
! 1 /N2
- In - Z2ii\Tq — W,
i=1 V2ro2 202 32221 3 )
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Deriving F|In P(Y |h)]

Since P(Y'|h') is a linear function of z; j, and since E[f(2)] = f(E|z]),

E[ln P(Y|h')]

Thus,

Q(h'|R)

k

m 1 1
E In — z:i(x;
[z§1< Voro2 252 ng Zj( 7
m 1 k
In — Elz::|(x;
l§1< Voro2 252 jgl [ ZJ]( 7
Q{15 vy ) |R)
m k
1 1
In - — Elz;i] (x4
;( V2mo? 2023,2::1 [#is]

40
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Finding argmax,, Q(h'|h)

With
2
6—ﬁ(ﬂ%‘—ﬂj)
E[sz] — _#(x._ )2
2 202 i~ Hn
n:le
we want to find &’ such that
(h'|n) O 1f:E[ 1( '?
argmax Q(h |h = argmax n — z;:|(x; — s
h' h' i—1 1/271-0.2 20.2 =1 13 7 J
m k

which is minimized by
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Deriving the Update Rule

Set the derivative of the quantity to be minimized to be zero:

m k

E[zz]](m - :u )
J
Opl (=1 =1

m

= S Bl — )2
- 1] 7 J
8“3 i=1

— - E / —
- 2 Z z] (x /‘Lj) =0
=1

m m
Z E[Z,LJ]CU Z E[ Zj],uj = 0
=1 =1
m , m
S Bleijlei = nj 3 Bla]
/ ity Elzgjla;
F 5 -

> Elziy]

See Bishop (1995) Neural Networks for Pattern Recognition, Oxford U Press. pp. 63—64.
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Losses and Risks
I

1 Actions: Q,

1 Loss of @; when the stateis C, : A,
-1 Expected risk (Duda and Hart, 1973)

R(a; | X) Zz,kpc |x)

choosea, |f R(c, | x)=minR(c, | X)



Losses and Risks: 0/1 Loss

s J |
(0ifi=k
Lifi=k
K
R(ai X):Zﬂ’ikp (Ck |X)
k=1
:ZP(Ck |X)

k#i

=1-P(C, | x)

A =1

For minimum risk, choose the most probable class



Losses and Risks: Reject

0 ifi=k
A,=14 ifi=K+1, 0<A<l
1 otherwise

(e, |X) Z/IPC |X)=

(ailx :ZP Cklx =l—P(CI.|X)

k#i

chooseC, if P(C,|x)>P(C,|x) Vk=iandP(C, |x)>1-A
reject otherwise



Discriminant Functions

]
choosec, if g.(x)=max,g, (x) g,(x),i=1,...,K
A 1) 1./
gi(x)=< P(Ci |X) —
plxIc p(c) | /o
[ QO
reject “l‘fl O O O
CZ | —
K decision regions Ry, Ry i AA e
N
R, =1{x]g,(x)=maxg, (x)} A T



K=2 Classes
T

-1 Dichotomizer (K=2) vs Polychotomizer (K>2)

1 g(x) = g4(x) — g,(x)
C,if g(x)>0

choose _
{CZ otherwise

7 Log odds: IogP(C1 | X)
P(C, %)



Utility Theory
N

1 Prob of state k given exidence x: P (S, | x)
0 Utility of d; when state is k: U,

11 Expected utility:
EU(ar; | )= U,P(S, | X)
k

Choose g, if EU(c; | X)=max EU(a, | x)
J



Association Rules
I

0 Associationrule: X = Y
1 People who buy/click /visit/enjoy X are also likely to
buy/click /visit/enjoy Y.

o1 A rule implies association, not necessarily causation.



Association measures

Support (X — Y):

#{customerswho bought x andY}
#{customers

P(X,Y)=

Confidence (X — Y):
P(Y|X)=P(X'Y)
P(X)
#{customerswho bought X andyY}
#{customerswho bought X}

Lift (X = Y): =
P(X,Y) P(Y|X)
P(X)P(Y)  P(Y)
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