# Overcoming Limitations of Deep Learning

AI Lecture Spring 2020

#### Yoonsuck Choe, Ph.D.

 Professor, Department of Computer Science & Eng., Faculty of Neuroscience, Texas A&M University

#### **Overview**

- Limitations of Deep Learning
  - Practical limits
  - Fundamental limits
- Overcoming Fundamental Limits of Deep Learning
  - Meaning
  - Consciousness
  - Open-ended improvement

#### Part 1: Practical Limits of Deep Learning

# **Practical Limits of Deep Learning**

- Requires massive amounts of (labeled) data.
- Long training time. Large trained models.
- Catastrophic forgetting.
- Designing good model is done mostly manually.
- Vulnerable to adversarial inputs.
- Hard to explain how it works / what it learned.

# **Overcoming Practical Limits of DL**

Pretty much well known problems, and solutions emerging.

- Data: Active learning, Core sets, data augmentation, etc.
- Computing time: Train with reduced data. Compact models.
- Large trained models: Compression, distillation
- Catastrophic forgetting: Various approaches, not perfect yet.
- Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.
- Adversarial inputs: Adversarial training, defensive distillation, ...
- Explainability: DARPA XAI effort explanation generation, Bayesian program induction, semantic associations, etc.

# Part 2: Fundamental Limits of Deep Learning

## **Fundamental Limits of Deep Learning**

Questions from a brain and cognitive science perspective:

- Do deep neural networks have inherent meaning?
- Can deep neural networks become conscious?
- Can deep neural networks improve open-endedly?

#### **Fundamental Limits of Deep Learning**

Why are these relevant questions?

- Do deep neural networks have inherent meaning?
  - Information does not have inherent meaning, and meaningless representations lead to brittleness.
- Can deep neural networks become conscious?
  - Fundamental question of weak vs. strong AI.
- Can deep neural networks improve open-endedly?
  - Current DL excels in specific tasks, and is confined to the brain. Can it go beyond the immediate tasks, beyond the confines of its brain?

#### Part 2.1. Meaning

## **Meaning in Neural Networks**

- Do neural networks possess meaning?
- Aren't they just information processors?
  - Shannon information by definition does not have meaning.
- Semantic embedding (e.g. Word2Vec) allows meaning-level manipulation.
- However, is meaning inherent to the neural network and can it be decoded from within?
- Strategy: consider how the brain does it meaning of neural code.

#### How to Understand the Neural Code?



(a) From the OUTSIDE

(b) From the INSIDE

• How can we understand the neural code? (X)

#### How to Understand the Neural Code?



(*a*) From the OUTSIDE

(b) From the INSIDE

- How can we understand the neural code? (X)
- How can the brain itself understand its neural code? (O)

# Understanding the Neural Code, by the Brain

- What do these blinking lights mean?
- This is the BRAIN's perspective.
  - Seems impossible to solve!

# Understanding the Neural Code, by Us

- Now we can understand the meaning.
- This is OUR perspective.
  - However, this methodology is not available to the brain!

#### How to Understand the Neural Code?



(*a*) From the OUTSIDE

(*b*) From the INSIDE

- How can **we** understand the brain? (X)
- How can the brain itself understand itself? (O)
  - Solution: sensorimotor learning not obvious when wrong question asked (Choe and Smith 2006; Choe et al. 2007) Cf. Buzsaki's "Inside-Out approach". *Rhythms of the Brain* (2006).

#### **Sensorimotor Learning to the Rescue**

- Property of motor output that maintains internal state invariant
- Same as property of encoded sensory information.

#### Understanding, Inside the Brain

Choe et al., Int'l J. of Humanoid Robotics 2007<sup>17</sup>



Choe et al., Int'l J. of Humanoid Robotics 2007

# **Applications to Optic Flow**



Same principle applied to the fly visual system:

- Fly Optic flow detectors (LPTC, Lobula Plate Tangential cells)
- Learning the meaning of LTPC spikes: reinforcement learning based on internal state invarnance

Cartoon from Rieke et al. (1997)

#### Parulkar and Choe IJCNN 2016 (Parulkar and Choe 2016).

## **Fly Visual System**

(a)





Borst and Egelhaaf (1989); Taylor and Krapp (2007)



- Lamina (L) and Medulla (M):
  - Elementary Motion Detectors (EMD)
- Lobula Plate (LP) Tangential Cells (LPTCs)
  - HS and VS detect complex motion.

#### **Fly Visual System Model**



- Initial optic flow computation: Lucas and Kanade (1981) method.
- HS: simple horizontal motion; VS: matched filter (roll and pitch [Krapp 2000]) 21

# Learning the Reward Table R(s, a)



• Action is selected based on P(a|s) = R(s, a).

• Learning ( $\alpha$ : learning rate):

$$R_{t+1}(s_t, a_t) = R_t(s_t, a_t) + \alpha \rho_{t+1}, \text{ where}$$

$$\rho_{t+1} = \frac{1}{\sqrt{\sum_i (r_{t+1,i} - r_{t,i})^2}}$$

Finally, R(s, a) is normalized over all a.

#### **Experiments and Results: Input**



(a) Synthetic

(b) Natural 1

(c) Natural 2

• Model fly trained on three different inputs above.

#### Experiments and Results: Learned ${\cal R}$



(a) Synthetic

(b) Natural 1

(c) Natural 2

- All three inputs lead to near-ideal R(s, a).
- Given a certain internal state, action that has the same encoded property as that state is generated.

# **Summary: Meaning**

- Motor exploration is key to autonomous grounding of meaning.
- Meaning is in large part based on motor primitives, not perceptual features.
- Very simple criterion of internal state invariance can be used to learn the sensorimotor meaning.
- Implications on deep learning: Purely perception-based meaning is untenable. Need the network to interact with the environment.

#### Part 2.2. Consciousness

#### **The Question of Consciousness**



• How did consciousness evolve? (X)

# **The Question of Consciousness**



- How did consciousness evolve? (X)
- How did the necessary conditions of consciousness evolve? (O)

# **How did Consciousness Evolve?**

- How did consciousness evolve? (X)
- How did the necessary conditions of consciousness evolve? (O)
  - Former is subjective, latter is objective.
  - Predictive dynamics found to be key (Choe et al. 2012)



• Are there future events that are 100% predictable?

- Are there future events that are 100% predictable?
- What if I say there are such events?

- Are there future events that are 100% predictable?
- What if I say there are such events?
- I will clap my hands in the next 5 seconds.

- Are there future events that are 100% predictable?
- What if I say there are such events?
- I will clap my hands in the next 5 seconds.
- "My" actions are 100% predictable, and this (authorship) is a key property of the self, the subject of consciousness.

- Are there future events that are 100% predictable?
- What if I say there are such events?
- I will clap my hands in the next 5 seconds.
- "My" actions are 100% predictable, and this (authorship) is a key property of the self, the subject of consciousness.
- Thus, the brain dynamics have to be predictable.

#### **Could the Necessary Condition Evolve?**



- Pole balancing task.
- Evolved neural network controller.

## **Could the Necessary Condition Evolve?**



- Measure predictability of internal state dynamics.
- Compare internal dynamics of equally sucessful ones.

#### Predictable vs. Unpredictable Internal Dyn.



• Internal dynamics of a simple pole-balancing controller neural network (Kwon and Choe 2008)

# Predictable vs. Unpredictable Internal Dyn.



- Performance in controllers with high vs. low internal state predictability (Kwon and Choe 2008)
- Controllers with high ISP better fit in changing environment: Necessary condition can evolve!

#### **Analysis of Real EEG Data**



- Awake, REM sleep, and Slow-wave sleep EEG data.
- Inter-Peak Interval (IPI) predictability.

Yoo et al. Frontiers in Neurorobotics 2013.

# **Real EEG Data: Prediction Error**



- Awake and REM more predictable than SWS.
- All differences were significant ( $p < 10^{-6}$ ) except for subject 4, Awake vs. REM.

Yoo et al. Frontiers in Neurorobotics 2013.

# Summary: Consciousness

- Internal dynamics of neural networks can relate to subjective phenomena.
- Predictable internal dynamics may be the precursor of consciousness.
- Such predictable dynamics can facilitate intrinsic understanding within the neural network.
- Implications on deep learing:
  - Need to look at internal neural dynamics.
  - Need to explore predictive properties.

# Part 2.3. Open-Ended Improvement

# **DL Can't Improve Open-Endedly**

- Current DL excels only in very specific tasks.
  - Tasks and (kind of) data are fixed.
  - What it can learn is limited by the task itself.
- Current DL is confined to its brain
  - Neural network weights
  - Optionally external memory, but strongly integrated with the neural network.

# **Open-Ended Improvement**

Possible directions:

- Use of external medium, beyond the bounds of the brain
  - Stigmergy
- Co-evolution of brain and tools
  - New tools enable new problem definitions.

# **Using the External World as Memory**

Is it possible for a feedforward network to show memory capacity?

- What would be a minimal augmentation?
- Idea: allow material interaction, dropping and detecting of external markers.

## Memory Task: Catch the Balls



cf. Beer (2000); ?

- Agent with range sensors move left/right.
- Must catch both falling balls.
- Memory needed when ball goes out of view.

## Feedforward Net + Dropper/Detector



- Feedforward network plus:
  - Extra output to **drop** markers.
  - Extra sensors to **detect** the markers.
- Neuroevolution used for training the weights.

## **Results (vs. Recurrent Networks)**



 No difference in performance between dropper/detector net (gray) and recurrent network (black).



- Slight overshoot and drop the marker.
- Subsequent move repelled away from the marker.

# Task 2: Foraging in 2D



C. Agent Getting Food #1

D. Agent Getting Food #2

- 2D foraging task requiring memory.
- Agent w/ directional food/nest sensor (limited range).

## **Foraging: Results**



stack height: red=5, green=10, blue=10

 Comparison of FFW-net+Dropper vs. RNN (Elman tower) success rate.

# **Foraging Behavior: RNN**



A. Trajectories of Successful Recurrent Agents with  $\lambda\,=\,1.0$ 



B. Trajectories of Successful Recurrent Agents with  $\lambda\,=\,0.99$ 

# Foraging Behavior: FFW+Dropper



A. Trajectories of Successful Dropper Agents with  $ho\,=\,1.0$ 



B. Trajectories of Successful Dropper Agents with  $ho\,=\,0.99$ 



C. Trajectories of Successful Dropper Agents with  $ho\,=\,0.7$ 

# **Tool Construction and Use**









(a) Tool construction behavior

(b) Composite tool

- Animals have shown limited tool construction capability in lab environment.
- Why care for tool construction?
  - Tool construction and use as a measure of intelligence (St. Amant and Wood 2005; Choe et al. 2015).
  - Agent-tool co-evolution (only observed in humans!).

# **Task: Reaching Close/Far Targets**



- Sensors: Joint angles/limits, angle/distance to target/tool.
- Motor: Control joint angle to reach target or tool (stick).
- Targets could be within/beyond reach.
- Reaching tool extends limb (automatic).

# Task: Reaching Close/Far Targets



- Sensors: Joint angles/limits, angle/distance to target/tool.
- Motor: Control joint angle to reach target or tool (stick).

# **Evolving Neural Network Controllers**



- Above: vanilla neuroevolution (mutation not shown).
  - Genotype  $\rightarrow$  phenotype, then run in the environment
  - Fitness evaluation and selection
  - Mating and reproduction

# **Evolving Neural Network Controllers**



- We used NeuroEvolution of Augmenting Topologies (NEAT) algorithm by Stanley and Miikkulainen (2002).
- Networks of arbitrarily complex topologies can be evolved, leading to increasingly complex behavior.

# **Fitness Evaluation**

- D: final distance to target
- S: number of steps to reach target
- T: number of times tool picked up
- ... : DS, DT, DST, etc. (multiplied combination)

Task: 50% within reach, 50% beyond reach targets

# **Evolved Neural Networks 1**

Sensory Input Neurons:

Hidden neurons: (

Motor outputs: (



 $\mathsf{Fitness} = S^2 T$ 

#### **Evolved Neural Networks 2**



#### Fitness = DS

## **Tool Use Behavior**

- Articulated arm.
- Tool (green bar) pick up and reach goal.

# **Target Reaching Performance**



• Fitness criterion T helps, but not necessary in evolving tool use behavior (avg/std shown; n = 4 sets, each with 1,000 trials).

## **Simple Tool Construction Task**





- Combine two sticks to reach out-of-reach targets.
- Some targets reachable without a stick.
- Some reachable with one stick.
- Some reachable with two sticks.

#### **Results: Example Evolved Networks**







(c) Highest Fitness Network Evolved on C3



(e) Highest Fitness Network Evolved on C6





#### **Results: Demo**

#### **Results: Average Performance**



 On average (top), training on simple (one tool) or ambiguous tasks leads to lower performance during testing.

# **More Demo**

• End-to-end Tool Use demo

# Summary

- Going beyond the confines of the brain (network weights, integrated external memory).
- Using the environment as a canvass empowers neural networks, even very simple feedforward networks.
- Tool use and tool construction can have a synergistic effect: co-evolution of tool and intelligence.
- Implications on deep learning:
  - Both of the above can enable the definition of new tasks previously unavailable to the agent.
  - Potential for open-ended improvement, not limited to the immediate task.

# Wrap Up

# Conclusion

- There are multiple practical and fundamental limitations of deep learning.
- Practial limits already have potential solutions.
- Investigating fundamental limits allows us to go beyond deep learning.
  - Meaning through action
  - Consciousness through predictive dynamics
  - Open-ended improvement through stigmergy and tool construction/use.

#### Acknowledgments

- Neural coding: Bhamidipati (2004); Choe and Bhamidipati (2004); Choe and Smith (2006); Choe et al. (2007); Choe (2011); Choe et al. (2008)
- Internal dynamics: Kwon and Choe (2008); Choe et al. (2012); Chung et al. (2012); Yoo et al. (2014)
- Stigmergy: Chung and Choe (2009, 2011)
- Tool use and construction: Li et al. (2015); Reams and Choe (2017). Kinetic demo: Yoo (PhD thesis 2018).

# References

Beer, R. D. (2000). Dynamical approaches to cognitive science. *Trends in Cognitive Sciences*, 4:91–99.

- Bhamidipati, S. K. (2004). Sensory invariance driven action (SIDA) framework for understanding the meaning of neural spikes. Master's thesis, Department of Computer Science, Texas A&M University.
- Borst, A., and Egelhaaf, M. (1989). Principles of visual motion detection. Trends in neurosciences, 12(8):297-306.
- Choe, Y. (2011). Action-based autonomous grounding. In Modayil, J., Precup, D., and Singh, S., editors, *AAAI-11 Work-shop on Lifelong Learning from Sensorimotor Experience*, 56–57. Palo Alto, CA: AAAI Press. AAAI Workshop Technical Report WS-11-15.
- Choe, Y., and Bhamidipati, S. K. (2004). Autonomous acquisition of the meaning of sensory states through sensoryinvariance driven action. In Ijspeert, A. J., Murata, M., and Wakamiya, N., editors, *Biologically Inspired Approaches to Advanced Information Technology*, Lecture Notes in Computer Science 3141, 176–188. Berlin: Springer.
- Choe, Y., Kwon, J., and Chung, J. R. (2012). Time, consciousness, and mind uploading. *International Journal on Machine Consciousness*, 4:257–274.

- Choe, Y., and Smith, N. H. (2006). Motion-based autonomous grounding: Inferring external world properties from internal sensory states alone. In Gil, Y., and Mooney, R., editors, *Proceedings of the 21st National Conference on Artificial Intelligence(AAAI 2006)*, 936–941.
- Choe, Y., Yang, H.-F., and Eng, D. C.-Y. (2007). Autonomous learning of the semantics of internal sensory states based on motor exploration. *International Journal of Humanoid Robotics*, 4:211–243.
- Choe, Y., Yang, H.-F., and Misra, N. (2008). Motor system's role in grounding, receptive field development, and shape recognition. In *Proceedings of the Seventh International Conference on Development and Learning*, 67–72. IEEE.
- Choe, Y., Yoo, J., and Li, Q. (2015). Tool construction and use challenge: Tooling test rebooted. In AAAI-15 Workshop on Beyond the Turing Test. 2 pages.
- Chung, J. R., and Choe, Y. (2009). Emergence of memory-like behavior in reactive agents using external markers. In *Proceedings of the 21st International Conference on Tools with Artificial Intelligence, 2009. ICTAI '09*, 404–408.
- Chung, J. R., and Choe, Y. (2011). Emergence of memory in reactive agents equipped with environmental markers. *IEEE Transactions on Autonomous Mental Development*, 3:257–271.
- Chung, J. R., Kwon, J., Mann, T. A., and Choe, Y. (2012). Evolution of time in neural networks: From the present to the past, and forward to the future. In Rao, A. R., and Cecchi, G. A., editors, *The Relevance of the Time Domain to Neural Network Models, Springer Series in Cognitive and Neural Systems 3*, 99–116. New York: Springer.

- Krapp, H. G. (2000). Neuronal matched filters for optic flow processing in flying insects. *International review of neurobiology*, 44:93–120.
- Kwon, J., and Choe, Y. (2008). Internal state predictability as an evolutionary precursor of self-awareness and agency. In *Proceedings of the Seventh International Conference on Development and Learning*, 109–114. IEEE.
- Li, Q., Yoo, J., and Choe, Y. (2015). Emergence of tool use in an articulated limb controlled by evolved neural circuits. In *Proceedings of the International Joint Conference on Neural Networks*. DOI: 10.1109/IJCNN.2015.7280564.
- Lucas, B. D., and Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In *IJCAI*, vol. 81, 674–679.
- Parulkar, A., and Choe, Y. (2016). Motor-based autonomous grounding in a model of the fly optic flow system. In *Proceedings of the International Joint Conference on Neural Networks*. In press.
- Reams, R., and Choe, Y. (2017). Emergence of tool construction in an articulated limb controlled by evolved neural circuits. In *Proceedings of the International Joint Conference on Neural Networks*. In press.
- Rieke, F., Warland, D., de Ruter van Steveninck, R., and Bialek, W. (1997). *Spikes: Exploring the Neural Code*. Cambridge, MA: MIT Press. First edition.
- St. Amant, R., and Wood, A. B. (2005). Tool use for autonomous agents. In *Twenteth AAAI Conference on Artificial Intelligence*, 184–189.

- Stanley, K. O., and Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. *Evolutionary Computation*, 10:99–127.
- Taylor, G. K., and Krapp, H. G. (2007). Sensory systems and flight stability: what do insects measure and why? *Advances in insect physiology*, 34:231–316.
- Yoo, J., Kwon, J., and Choe, Y. (2014). Predictable internal brain dynamics in EEG and its relation to conscious states. *Frontiers in Neurorobotics*, 8(00018).