Overview

® Announcement

e Lisp Basics

Installing CMUCL binary

e Gotohttps://www.cons.org/cmucl/download.html

e Download Non-Unicode version 20d for your OS.

— Example: for Linux it is
http://common-lisp.net/project/cmucl/downloads/
release/20d/cmucl-20d-non-unicode-x86-linux.tar.bzZ

® Login to your CSE linux host.

mkdir cmucl

cd cmucl

tar -xjvf [PATH-TO-]/cmucl-20d-non-unicode-x86-linux.tar.bz2
./bin/lisp

Announcement

e CMUCL will be made available on CSCE Linux machines.

— You can also download a binary release for local use:
https://www.cons.org/cmucl/download.html :
Just download, untar and you can run it as is.

— Debian package: http://packages.debian.org/cmucl
— Redhat package:

https://admin.fedoraproject.org/pkgdb/acls/name/cmucl

You may use GNU Common List (GCL)
http://www.gnu.org/software/gcl/
which is available on most Linux platforms.

There is also a commercial version of Common Lisp which is free to
students:

— Allegro Common Lisp

— Supports Linux, windows, FreeBSD, Mac OS X

- http://www.franz.com/downloads
2

Outline of Writing and Running Lisp

. Write a program (function definitions) in afile: blah.1lsp

(defun mysqg (x)
(* x %)

)

(defun mytest (x)
(if (> x 10)
’Blah
"Poo

)

. Runlisp /opt/apps/cmucl/bin/lisp

@ Note: this can be different depending on where the binary is.

. Load function definitions (1load "blah.lsp")

. Run functions

(mysg 10)
(mytest 2)

LISP: A Quick Overview Components

Components: Atoms, Lists, and Functions. Symbolic expression = ATOM or LIST.

o Atom: numbers, variable names, etc.
[<letters>|<digits>|"-"]|+
eg.:1l, 10, foo, bar, this-is—-an—-atom

Basics: list, math, etc.
Arrays and SETQ vs. SETF

Variable binding e® List: functions, list of items

Lexical vs. dynamic scope "(" [<list>|<atom>]x ")

eg.: (a), (L (L 2 3) (4 5 6))
Conditionals, predicates, iterations, etc. 9

o NIL:itis an atom and at the same time a list.
User-defined function .
NIL isthe same as ()

Recursion
urs! e T:true, as opposed to NIL.
Output See conditionals and predicates.
5 6
Basics Evaluation in Lisp
quote: returns a literal (i.e. not evaluated) atom or a list. e Lisp basically tries to evaluate everything (atom or a list) that is
"(+ 2 3) — (+ 2 3) not quoted.

(quote (+ 2 3)) — (+ 2 3)
Compare with:

(+ 2 3) — 5
(eval "(+ 2 3)) — 5 e Ifit sees a list, it treats it as a function, where the first element in

e If it sees an atom, it treats it as a variable, and tries to find out a
value assigned to it.

the list is seen as the function name and the rest function

Basically, you can think of a quoted atom or list as data, as
arguments.

opposed to instruction, in Lisp.
e The quote function is used to exactly avoid such behavior (i.e.,

evaluate by default).

Evaluation in Lisp (cont’d)

e For example, if you typed in (hello (my world)),

1. Lisp will see the first entry in that list as a function and tries to
evaluate it using the argument (my world).

2. But, it needs to evaluate all of the arguments first, so it will try
to evaluate (my world).

3. Since this also looks like a function, Lisp will now try to

evaluate function my.

4. To do that, it needs to evaluate the symbol wor1d. Since it is
an atom, Lisp will check if any value is assigned to the symbol
world (i.e., treating it as a variable).

e Whatabout ((hello world) (my friend)) ?

List
(a(b (g d)e)(fg))

® List can be seen as trees: atoms at leaves and internal nodes
representing lists.

® Once this is understood, the list operations such as car, cdr,
cons become easy to understand.

e Exercise: draw thetreefor (((((((a)))))))
11

Evaluation in Lisp (cont’d)

e Whatabout (» 10 b) ?

e Lisp sees a well-defined function = and proceeds to evaluate its
arguments first.

e It is happy with the number 10, so it proceeds on to evaluate b.

o Here’s where the problem begins. If you already did something
like (setg b 20), then Lisp knows b can be evaluated to the
value 20, so it will do that and evaluate * with that and return
200.

e |[f you haven'’t defined b, Lisp will treat it as an unbound variable,
and balk.

e Whatabout (» 10 "a)?

What about (setq b 20) itself?? — more discussion later.

10

Basics: List

e car: returns first element (atom or list)
(car " (a (b ¢c))) — A
(car " ((b c) a)) — (B C)

e cdr: returns all except the first element of a list, as a list
(cdr "(a (b c))) — ((B C))
(cdr " ((b c) a)) — (A7)

12

Basics: List

o Combinations are possible: cXXXXxr where X=(a]d)
(cadr "(a (b c))) == (car (cdr " (a (b
c)))) — (B C)

e 1ist: creates a list out of atoms and lists
(list "a " (1 2) " ((3 5) (7 8)))
— (A (1 2) ((3 5) (7 8)))

® length: number of elementsinalist (Llength ’ (a b
c)) — 3

e Some shorthands: first, second, third, ...,
nth, rest
(first "(a b)) — A
(nth 2 "(a b cd)) — B

13

Basics: Assignments

e setq: assignment of value to a symbol
(setg x 10) — 10
x — 10

e setf: can setthe value of a symbol (== setq) or location or
structure (next slide).

Basics: Special Forms

setgand a small set of forms that are known as special forms do not
follow the standard argument evaluation rule!! That is, the first
argument x is not evaluated!

if, let, func, progn, setq, quote, ... are
all special forms.

See https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node59.html for details.

15

Basics: List
e CONS: append an atom (or a list) and a list

(cons "a (1 2 3)) —> (A 1 2 3)
(cons "(a) "(1 2 3)) —> ((A) 1 2 3)

e APPEND: append two lists
(append " (1 2) (4 5)) -> (1 2 4 5)

14

Basics: Assighments/Arrays

Arrays and SETQ vs. SETF

e make—-array : create an array
e aref : array reference

e setf : setvalue of array element

16

Arrays and SETQ vs. SETF More Fun with SETF

. . ' i : i |
Note: is the Lisp prompt. Replace list element with SETF'. Note: SETQ will not work!

*(setf b (1 (2 3) 4))
(1 (2 3) 4)

* (setqg a (make-array " (3 3)))
#2A ((NIL NIL NIL) (NIL NIL NIL) (NIL NIL NIL))

* (aref a 2 2) (dr b)
* (caadr

NIL 5
* (setf (aref a 2 2) 1000)
1000
* (setf (caadr b) ’abcdefq)
* a
ABCDEFG
#2A ((NIL NIL NIL) (NIL NIL NIL) (NIL NIL 1000))
* (setg (aref a 2 2) 1000) b
*
Error: (AREF A 2 ...) is not a symbol.
(1 (ABCDEFG 3) 4)
17 18
Basics: Math Function
e (+ 1 2) (x 3 4) (+ (» 2 3) (/ 4 5)) etc. e defun : user defined function
f 1
e (max 1 2 3 4 5) (min 4 6 5) * (defun mult (x y) (+ xy))
DEFUN
® (sgrt 16) (expt 2 3) (round 3.141592) * (mult 10 20)
200

Basics: File Loading
e Usethe 1let and let * forms:

e (load "filename") (defun mult (x y)

(let ((tx x) (ty y))
(+ tx ty)

19 20

Recursion

e Fibonacci number:

F(N) = F(N-1) + F(N-2), F(1)=1, F(2)=2.
Mg FIN) 4 F2), F(=1. (@)

(cond
((equal x 1) 1)
((equal x 2) 2)
((> x 2)

(+ (fibo (- x 1)) (fibo (- x 2))))

)
* (fibo 4)
5
* (fibo 5)
8
21
Use of Local Scope
e Alwaysuse (let ...) or (lLetx ...) beyourfirst

(and only) statement in your function, if you are writing
something complex which is not like a mathematical function in its
usual sense.

e Think of it as declaring local variables in C/C++.

(defun func-name (argl arg2)
(let (localx localy localz)
expressionl args)
expressionZ args

(
(
(expression3 args
(expressiond args
(

)
)
)
)

expressionb5 args

) 23

Binding

You can bind variables anywhere in a program with the 1et or let *
special forms to create a local context.

e let and let x : lexical scope (local context)
(let (local wvar list) BODY)
(let ((x 10) y (z 20)) BODY)
(letx ((x 10) (y (x 2 x)) z)) BODY)

e Either just a variable or (variable default-value).

e With 1et %, values from previous vars can be used to define new
value.
(letx ((x 10) (y (x 2 x)) z)) BODY)

22

Binding: Example

*

(let ((a 3)) (+ a 1))

4
* (let ((a 2)
(b 3)
(c 0))
(setg ¢ (+ a b))
c)
5
* (setg c 4)
4
* (let ((c 5)) <)
5
* C
4

24

Lexical Scope

Return value according to the lexical scope where it was defined.

* (setqg regular 5)

5

* (defun check-regular () regular)
CHECK-REGULAR

* (check-regular)

5

* (let ((regular 6)) (check-regular))
5

25

Group (or Block) of Commands
progn returns the result of the last element, but evaluates all
s-expressions in the argument list.

® (progn (setq a 123) (» 5 10)) — 50
a — 123

A better way of writing it is:

(progn
(setg a 123)
(» 5 10)

27

Dynamic Scope

Use the de fvar to define a special variable that is
dynamically scoped. (Just think of it as defining a global
variable.)

* (defvar xspecialx 5)

SPECIAL~

* (defun check-special () xspecialx)
CHECK-SPECIAL

* (check-special)

5

* (let ((xspecialx 6)) (check-special))
6

* xspecialx

5

* (let ((x 23)) (checkéfpecial))

5

How Not to Define a Block

A common mistake is to define a block using just bare parentheses,
instead of using the function (progn ...):

(
(setg x 10)
(setg y 20)
(x x y)

)

It looks fine, but as mentioned earlier, Lisp will interpret this list as a
function that has a name (setg x 10) andtwo argument (setqg
y 20) and (» x vy). So, don’t do this!

28

Conditionals: the Ps. Control Flow

p is for predicate: IF STATEMENT
(1f (> 2 3) ; condition

(+ 4 5) ; when true
® common comparisons: <, >, (» 4 5)

e numberp, listp, symbolp, zerop,
; when false
e equal : if the values are the same.)

e <q: if the memory locations are the same. SWITCH STATEMENT

e and, or, not : logical operators. (cond ((testpl) (return-valuel)) ; condition 1

((testp2) (return-value2)) ; condition 2

Returns either NIL or T. ((testp3) (return-value3l)) ; condition 3
(t (default-value)) ; default

29 30

Iterations Output

e print : printa string
(print "hello")

DOTIMES
(dotimes (index-var upper-bound result-var) BODY)
e format : formatastring; (format dest string

x (dotimes (k 1 wval) (setqg val k)) args)
0 dest: determines what to return —t: return NIL, NIL: return string.
"% : insert CR

* (dotimes (k 10 wval) (setg val k)) ~S S—expression
A : ascii
"D integer
. _ “widthD : blank space e.g. 75D
Also find out more about dolist, do, and loop. -))
F : floating point

“"width,decimalF : width and decimal point

31 32

Format: examples Format: examples

* (format t "Hello, world!") * (format

Hello, world! nil

NIL "The list is s and " %the text is "a"
(list "a 'b 'c)

* (format nil "Hello, world!") "This is a string"

"Hello, world!™")
"The 1list is (A B C) and

the text is This is a string"

33 34
Format: examples Dealing with Errors
* a <—-—— errorneous input
* (format Error in KERNEL: :UNBOUND-SYMBOL-ERROR-HANDLER: the varia

nil
"One: "d"%Two: £ %$Three:"5,2f"
12 (/ 4 3) (/ 4 3)
) Debug (type H for help)
"One: 12

Two:1.3333334 (EVAL) o
Th 1. 33m Source: Error finding source:
ree: .

Error in function DEBUG: :GET-FILE-TOP-LEVEL-FORM: Source
target:code/eval.lisp.

Restarts:
0: [ABORT] Return to Top-Level.

0] g <———= go back to top level

35 36

Overview

e Some more LISP stuff: user input, trace, more setf, etc.

o Symbolic Differentiation:
[q] does it need intelligence?

e Expression Simplification

37

TRACE/UNTRACE: call tracing

* (trace fibo)
(FIBO)
* (fibo 4)
1> (FIBO 4)
2> (FIBO 3)
3> (FIBO 2)
<3 (FIBO 2)
3> (FIBO 1)
<3 (FIBO 1)
<2 (FIBO 3)
2> (FIBO 2)
<2 (FIBO 2)
<1l (FIBO 5)

READ: User Input

READ: keyboard input from user

* (read)
hello
HELLO

*(if (equal (read) ’"hello)
"good
"bad

hello

GOOD

38

Symbolic Differentiation

Basics: given variable x, functions f(z), g(z), and constant (i.e.

number) a:
1.
da ZO’d(axx) W
dx dx
2.
A +g) _df , dg
dx dx dx
3.
d(f xg) df dg
— v = ¥ X —=
dx dz 9+7 dx

The operators can be extended to: binary minus (e.g. (— x 1)),
unary minus (e.g. (— x)), division (e.g. (/ x 10), etc.

Inspired by Gordon Novak’s course at UT Austin.

40

Describing in LISP (1) Describing in LISP (ll)

(deriv <expression> <variable>) (deriv <expression> <variable>)

1. 1.

da _ dlaxa) _ d(f+9) _ df , dg
dx ’ dx dx dr dx
(deriv " (+ (x x 10) (+ 25 x)) ’'"x)
(deriv 710 'x) -> 0 == (list
(deriv ' (* 10 x) ’'x) —> 10 r 4

(deriv 7 (» x 10) ’"x)
(deriv ' (+ 25 x) ’'x)

41 42

Describing in LISP (lll) DERIV: the core function

Pseudo code (basically a recursion):
(defun deriv (expression var) BODY)

(deriv <expression> <variable>)

1.

d(f xg) _ df dg
N I Y Xg+f>< _Z
dx dx dx 1. if expression is the same as var return 1
(deriv ' (* (+ 14 x) (*» x 17)) ’'x)
==(list 2. if expression is a number return 0
't 3. if (first expression) is’ +,return

(list "+ (deriv " (» 14 x) "x) " (+ x 17))
(list "+ ' (+ 14 x) (deriv ' (x x 17) ’'x))

" (+ (deriv (second expression) var)
(deriv (third expression) var)

4. and so on.

43 44

Main Function: DERIV
You can make separate functions for each operator:

(defun deriv (expr var)
(if (atom expr)
(if (equal expr wvar) 1 0)
(cond
((eg "+ (first expr)) ; PLUS
(derivplus expr var))
((eg "x (first expr)) ; MULT
(derivmult expr var))
(t ; Invalid

(error "Invalid Expression!"))

45

Expression Simplification

Problem: a lot of nested expression containing

(+ 1 x) (» x 1) (+ 0 x) (+ x 0) (+ 3 4)
which are just x, x, x, x, and7.

Use simplification rules:

1. (+ <number> <number>): return the evaluated value

2. (* <number> <number>): return the evaluated value

3. (+ 0 <expr>) (+ <expr> 0):return <expr>
4. (x» 1 <expr>) (* <expr> 1):return<expr>
5. (= (= <expr>)) :return <expr>

HINT: look at the raw result and see what can be reduced.

47

Calling DERIV from DERIVPLUS

Then, you can call deriv from derivplus, etc.

(defun derivplus
(list "+

(deriv

(deriv

(expr var)

(second expr) var)

(third expr)

46

var)

SPLUS: Simplify (+ x vy)

(defun splus

(1f

(1f

)
(1f

(x vy)
(numberp x)

(numberp vy)
(+ x vy)
(if (zerop x)

y

(list "+ x vy)

(and
X
(list

(numberp vy)

"+ x vy)

48

(zerop vy))

Programming Exercise

o Symbolic differentiation: details TBA.
e This is an exercise, and will not be graded.

o Completing this exercise will help you with the first two
programming assignments.

49

