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Overview

• Limitations of Deep Learning

– Practical limits

– Fundamental limits

• Overcoming Fundamental Limits of Deep Learning

– Meaning

– Consciousness

– Open-ended improvement
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Part 1: Practical Limits of Deep Learning
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Practical Limits of Deep Learning

• Requires massive amounts of (labeled) data.

• Long training time. Large trained models.

• Catastrophic forgetting.

• Designing good model is done mostly manually.

• Vulnerable to adversarial inputs.

• Hard to explain how it works / what it learned.
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Overcoming Practical Limits of DL

Pretty much well known problems, and solutions emerging.

• Data: Active learning, Core sets, data augmentation, etc.

• Computing time: Train with reduced data. Compact models.

• Large trained models: Compression, distillation

• Catastrophic forgetting: Various approaches, not perfect yet.

• Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.

• Adversarial inputs: Adversarial training, defensive distillation, ...

• Explainability: DARPA XAI effort - explanation generation,

Bayesian program induction, semantic associations, etc.
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Part 2: Fundamental Limits of

Deep Learning
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Fundamental Limits of Deep Learning

Questions from a brain and cognitive science perspective:

• Do deep neural networks have inherent meaning?

• Can deep neural networks become conscious?

• Can deep neural networks improve open-endedly?
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Fundamental Limits of Deep Learning
Why are these relevant questions?

• Do deep neural networks have inherent meaning?

– Information does not have inherent meaning, and

meaningless representations lead to brittleness.

• Can deep neural networks become conscious?

– Fundamental question of weak vs. strong AI.

• Can deep neural networks improve open-endedly?

– Current DL excels in specific tasks, and is confined to

the brain. Can it go beyond the immediate tasks,

beyond the confines of its brain? 8



Part 2.1. Meaning
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Meaning in Neural Networks

• Do neural networks possess meaning?

• Aren’t they just information processors?

– Shannon information by definition does not have meaning.

• Semantic embedding (e.g. Word2Vec) allows meaning-level

manipulation.

• However, is meaning inherent to the neural network and can it be

decoded from within?

• Strategy: consider how the brain does it – meaning of neural

code.

10



How to Understand the Neural Code?

I f
S

fI
S

(a) From the OUTSIDE (b) From the INSIDE

• How can we understand the neural code? (X)
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How to Understand the Neural Code?

I f
S

fI
S

(a) From the OUTSIDE (b) From the INSIDE

• How can we understand the neural code? (X)

• How can the brain itself understand its neural

code? (O)
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Understanding the Neural Code, by the Brain

• What do these blinking lights mean?

• This is the BRAIN’s perspective.

– Seems impossible to solve!
13



Understanding the Neural Code, by Us

• Now we can understand the meaning.

• This is OUR perspective.

– However, this methodology is not available to the brain!
14



How to Understand the Neural Code?

I f
S

fI
S

(a) From the OUTSIDE (b) From the INSIDE

• How can we understand the brain? (X)

• How can the brain itself understand itself? (O)
– Solution: sensorimotor learning – not obvious

when wrong question asked (Choe and Smith 2006; Choe
et al. 2007) Cf. Buzsaki’s “Inside-Out approach”. Rhythms of the Brain (2006).
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Sensorimotor Learning to the Rescue

• Property of motor output that maintains internal state

invariant

• Same as property of encoded sensory information.
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Understanding, Inside the Brain

Choe et al., Int’l J. of Humanoid Robotics 200717



Results
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18



Applications to Optic Flow

Same principle applied to the fly visual system:

1. Fly Optic flow detectors (LPTC, Lobula

Plate Tangential cells)

2. Learning the meaning of LTPC spikes:

reinforcement learning based on internal

state invarnance

Cartoon from Rieke et al. (1997)

Parulkar and Choe IJCNN 2016 (Parulkar and Choe 2016).
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Fly Visual System

• Lamina (L) and Medulla (M):

– Elementary Motion De-

tectors (EMD)

• Lobula Plate (LP) Tangential

Cells (LPTCs)

– HS and VS detect com-

plex motion.

Borst and Egelhaaf (1989); Taylor and Krapp (2007)
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Fly Visual System Model

Rotation: Yaw

Right to Left

(RYRL)

Rotation: Yaw

Left to Right

(RYLR)

Rotation: Pitch

Up to Down

(RPUD)

Rotation: Pitch

Down to Up

(RPDU)

Rotation: Roll

Clockwise

(RRCL)

Rotation: Roll

X-clockwise

(RRAC)

Translation:

Radiate in

(TLRI)

Translation:

Radiate out

(TLRO)

• Initial optic flow computation: Lucas and Kanade (1981) method.

• HS: simple horizontal motion; VS: matched filter (roll and pitch [Krapp 2000]) 21



Learning the Reward Table R(s, a)

RYRL
RYLR
RPUD
RPDU
RRCL
RRAC
TLRI
TLRO

1 0 0 0 0 0 0 0
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R(s, a)

• Action is selected based on P (a|s) = R(s, a).

• Learning (α: learning rate):

Rt+1(st, at) = Rt(st, at) + αρt+1 , where

ρt+1 = 1/

√∑
i

(rt+1,i − rt,i)2

Finally,R(s, a) is normalized over all a.
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Experiments and Results: Input

(a) Synthetic (b) Natural 1 (c) Natural 2

• Model fly trained on three different inputs above.
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Experiments and Results: Learned R

(a) Synthetic (b) Natural 1 (c) Natural 2

• All three inputs lead to near-ideal R(s, a).

• Given a certain internal state, action that has the same

encoded property as that state is generated.
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Summary: Meaning

• Motor exploration is key to autonomous grounding of

meaning.

• Meaning is in large part based on motor primitives,

not perceptual features.

• Very simple criterion of internal state invariance can

be used to learn the sensorimotor meaning.

• Implications on deep learning: Purely

perception-based meaning is untenable. Need the

network to interact with the environment.
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Part 2.2. Consciousness
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The Question of Consciousness

zombieconscious

• How did consciousness evolve? (X)
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The Question of Consciousness

zombieconscious

• How did consciousness evolve? (X)

• How did the necessary conditions of consciousness

evolve? (O)
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How did Consciousness Evolve?

• How did consciousness evolve? (X)

• How did the necessary conditions of consciousness

evolve? (O)

– Former is subjective, latter is objective.

– Predictive dynamics found to be key (Choe et al. 2012)

Predictive Conscious Unconcious Nonpredictive

zombieconscious
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

30



Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

• What if I say there are such events?
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

• What if I say there are such events?

• I will clap my hands in the next 5 seconds.
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

• What if I say there are such events?

• I will clap my hands in the next 5 seconds.

• “My” actions are 100% predictable, and this (authorship) is

a key property of the self, the subject of consciousness.
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

• What if I say there are such events?

• I will clap my hands in the next 5 seconds.

• “My” actions are 100% predictable, and this (authorship) is

a key property of the self, the subject of consciousness.

• Thus, the brain dynamics have to be predictable.
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Could the Necessary Condition Evolve?
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(a) Task (b) Controller

• Pole balancing task.

• Evolved neural network controller.
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Could the Necessary Condition Evolve?

t+1
t

t−1

t−2

t−3

internal state

analysis

selection
process

evolutionary

internal stateanalysis

Low ISP

High ISP

All Controllers High−perform.
Controllers

(a) Measure ISP (b) Overview

• Measure predictability of internal state dynamics.

• Compare internal dynamics of equally sucessful ones.
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Predictable vs. Unpredictable Internal Dyn.

• Internal dynamics of a simple pole-balancing

controller neural network (Kwon and Choe 2008)
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Predictable vs. Unpredictable Internal Dyn.

• Performance in controllers with high vs. low internal

state predictability (Kwon and Choe 2008)

• Controllers with high ISP better fit in changing

environment: Necessary condition can evolve!
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Analysis of Real EEG Data
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• Awake, REM sleep, and Slow-wave sleep EEG data.

• Inter-Peak Interval (IPI) predictability.

Yoo et al. Frontiers in Neurorobotics 2013.
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Real EEG Data: Prediction Error
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• Awake and REM more predictable than SWS.

• All differences were significant (p < 10−6) except for

subject 4, Awake vs. REM.

Yoo et al. Frontiers in Neurorobotics 2013.
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Summary: Consciousness

• Internal dynamics of neural networks can relate to subjective

phenomena.

• Predictable internal dynamics may be the precursor of

consciousness.

• Such predictable dynamics can facilitate intrinsic understanding

within the neural network.

• Implications on deep learing:

– Need to look at internal neural dynamics.

– Need to explore predictive properties.

41



Part 2.3. Open-Ended Improvement
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DL Can’t Improve Open-Endedly

• Current DL excels only in very specific tasks.

– Tasks and (kind of) data are fixed.

– What it can learn is limited by the task itself.

• Current DL is confined to its brain

– Neural network weights

– Optionally external memory, but strongly integrated with

the neural network.
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Open-Ended Improvement

Possible directions:

• Use of external medium, beyond the bounds of the

brain

– Stigmergy

• Co-evolution of brain and tools

– New tools enable new problem definitions.
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Using the External World as Memory

Is it possible for a feedforward network to show memory

capacity?

• What would be a minimal augmentation?

• Idea: allow material interaction, dropping and

detecting of external markers.
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Memory Task: Catch the Balls

A
B C

D E

B1

speed = 1

B2

speed = 2

agent

5 distance sensors

θ

cf. Beer (2000); ?

• Agent with range sensors move left/right.

• Must catch both falling balls.

• Memory needed when ball goes out of view.
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Feedforward Net + Dropper/Detector

I
1

if O3 > θ,

DropMarker = True (1)

else,

DropMarker = False             (2)

(1) (2)

I
2

I
3

I
4

I
5

I
6

I
7

H
1

H
2

H
3

O
1

O
2

O
3

• Feedforward network plus:

– Extra output to drop markers.

– Extra sensors to detect the markers.

• Neuroevolution used for training the weights.
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Results (vs. Recurrent Networks)
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• No difference in performance between

dropper/detector net (gray) and recurrent network

(black).
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Behavior
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• Slight overshoot and drop the marker.

• Subsequent move repelled away from the marker.
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Task 2: Foraging in 2D

Agent (circle)
Nest (filled ‘X’)

Food #1

Food #2

Food #3

Food #1

Food #2

Food #3

Proximity

External Marker
Food

A. Task Setup B. Agent at Initial Location Agent

Food #1

Food #2

Food #3

Proximity

Nest

Food #1

Food #2

Food #3

Nest

Proximity

C. Agent Getting Food]1 D. Agent Getting Food]2

• 2D foraging task requiring memory.

• Agent w/ directional food/nest sensor (limited range).
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Foraging: Results

0%

20%

40%

60%

80%

100%

ρ=1.0 ρ=0.99 ρ=0.7
0%

20%

40%

60%

80%

100%

λ=1.0 λ=0.99 λ=0.7

FFW+Dropper RNN
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• Comparison of FFW-net+Dropper vs. RNN (Elman

tower) success rate.
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Foraging Behavior: RNN
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Foraging Behavior: FFW+Dropper
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B. Trajectories of Successful Dropper Agents with ρ = 0.99
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Tool Construction and Use

• Animals have shown limited tool construction capability in

lab environment.

• Why care for tool construction?

– Tool construction and use as a measure of intelligence

(St. Amant and Wood 2005; Choe et al. 2015).

– Agent-tool co-evolution (only observed in humans!).
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Task: Reaching Close/Far Targets

• Sensors: Joint angles/limits, angle/distance to target/tool.

• Motor: Control joint angle to reach target or tool (stick).

• Targets could be within/beyond reach.

• Reaching tool extends limb (automatic).
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Task: Reaching Close/Far Targets

• Sensors: Joint angles/limits, angle/distance to target/tool.

• Motor: Control joint angle to reach target or tool (stick).
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Evolving Neural Network Controllers

w9w3 w4w2 w5

output

Input

NEURAL NEWORK

w1 w6

w12w7

CHROMOSOME

ww w10 11 12w1 w6 w7 w8

cross−over point

PARENTS OFFSPRINGS

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w1 w6

w7 w12

w1 w6

w7 w12

w1 w6

w7 w12

w1 w6
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CROSS−OVER

• Above: vanilla neuroevolution (mutation not shown).

– Genotype→ phenotype, then run in the environment

– Fitness evaluation and selection

– Mating and reproduction
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Evolving Neural Network Controllers

Node 1

Sensor

Node 2

Sensor

Node 3

Sensor

Node 4

Output

Node 5

Hidden

In 1

Out 4
Weight 0.7

Enabled
Innov 1

In 2

Out 4
Weight−0.5

DISABLED

Innov 2

In 3

Out 4
Weight 0.5

Enabled
Innov 3

In 2

Out 5
Weight 0.2

Enabled
Innov 4

In 5 In 1 In 4

Out 4 Out 5 Out 5
Weight 0.4 Weight 0.6 Weight 0.6

Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

  

Genome (Genotype)

Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3

5

4

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

• We used NeuroEvolution of Augmenting Topologies (NEAT)

algorithm by Stanley and Miikkulainen (2002).

• Networks of arbitrarily complex topologies can be evolved,

leading to increasingly complex behavior.
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Fitness Evaluation

• D: final distance to target

• S: number of steps to reach target

• T : number of times tool picked up

• ... : DS, DT, DST, etc. (multiplied combination)

Task: 50% within reach, 50% beyond reach targets
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Evolved Neural Networks 1

Fitness = S2T
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Evolved Neural Networks 2

Fitness = DS
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Tool Use Behavior

• Articulated arm.

• Tool (green bar) pick up and reach goal.
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Target Reaching Performance

• Fitness criterion T helps, but not necessary in evolving tool

use behavior (avg/std shown; n = 4 sets, each with 1,000

trials). 63



Simple Tool Construction Task

• Combine two sticks to reach out-of-reach targets.

• Some targets reachable without a stick.

• Some reachable with one stick.

• Some reachable with two sticks.
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Results: Example Evolved Networks
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Results: Demo

• Easy task (tool placement requires only simple

planning).
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Results: Average Performance

• On average (top), training on simple (one tool) or

ambiguous tasks leads to lower performance during

testing.
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More Demo

• End-to-end Tool Use demo
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Summary
• Going beyond the confines of the brain (network weights,

integrated external memory).

• Using the environment as a canvass empowers neural networks,

even very simple feedforward networks.

• Tool use and tool construction can have a synergistic effect:

co-evolution of tool and intelligence.

• Implications on deep learning:

– Both of the above can enable the definition of new tasks

previously unavailable to the agent.

– Potential for open-ended improvement, not limited to the

immediate task.
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Wrap Up
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Conclusion

• There are multiple practical and fundamental

limitations of deep learning.

• Practial limits already have potential solutions.

• Investigating fundamental limits allows us to go

beyond deep learning.

– Meaning through action

– Consciousness through predictive dynamics

– Open-ended improvement through stigmergy and

tool construction/use.
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