Introduction to Deep Learning What Is Deep Learning?

e Learning higher level abstractions/representations from data.
625 Lecture, Spring 2020 o Motivation: how the brain represents and processes sensory

information in a hierarchical manner.
# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
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From LeCun’s Deep Learning Tutorial

Brief Intro to Neural Networks

Intro to Neural Network: Backpropagation

Weight w ;; is updated as: w;; <— wj; + 1d;a;, where

® a; : activity at input side of weight w ;.

e Hidden to output weights (thick red weight). 17, is target value.

Deep learning is based on neural networks. S = (T — ag)o’ (nety)

o Weighted sum followed by nonlinear activation function. e Deeper weights (green line in figure above).

e Weights changed w/ gradient descent (1) = learning rate, F/=err):

OF 5]': Zwkjék J'(netj)
k
8wij

Wij <= Wij — N

3 4



What Neurons Do in a Neural Network

Two points of view (both are valid):
e Function approximation
e Decision boundary

* Represent input features — more on this later.

Example: y = sin(x)

Teairing Result: Model=[1 tanh: 1, linear] apocns=10000

e Top: sin(a:) nnet: Model=[# of units, activation func, [next layer spec], ... ]

e Bottom: sin(x) vs. the hidden unit's output of last hidden layer.

[]

Function Approximation

e Assume one input unit (scalar value).

e Depending on # of hidden layers, # of hidden units, etc., function
with any complex shape can be learned. Ex: y = sin(x).

Ex: y = sin(x) Model=[2,tanh:1,linear]

Tralfing Result: Mede|=12,tath; L, inear] 8pochs=10800

® One hidden layer with 2 units, One output unit. [2,tanh:1,linear]
® Bottom plot: Hidden neurons represent sigmoids.

e Top plot: Output unit is a linear combination of two sigmoids.



Ex: y = sin(x) Model=[20,tanh:3,tanh:1,linear]

Training Result- Model=|20,tanh:3 tanh: 1, linear] epachs=10000

— pocdel Frediction

j/,,- ‘.\\\‘ Ve ‘\\\
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e 2nd hidden layer represents linear combination of 20 sigmoids.

Ex: y = sin(x) Model=[30,tanh:1,linear]

Training Resul: Moda!=130,tanh-1 linear] epachs=10000

— Maccel Frediction —

® Does a single hidden layer suffice? — Yes, with enough neurons.

Ex: y = sin(x) Model=[20,tanh:5,tanh:1,linear]

Training Result: Magel=120,tanh 5, tanh: Llinesr] epachs=10000
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e Out-of-range inputs illustrate the limitation of DL.

functions.

Decision Boundary

11 Output =1
t

Slope = -WO0
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Output=0fs

Perceptrons (step function activation) can only represent linearly separable

e Output of the perceptron:

Wo X Iop + W1 X I1 — t > 0, then outputis 1

Wo X Ig + W1 X I1 —t < 0, then outputis — 1

If activation function is sigmoid, decision is a smooth ramp.
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Decision Boundary

11

Slope = -W0
w0 t W1
10 O/—" Wi
W
11 |

Output=0fs

® Rearranging
Wo X Io + W1 X I1 —t > 0, then outputis 1,

we get (it W1 > 0)

_W()XI+ t
W, O Wy

I >

where points above the line, the output is 1, and -1 for those below the line.

Compare with

—Wo t
X x4+ —.
Wy Wy

y:

Generalizing to 12-Dimensions

z

n=/labc]l
_(Xypz)
C
http://mathworld.wolfram.com/Plane.html
e 7= (a,b,c), = (x,y,2), 20 = (0, Yo, 20)-
e Equation of the plane: 77 - (¥ — zp) = 0

e Inshort, ax + by + cz + d = 0, where a, b, c can serve as
the weight, and d = —11 - 2() as the bias.

o For n-D input space, the decision boundary becomes a
(n — 1)-D hyperplane (1-D less than the input space).

Limitation of Perceptrons

11
-1 t
Slope = -W0
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e Only functions where the -1 points and 1 points are clearly
separable can be represented by perceptrons.

® The geometric interpretation is generalizable to functions of .
arguments, i.e. perceptron with n inputs plus one threshold (or
bias) unit.
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Linear Separability

11 11 11

Linearly—separable Not Linearly—separable

o Functions/Inputs that can or cannot be separated by a linear
boundary.

16



Decision Boundary in Multilayer Networks Decision Boundary Demo with Tensorflow

+y-1.1)sigm(x-y+1.13)-1)
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Um, What Is a Neural Network?

e http://playground.tensorflow.org

o Multiple decision regions.
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Deep Learning Deep Learning, in the Context of Al/ML
e Complex models with large number of parameters DQQF LQ&T‘V\LV\S? output
— Hierarchical representations Au&omah‘“ﬂ i
. Feature Discovery o
— More parameters = more accurate on training data Output Output R
features
— Simple learning rule for training (gradient-based). Y Y Y
) LOtS of data Output M?r;;ﬂng M?r;;ﬂng co'\:lnt;)sltex
— Needed to get better generalization performance. L} L L} L}
Hand- Hand- .
- High-dimensional input need exponentially many inputs designed || designed || Featwres | | G2l
(curse of dimensionality). Ty Ty Y Y
e Lots of computing power: GPGPU, etc. nput nput nput nput
— Training large networks can be time consuming. Rulebased  Classic  Representation  Deep
systems machine learning learning
learning

Fig: I. Goodfellow

19 20 From LeCun’s Deep Learning Tutorial



The Rise of Deep Learning

Made popular in recent years

Geoffrey Hinton et al. (2006).
Andrew Ng & Jeff Dean (Google Brain team, 2012).

Schmidhuber et al’s deep neural networks (won many
competitions and in some cases showed super human
performance; 2011-). Recurrent neural networks using LSTM
(Long Short-Term Memory).

Google Deep Mind: Atari 2600 games (2015), AlphaGo (2016).

ICLR, International Conference on Learning Representations:
First meeting in 2013.
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History: Fukushima’s Neocognitron
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M layer masker edges higher-order features recognition

Appeared in journal Biological Cybernetics (1980).
Multiple layers with local receptive fields.
S cells (trainable) and C cells (fixed weight).

Deformation-resistent recognition.
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Long History (in Hind Sight)

e Fukushima’s Neocognitron (1980).
e LeCun et al’s Convolutional neural networks (1989).

e Schmidhuber’s work on stacked recurrent neural networks (1993).
Vanishing gradient problem.

e See Schmidhuber’s extended review: Schmidhuber, J. (2015).
Deep learning in neural networks: An overview. Neural Networks,
61, 85-117.
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History: LeCun’s Colvolutional Neural Nets

10 output units B} srescmun

fully connected
~ 300 links

layer H3
30 hidden units fully connected

~ 6000 links

layer H2
12 x 16=192
hidden units

H2a g 40,000 links

i| from 12 kernels
= 5ix:5:x18

layer H1
12 x 64 = 768
hidden units
H1.1
~20,000 links
from 12 kernels
M 5x5

256 input units
LeCun et al. (1989)

o Convolution kernel (weight sharing) + Subsampling
o Fully connected layers near the end.

e Became a main-stream method in deep learning.

24



Motivating Deep Learning: Tensorflow Demo

o

sssssss

Um, What Is a Neural Network?

e http://playground.tensorflow.org

o Demo to explore why deep nnet is powerful and how it is limited.
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Deep Convolutional Neural Networks (1)

128

27

—

Max 58 Max
pooling pooling

o Krizhevsky et al. (2012)

o Applied to ImageNet competition (1.2 million images, 1,000
classes).

o Network: 60 million parameters and 650,000 neurons.
o Top-1 and top-5 error rates of 37.5% and 17.0%.

e Trained with backprop.
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Current Trends

Focusing on ground-breaking works in Deep Learning:
e Convolutional neural networks
e Deep Q-learning Network (extensions to reinforcement learning)
e Deep recurrent neural networks using (LSTM)

e Applications to diverse domains.

— Vision, speech, video, NLP, etc.

e Lots of open source tools available.
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Deep Convolutional Neural Networks (2)

® Learned kernels (first convolutional layer).

® Resembles mammalian RFs: oriented Gabor patterns, color
opponency (red-green, blue-yellow).

28



Deep Convolutional Neural Networks (3)

M Natural is data is compositional => it is efficiently representable hierarchically

Low-LeveI__|Mid-LeveI
Feature

High-Level Trainable
. N
Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

e Higher layers represent progressively more complex features

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (5)

> Depth inflation

28.2
25.8
152 layers
h----4A
16.4 ;
1.7 - et I il
| 191ayers | [ 22 1ayers | R
7.3 67 ¢ and Wide
shallow layers I I 3.6 29
ILSVRC'10 ILSVRC'11 ILSVRC'12 ILSVRC'13 ILSVRC'14 ILSVRC'14 ILSVRC'1S ILSVRC'16
AlexNet VGG GoogleNet ResNet Ensemble

ImageNet Classification top-5 error (%) (Figure: Anirudh Koul)
e Depth inflation: Deeper is better!

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (4)

o Left: Bold = correct label. 5 ranked labels: model’s estimation.

e Right: Test (1st column) vs. training images with closest hidden
representation to the test data.

30

Deep Convolutional Neural Networks (6)

i

VGG

[Simonyan 2013]

GooglLeNet
Szegedy 2014]

ResNet
[He et al. 2015]

Al 12 |a] [2] (= =;=5 5| |3 (&[4 A sl 7 E;‘

Ceeonr 2= e
enseNe || Oeresioekt Dense Block 2 Dense Block 3 chaillic
2] . 2] el - -

[Huang et al 2017] i T il o i s i

o Not just depth but architecture also matters!

* From Yann LeCun’s Harvard lecture (2019)
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Deep Convolutional Neural Networks (7) Deep Q-Network (DQN)
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Operations [(G-Ops]

Google Deep Mind (Mnih et al. Nature 2015).

e Computation vs. performance e Latest application of deep learning to a reinforcement learning
domain (( as in (Q-learning).

* From Yann LeCun’s Harvard lecture (2019)

o Applied to Atari 2600 video game playing.
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DQN Overview DQN Overview

Convo'\ution Convg\ution Fully co'nnected Fully cgnnecled

e Input preprocessing

e Experience replay (collect and replay state, action, reward, and
resulting state)

e Delayed (periodic) update of ().

+

e Moving target Q value used to compute error (loss function L,

Kje L4 Bl
+ + 1+
] (¢] (&)

.
£y
+ |+

parameterized by weights 6,).

QOJo

— Gradient descent:
oL

00;
e Input: video screen; Output: () (s, a); Reward: game score. ¢

e ()(s,a): action-value function

— Value of taking action a when in state s.
35 36



DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
Initialize target action-value function Q with weights 8 = @
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, = ¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; = argmax, Q(¢(s:).a; @)
Execute action a, in emulator and observe reward r, and image x; ; ,
Set s;+1=s.a0.%+1 and preprocess ¢, | =d(s;11)
Store transition (éf.a,.r,.qﬁﬁ ]) inD
Sample random minibatch of transitions (é_i.a_,-.r‘_,-.qi’_,-ﬂ) from D

1 if episode terminates at step j+ 1
Sety;= rj+ 7 maxy Q(qﬁﬁl a; 9_) otherwise

Perform a gradient descent step on (y_,- — Q(qi?,-.a_,-; H) ) " with respect to the
network parameters ¢
Every C steps reset Q= Q
End For
End For
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DQN Hidden Layer Representation (-SNE map)

R ‘ y {

e Similar perception, similar reward clustered.
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DQN Results

Video Pinball
Boxing .-
Breakout

At human-level or above

Below human-level

Double Dunk |

Bowiing |
Ms. Pac-Man |
Asteroids |
Frostbite |

Gravitar |
Private Eye |
Montezuma's Revenge |

g
g
g
]
g
§4
27
g
1§4

o Superhuman performance on over half of the games.
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DQN Operation
| ' . ' '
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e Value vs. game state; Game state vs. action value.
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Deep Recurrent Neural Networks

Outputi Output? Qutput’3
Outputt Output3
) ) )
v y
Inputt ——— ——> Input3 Inputi Input3
Output3

Output1 Output3

—> Inputl —— Input3

Feedforward Recurrent
o Feedforward networks: No memory of past input.

o Recurrent networks:
— Good: Past input affects present output.

— Bad: Cannot remember far into the past.
41

Long Short-Term Memory

Version 1

i¢, fe, 0 - input, forget and output
gates fromOto 1

C¢ - meémory

b - input, y; - output

it = 0 (WipTt + WicCr—1 + Wiyyr—1 + b;)
fi= a(nvfzar,g FWpeCt—1 + WeyYr—1 + bf)
0 = 0(Woat + WocCt + WoyYi—1 + bo)

Ct = fici—1 + it - tanh(weaws + WeyYi—1) Yr = o - tanh(cy)

® |STM to the rescue (Hochreiter and Schmidhuber, 1997).

e Built-in recurrent memory that can be written (Input gate), reset
(Forget gate), and outputted (Output gate).

Fromhttp:
//www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
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RNN Training: Backprop in Time

S

An unrolled recurrent neural network.

e Can unfold recurrent loop: Make it into a feedforward net.
o Use the same backprop algorithm for training.

e Again, cannot remember too far into the past.

Figfromhttp://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory

Captures info Keeps info Releases info
\ \ 1
Erases info ERNN

@ -cateisclose

@ -gateisopen
\) )
\ \

e Long-term retention possible with LSTM.

From http:
//www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
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Long Short-Term Memory in Action LSTM Applications

@ ® ® (B)
t 1 1 * Sequence classification
. & T
| | I
e @ @ @ end
The repeating module in a standard RNN contains a single layer.
RNN Vanilla RNN Unit * Sequence translation
® ® @
T I T oo e e e
L[
o end
A [HEAl A . | |
Input sequence
) | |
(3} ® (3]
The repeating module in an LSTM contains four interacting layers. . . ven . .
e Applications: Sequence classification, Sequence translation.
LSTM Unit

N Fromhttp://machinelearning.ru
e Unfold in time and use backprop as usual.

Figfromhttp://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Applications LSTM Applications

handwriting -> handwriting text -> handw\riting
Next pen position (we predict parameters):
x1,x2 - mixture of bivariate Gaussians Next pen position
x3 - Bernoulli distribution
Current pen position:
x1,x2 — pen offset tart
x3 —is it end of the stroke .
Current pen position
Which letter we write now
e Applications: Sequence classification, Sequence prediction,
. - Sequence translation.
e Applications: Sequence prediction
Fromhttp://machinelearning.ru

Fromhttp://machinelearning.ru
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Deep Learning Applications: Vision

# Give the name of the dominant object in the image

# Top-5 error rates: if correct class is not in top 5, count as error
P Red:ConvNet, blue: no ConvNet

ISI (Tokyo)
VGG (Oxford) 26.9
XRCE/INRIA 27.0
UVA (Amsterdam) 29.6
INRIA/LEAR 334

VGG (Oxford)

o ConvNet sweepting image recognition challenges.

From LeCun’s Deep Learning Tutorial
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Deep Learning Applications: Speech

&

taiing sample.
*»40 MEL-frequency Cepstral Coefficients bé‘
*»Window: 40 frames, 10ms each x
40 (temporal)

40 (frequency)

3x40x40 9x9 64x32x32 ax1 B4xBx32  Axd  64x5x29 1024 1024

‘#Acoustic Model: ConvNet with 7 layers. 54.4 million parameters.

#Classifies acoustic signal into 3000 context-dependent subphones categories
#RelLU units + dropout for last layers

dTrained on GPU. 4 days of training

o ConvNet can also be applied to speech recognition.
o Use spectrogram and treat it like a 2D image.

o SOTA: end-to-end attention-based RNN (w/ LSTM, GRU, ...)

From LeCun’s Deep Learning Tutorial
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Translation quality

Deep Learning Applications: Speech

The dramatic impact of Dee
Learning on Speech Recognition
EZo.a:o ding to Microsoft)

100%

Using DL
10%)

4%

Word error rate on Switchboard

2%

1%

1990 2000 2010
e Deep learning led to major improvement in speech recognition.

From LeCun’s Deep Learning Tutorial
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Deep Learing Applications: NLP

perfect translation

human

neural (GNMT)

Encoder & Bl o [E==b] G [==bl oo [Smod os |S= o

phrase-based (PBMT)

Attention

English  English English ~ Spanish  French  Chinese
Spanish  French Chinese  English  English  English l l |

Translation model

e Based on encoding/decoding and attention.

From https:
//research.googleblog.com/2016/09/a-neural-network-for-machine.html
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Deep Learing Applications: NLP

e T R g
- iy >

Encoder LsTHs : I

way <
_~~ Dgtoder LSTMs ~«
GPU8 Gpus
8layers
4 t t 0
GPU3 . 3 H
GPU2 1 e GPU3
; ——> Attention
GPUZ ! \ e GPU2
GPU | GPUL
i sfs> —» y, =F 0 =Py

o Google’s LSTM-based machine translation.
Wu et al. arXiv:1609.08144 (2016).

How attention works: https://Jjalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seg2seg-models—-with-attent:
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Deep Learning for NLP: Transformers & BERT

BERT (QOurs) OpenAl GPT

[=lle]- [ellem]e]- []
(=060 ll[]q!rgl

Sentonce 1 Sentence 2 Singe Sentence Queston Paragraph Single Sentence
@ %EELTHSZ?ESETSSI(T‘C;‘;T\AE;? © 2;‘?{; sg:&"” Classification Tasks: (c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
, QQP, QNLI, STS-B, MRPC, , SQUAD V11 CoNLL-2003 NER

RTE, SWAG
from Devlin et al. 2018

o BERT, based on Transformer: Powerful new approach for NLP
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Deep Learning for NLP: Transformers

Output
Probabilities
Softmax_
Linear
Add & Norm
Feed
Forward
Add & Norm
— Mut-Head
Feed Attention
Forward Nx
Nx Add & Norm
Add & Norm ‘Masked
Mutti-Head Multi-Head
Attention Attention
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
Multihead Self-attention Scaled Dot-Product Attention Transformer

e Highly parallelizable, Reduces serial computation
e Multi-head self-attention + position-encoding/position-wise FFW

e Organized over Query, Key, Value (Q,K,V)

https://medium.com/Qadityathiruvengadam/
transformerfarchitecturefattentior&“isfallfyoufneedf aeccd9£50d09

Deep Learning for NLP: Transformers & BERT

GLUE scores evolution over 2018-2019

B Single generic models 2018 Task-specific-SOTA == Human performance

90

85

80

75

70

BILSTM+ELMo GPT BERT BERT Big BigBird

e Transformer-based NLP led to big leap in performance.

https://medium.com/synapse-dev/
understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db
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Limitations of Deep Learning

® Requires massive amounts of (labeled) data.

e Long training time. Large trained models.

e (Catastrophic forgetting.

e Designing good model is done mostly manually.
o Vulnerable to adversarial inputs.

o Hard to explain how it works / what it learned.
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Advanced/Fundamental Issues in Deep Learning

o Reasoning, Common-sense reasoning
o Unsupervised, self-supervised learning
o Human-like learning

® Meaning/semantic-level processing

e Problem posing, Coping with new tasks

® Tool construction and tool use
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Overcoming Limitations of DL

Pretty much well known problems, and solutions emerging.

Data: Active learning, Core sets, data augmentation, etc.
Computing time: Train with reduced data. Compact models.
Large trained models: Compression, distillation

Catastrophic forgetting: Various approaches, not perfect yet.
Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.
Adversarial inputs: Adversarial training, defensive distillation, ...

Explainability: DARPA XAl effort - explanation generation,

Bayesian program induction, semantic associations, etc.
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Summary
Deep convolutional networks: High computational demand, over
the board great performance.

Deep Q-Network: unique apporach to reinforcement learning.

End-to-end machine learning. Super-human performance.

Deep recurrent neural networks: sequence learning. LSTM is a

powerful mechanism.
Diverse applications. Top performance.
Lots of practical and fundamental limits

Flood of deep learning tools available.
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