Machine Learning

e Instructor: Yoonsuck Choe

— Contact info: HRBB 322B, 845-5466, choe@tamu.edu

- Zoom: http://tamu.zoom.us/my/yoonsuckchoe
e TA and/or Grader: see web page

* NOTE: The slide margins and font size are set for easier viewing and annotation during the zoom

meeting.

http://tamu.zoom.us/my/yoonsuckchoe

Textbook

Ethem Alpaydin (2014) “Introduction to Machine Learning”, 3rd edition. MIT Press.

Book webpage: http://www.cmpe.boun.edu.tr/~ethem/i2ml3e/

Optional (but strongly recommended): Tom M. Mitchell (1997) “Machine Learning”, McGraw-Hill.
Book webpage: nttp://www.cs.cmu.edu/~tom/mlbook . html

Text and figures, etc. will be quoted from the textbook without repeated acknowledgment.

Instructor’s perspective will be indicated by “YC” where appropriate.

http://www.cmpe.boun.edu.tr/~ethem/i2ml3e/
http://www.cs.cmu.edu/~tom/mlbook.html

Course Info

e Grading, academic policy, students with disabilities, lecture notes, computer accounts,
programming languages.

® See course web page.

Relation to Other Courses

Some overlaps (aside from Al, all courses are grad courses):

Deep Learning / Neural Networks: perceptrons, backpropagation, radial basis function networks
etc.

Pattern analysis: Bayesian learning, instance-based learning
Artificial intelligence: decision trees (in some courses), neural networks (in some courses).
Statistics: hypothesis testing, Bayesian learning

(Relatively) unique to this course: computational learning theory, genetic algorithms,
reinforcement learning (new course offered as well), decision trees (in depth treatment), local
learning (some aspects), dimensionality reduction, deep learning (also in neural networks)

ML Overview (I)

e How can machines (computers) learn?

How can machines improve automatically with experience?
e How can machines learn from data?

® Benefits:

Improved performance
— Automated optimization
— New uses of computers

— Reduced programming (YC)

Insights into human learning and learning disabilities

ML Overview (Il)

e Current status:
— Theoretical insights emerging: theoretical bounds on error, number of inputs needed, etc.
— Practical applications.
— Huge data volume demands ML opportunity to ML (big data).
— GPUs provide massive computing power.
— Emergence and maturation of deep learning.
— deep learning, deep reinforcement learning, meta learning, self-supervised learning, causality,

common-sense learning

e State of the art:

speech recognition, computer vision, NLP

drive autonomous vehicles

games (Backgammon, Chess, Go, Starcraft, etc.)

Science: protein folding, medical diagnosis, etc.

ML Overview (lll)

Multidisciplinary roots:
e Al
® probability and statistics
e computational complexity theory
e control theory
e information theory
e philosophy
e psychology

® neurobiology

Well-Posed Learning Problem

A program is said to learn from
e experience F/ with respect to
e task /" and
e performance measure P,
e P inl"increase with F .
Examples: Playing checkers, Handwriting recognition, Robot driving, etc.

Goal of ML: “define precisely a class of problems that encompasses interesting forms of learning [but
not all: YC], to explore algorithms that solve such problems, and to understand the fundamental
structure of learning problems and processes” (Mitchell, 1997)

Designing a Learning System (l)

Training experience:
e direct vs. indirect (problem of credit assignment)
® degree of control over training examples (teacher-dependent or learner-generated)

e closeness of training example distribution to true distribution over which P is measured: in many
cases, ML algorithms assume that both distributions are similar, which may not be the case in

practice.

Designing a Learning System (ll)

Remaining design choices:
e Exact type of knowledge to be learned.
® A representation for this target knowledge.
® A learning mechanism.

e functional/operational principle giving rise to the learning mechanism (YC)

10

Design: Target Function (I)

Type of knowledge to be learned: for example, we want to learn best move in a board game.

e Can represent as a function (5: board states, \/: moves):
C'hooseMove : B — M,

but it is hard to learn directly.

11

Design: Target Function (ll)

e Another function (3 board states, R: real numbers):
V:B—>R,

which gives the evaluation of each board state.
- V(b= win) =100
- V(b =lose) = —100
- V(b =draw) =0
- V(b = otherwise) = V(b"), where b’ is the best final board state that can be reached

from b.
— However, this is not efficiently computable, i.e., it is a nhonoperational definition.

— Goal of ML is to find an operational description of V', however, in practice, an

approximation is all we can get.

12

Design: Representation for Target Function

Given an ideal target function V', we want to learn an approximate function v
e Trade-off between rich and parsimonious representation.

e Example: V' as a linear combination of number of pieces, number of particular relational

situations in the board (e.g., threatened), etc. (represented as x;) in board configuration b:

A

V(b) =wo + > wixs,
i=1

where w; are the weight values to be learned.

e Advantage of the above representation: reduction of scope (or dimensionality) from the
original problem.

13

Design: Function Approximation Algorithm

Given board state and true V', we want to learn the weights w; that specify V.
e Start with a set of a large number of input-target pairs << b, Virqin (b) >.
e Problem: cannot come up with a full set of < b, V,.qin (b) > pairs.

e Solution: If Viyain (b) is unknown, set it to the estimated V of its successor board state:

V;Sraz'n (b) — ‘A/train (SUCCGSSOT(b)) .

14

Design: Adjusting Weights (I)

Last component in defining a learning algorithm: adjustment of weights.
e Want to learn weights w; that best fit the set of training samples { < b, Viyqin (b) >}.

e How to define best fit? Once we have 1 we can calculate all V(b) for all b in the training set,
and calculate the error.

P = 3 (Virain(®) = V)’

<b,Viragin(b)>Etraining set

e How to reduce F'?

15

Design: Adjusting Weights (ll)

Least Mean Squares (LMS) learning rule: For each training example < b, Viy-qin (b) >,
e Use the current weights to calculate 1/ (b).

e For each weight w;, update it as
w; <— w; + n(%rain(b) — V(b))xzy
where 1) is a small learning rate constant.

e Theerror Viyqin(b) — V(b) and the input ; both contribute to the weight update.

16

Final Design

Putting together the system (checker player):

e Performance system: input = problem, output = solution trace = game history (using what is

learned so far)
e Critic: input = solution trace, output = training examples (estimated V%,qin (b))

e Generalizer: input = training examples, output = estimated hypothesis 1% (i.e., learned weights

w;)

e Experiment generator: input = hypothesis \A/ output = new problem (new initial condition, to

explore particualar regions)

17

Alternatives (I)

Training experience: against experts, against self, table of correct moves, ...
Target function: board — move, board — value, ...

Representation of target function: polynomial, linear function of small number of features, artificial
neural network

Learning algorithm: gradient descent, linear programming, ...

18

Alternatives (ll)

e Memorize (instance-based learning)
® Spawn a population and make them compete with each other (genetic algorithms)

® Analyze and reason about things

19

Perspectives on ML: Hypothesis Space Search

e Useful to think of ML as searching a very large space of possible hypotheses to best fit the

data and the learner’s prior knowledge.

® For example, the hypothesis space for V would be all possible V's with different weight
assignment.
e Useful concepts regarding hypothesis space search:
— Size of hypothesis space
— Number of training examples available/needed.

— Confidence in generalizing to new unseen data.

20

Issues in ML
What algorithms exist for generalizable learners given specific training set? Requirements for
convergence? Which algorithms are best for a particular domain?
How much training data needed? Bounds on confidence, based on data size? How long to train?
Use of prior knowledge?
How to choose best training experience? Impact of the choice?
How to reduce ML problem to function approximation?

How can learner alter the representation itself?

21

Classification of learning algorithms (YC)

What to do with given data? What kinds of data are given?
e Supervised learning: input-target pairs given.
® Unsupervised learning: only input distribution is given.

e Reinforcement learning: sparse reward signal is given for action based on sensory input;
environment-altering actions.

22

Broader questions (YC)

e Can machines themselves formulate their own learning tasks?
— Can they come up with their own representations?
— Can they come up with their own learning strategy?
— Can they come up with their own motivation?

— Can they come up with their own questions/problems?

e What if the machines are faced with multiple, possibly conflicting tasks? Can there be a meta

learning algorithm?
e What if performance is hard to measure (i.e., hard to quantify, or even worse, subjective)?

® Lesson: think outside the box; question the questions themselves.

23

