
Introduction to Deep Learning

420 Lecture, Spring 2020

Yoonsuck Choe, Ph.D.

Professor, Texas A&M University

1

What Is Deep Learning?

• Learning higher level abstractions/representations from data.

• Motivation: how the brain represents and processes sensory

information in a hierarchical manner.

From LeCun’s Deep Learning Tutorial

2

Brief Intro to Neural Networks

input

hidden

output

wji

wkj

j

i

k

w1
w2

wn

w0

x1

x2

xn

x0 = 1

.

.

.
Σ

net = Σ wi xii=0

n
1

1 + e-neto = σ(net) =

Deep learning is based on neural networks.

• Weighted sum followed by nonlinear activation function.

• Weights changed w/ gradient descent (η = learning rate,E=err):

wij ← wij − η
∂E

∂wij
3

Intro to Neural Network: Backpropagation

input

hidden

output

wji

wkj

j

i

k

j

i

k

Weightwji is updated as: wji ← wji + ηδjai, where

• ai : activity at input side of weightwji.

• Hidden to output weights (thick red weight). Tk is target value.

δk = (Tk − ak)σ′(netk)

• Deeper weights (green line in figure above).

δj =

[∑

k

wkjδk

]
σ′(netj)

4

What Neurons Do in a Neural Network

Two points of view (both are valid):

• Function approximation

• Decision boundary

* Represent input features – more on this later.

5

Function Approximation

• Assume one input unit (scalar value).

• Depending on # of hidden layers, # of hidden units, etc., function

with any complex shape can be learned. Ex: y = sin(x).

6

Example: y = sin(x)

• Top: sin(x) nnet: Model=[# of units, activation func, [next layer spec], ...]

• Bottom: sin(x) vs. the hidden unit’s output of last hidden layer.

7

Ex: y = sin(x) Model=[2,tanh:1,linear]

x0

y

• One hidden layer with 2 units, One output unit. [2,tanh:1,linear]

• Bottom plot: Hidden neurons represent sigmoids.

• Top plot: Output unit is a linear combination of two sigmoids.

8

Ex: y = sin(x) Model=[20,tanh:3,tanh:1,linear]

x0

y

• 2nd hidden layer represents linear combination of 20 sigmoids.

Ex: y = sin(x) Model=[20,tanh:5,tanh:1,linear]

x0

y

• Out-of-range inputs illustrate the limitation of DL.

Ex: y = sin(x) Model=[30,tanh:1,linear]

x0

y

• Does a single hidden layer suffice? – Yes, with enough neurons.

Decision Boundary

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

Perceptrons (step function activation) can only represent linearly separable

functions.

• Output of the perceptron:

W0 × I0 + W1 × I1 − t > 0, then output is 1

W0 × I0 + W1 × I1 − t ≤ 0, then output is − 1

If activation function is sigmoid, decision is a smooth ramp.

12

Decision Boundary

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

• Rearranging

W0 × I0 + W1 × I1 − t > 0, then output is 1,

we get (if W1 > 0)

I1 >
−W0

W1

× I0 +
t

W1

,

where points above the line, the output is 1, and -1 for those below the line.

Compare with

y =
−W0

W1

× x +
t

W1

.

Limitation of Perceptrons

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

• Only functions where the -1 points and 1 points are clearly

separable can be represented by perceptrons.

• The geometric interpretation is generalizable to functions of n

arguments, i.e. perceptron with n inputs plus one threshold (or

bias) unit.

14

Generalizing to n-Dimensions
z

Tn = [a b c]

x

y

(x0,y0,z0)

(x,y,z) 1

x

y

z

a
b

c

d

http://mathworld.wolfram.com/Plane.html

• ~n = (a, b, c), ~x = (x, y, z), ~x0 = (x0, y0, z0).

• Equation of the plane: ~n · (~x− ~x0) = 0

• In short, ax+ by + cz + d = 0, where a, b, c can serve as

the weight, and d = −~n · ~x0 as the bias.

• For n-D input space, the decision boundary becomes a

(n− 1)-D hyperplane (1-D less than the input space).

Linear Separability
I1

I0

I1

I0

I1

I0
AND OR XOR

−1

−1 −1 −1

−1

−1

1 1 1

11

1

?

I0

I1

I0

I1

Linearly−separable Not Linearly−separable

• Functions/Inputs that can or cannot be separated by a linear

boundary.

16

Decision Boundary in Multilayer Networks

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Output

sigm(x+y-1.1)
 0.8
 0.6
 0.4
 0.2

Input 1
Input 2

Output

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535 0.54 0.545 0.55

Output

sigm(sigm(x+y-1.1)+sigm(-x-y+1.13)-1)
 0.54
 0.53
 0.52
 0.51

Input 1
Input 2

Output

(a) One output (b) Two hidden, one output

• Example: XOR

F1 F2

head hid who’d hood
... ...

• Multiple decision regions.

17

Decision Boundary Demo with Tensorflow

Playground

• http://playground.tensorflow.org

18

Deep Learning

• Complex models with large number of parameters

– Hierarchical representations

– More parameters = more accurate on training data

– Simple learning rule for training (gradient-based).

• Lots of data

– Needed to get better generalization performance.

– High-dimensional input need exponentially many inputs

(curse of dimensionality).

• Lots of computing power: GPGPU, etc.

– Training large networks can be time consuming.

19

Deep Learning, in the Context of AI/ML

From LeCun’s Deep Learning Tutorial20

The Rise of Deep Learning

Made popular in recent years

• Geoffrey Hinton et al. (2006).

• Andrew Ng & Jeff Dean (Google Brain team, 2012).

• Schmidhuber et al.’s deep neural networks (won many

competitions and in some cases showed super human

performance; 2011–). Recurrent neural networks using LSTM

(Long Short-Term Memory).

• Google Deep Mind: Atari 2600 games (2015), AlphaGo (2016).

• ICLR, International Conference on Learning Representations:

First meeting in 2013.

21

Long History (in Hind Sight)

• Fukushima’s Neocognitron (1980).

• LeCun et al.’s Convolutional neural networks (1989).

• Schmidhuber’s work on stacked recurrent neural networks (1993).

Vanishing gradient problem.

• See Schmidhuber’s extended review: Schmidhuber, J. (2015).

Deep learning in neural networks: An overview. Neural Networks,

61, 85-117.

22

History: Fukushima’s Neocognitron

• Appeared in journal Biological Cybernetics (1980).

• Multiple layers with local receptive fields.

• S cells (trainable) and C cells (fixed weight).

• Deformation-resistent recognition.

23

History: LeCun’s Colvolutional Neural Nets

• Convolution kernel (weight sharing) + Subsampling

• Fully connected layers near the end.

• Became a main-stream method in deep learning.

24

Motivating Deep Learning: Tensorflow Demo

• http://playground.tensorflow.org

• Demo to explore why deep nnet is powerful and how it is limited.

25

Current Trends

Focusing on ground-breaking works in Deep Learning:

• Convolutional neural networks

• Deep Q-learning Network (extensions to reinforcement learning)

• Deep recurrent neural networks using (LSTM)

• Applications to diverse domains.

– Vision, speech, video, NLP, etc.

• Lots of open source tools available.

26

Deep Convolutional Neural Networks (1)

• Krizhevsky et al. (2012)

• Applied to ImageNet competition (1.2 million images, 1,000

classes).

• Network: 60 million parameters and 650,000 neurons.

• Top-1 and top-5 error rates of 37.5% and 17.0%.

• Trained with backprop.

27

Deep Convolutional Neural Networks (2)

• Learned kernels (first convolutional layer).

• Resembles mammalian RFs: oriented Gabor patterns, color

opponency (red-green, blue-yellow).

28

Deep Convolutional Neural Networks (3)

• Higher layers represent progressively more complex features.

* From Yann LeCun’s Harvard lecture (2019)

29

Deep Convolutional Neural Networks (4)

• Left: Bold = correct label. 5 ranked labels: model’s estimation.

• Right: Test (1st column) vs. training images with closest hidden

representation to the test data.

30

Deep Convolutional Neural Networks (5)

• Depth inflation: Deeper is better!

* From Yann LeCun’s Harvard lecture (2019)

31

Deep Convolutional Neural Networks (6)

• Not just depth but architecture also matters!

* From Yann LeCun’s Harvard lecture (2019)

32

Deep Convolutional Neural Networks (7)

• Computation vs. performance

* From Yann LeCun’s Harvard lecture (2019)

33

Deep Q-Network (DQN)

Google Deep Mind (Mnih et al. Nature 2015).

• Latest application of deep learning to a reinforcement learning

domain (Q as inQ-learning).

• Applied to Atari 2600 video game playing.

34

DQN Overview

• Input: video screen; Output: Q(s, a); Reward: game score.

• Q(s, a): action-value function

– Value of taking action a when in state s.

35

DQN Overview

• Input preprocessing

• Experience replay (collect and replay state, action, reward, and

resulting state)

• Delayed (periodic) update ofQ.

• Moving target Q̂ value used to compute error (loss function L,

parameterized by weights θi).

– Gradient descent:
∂L

∂θi

36

DQN Algorithm

37

DQN Results

• Superhuman performance on over half of the games.

38

DQN Hidden Layer Representation (t-SNE map)

• Similar perception, similar reward clustered.

39

DQN Operation

• Value vs. game state; Game state vs. action value.

Deep Recurrent Neural Networks

Input1

Output1

Input2

Output2

Input3

Output3

Output2 Output3

Input1

Output1

Input2 Input3

Output2 Output3

Input1

Output1

Input3

Output3

Input2

Output2

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Output2

Input3Input2 Input1

Output3Output1

Feedforward Recurrent

• Feedforward networks: No memory of past input.

• Recurrent networks:

– Good: Past input affects present output.

– Bad: Cannot remember far into the past.
41

RNN Training: Backprop in Time

• Can unfold recurrent loop: Make it into a feedforward net.

• Use the same backprop algorithm for training.

• Again, cannot remember too far into the past.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

42

Long Short-Term Memory

• LSTM to the rescue (Hochreiter and Schmidhuber, 1997).

• Built-in recurrent memory that can be written (Input gate), reset

(Forget gate), and outputted (Output gate).

From http:

//www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf

43

Long Short-Term Memory

• Long-term retention possible with LSTM.

From http:

//www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf

44

Long Short-Term Memory in Action

RNN Vanilla RNN Unit

LSTM Unit

• Unfold in time and use backprop as usual.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

45

LSTM Applications

• Applications: Sequence classification, Sequence translation.

From http://machinelearning.ru

46

LSTM Applications

• Applications: Sequence prediction

From http://machinelearning.ru

47

LSTM Applications

• Applications: Sequence classification, Sequence prediction,

Sequence translation.

From http://machinelearning.ru

48

Deep Learning Applications: Vision

• ConvNet sweepting image recognition challenges.

From LeCun’s Deep Learning Tutorial

49

Deep Learning Applications: Speech

• Deep learning led to major improvement in speech recognition.

From LeCun’s Deep Learning Tutorial

50

Deep Learning Applications: Speech

• ConvNet can also be applied to speech recognition.

• Use spectrogram and treat it like a 2D image.

• SOTA: end-to-end attention-based RNN (w/ LSTM, GRU, ...)

From LeCun’s Deep Learning Tutorial

51

Deep Learing Applications: NLP

• Based on encoding/decoding and attention.

From https:

//research.googleblog.com/2016/09/a-neural-network-for-machine.html

52

Deep Learing Applications: NLP

• Google’s LSTM-based machine translation.

Wu et al. arXiv:1609.08144 (2016).

How attention works: https://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

53

Deep Learning for NLP: Transformers

Multihead Self-attention Scaled Dot-Product Attention Transformer

• Highly parallelizable, Reduces serial computation

• Multi-head self-attention + position-encoding/position-wise FFW

• Organized over Query, Key, Value (Q,K,V)

https://medium.com/@adityathiruvengadam/

transformer-architecture-attention-is-all-you-need-aeccd9f50d0954

Deep Learning for NLP: Transformers & BERT

from Devlin et al. 2018

• BERT, based on Transformer: Powerful new approach for NLP

55

Deep Learning for NLP: Transformers & BERT

• Transformer-based NLP led to big leap in performance.

https://medium.com/synapse-dev/

understanding-bert-transformer-attention-isnt-all-you-need-5839ebd396db

56

Limitations of Deep Learning

• Requires massive amounts of (labeled) data.

• Long training time. Large trained models.

• Catastrophic forgetting.

• Designing good model is done mostly manually.

• Vulnerable to adversarial inputs.

• Hard to explain how it works / what it learned.

57

Overcoming Limitations of DL

Pretty much well known problems, and solutions emerging.

• Data: Active learning, Core sets, data augmentation, etc.

• Computing time: Train with reduced data. Compact models.

• Large trained models: Compression, distillation

• Catastrophic forgetting: Various approaches, not perfect yet.

• Issue of manual design: AutoML, NAS, ENAS, Evolution, etc.

• Adversarial inputs: Adversarial training, defensive distillation, ...

• Explainability: DARPA XAI effort - explanation generation,

Bayesian program induction, semantic associations, etc.

58

Advanced/Fundamental Issues in Deep Learning

• Reasoning, Common-sense reasoning

• Unsupervised, self-supervised learning

• Human-like learning

• Meaning/semantic-level processing

• Problem posing, Coping with new tasks

• Tool construction and tool use

59

Summary

• Deep convolutional networks: High computational demand, over

the board great performance.

• Deep Q-Network: unique apporach to reinforcement learning.

End-to-end machine learning. Super-human performance.

• Deep recurrent neural networks: sequence learning. LSTM is a

powerful mechanism.

• Diverse applications. Top performance.

• Lots of practical and fundamental limits

• Flood of deep learning tools available.

60

