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Haykin Chapter 10:

Information-Theoretic Models

CPSC 636-600

Instructor: Yoonsuck Choe

Spring 2015

ICA section is heavily derived from Aapo Hyvärinen’s ICA tutorial:

http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/.
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Shannon’s Information Theory

• Originally developed to help design communication systems that

are efficient and reliable (Shannon, 1948).

• It is a deep mathematical theory concerned with the essence of

the communication process.

• Provides a framework for: efficiency of information representation,

limitations in reliable transmission of information over a

communication channel.

• Gives bounds on optimum representation and transmission of

signals.
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Motivation

Information-theoretic models that lead to self-organization in a

principled manner.

• Maximum mutual information principle (Linsker 1988):

Synaptic connections of a multilayered neural network develop in

such a way as to maximize the amount of information preserved

when signals are transformed at each processing stage of the

network, subject to certain constraints.

• Redundancy reduction (Attneave 1954): “Major function of

perceptual machinary is to strip away some of the redundancy of

stimulation, to describe or encode information in a form more

economical than that in which it impinges on the receptors”. In

other words, redundancy reduction = feature extraction.
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Information Theory Review

Topics to be covered:

• Entropy

• Mutual information

• Relative entropy

• Differential entropy of continuous random variables
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Random Variables

• Notations: X random variable, x value of random variable.

• IfX can take continuous values, theoretically it can carry infinite

amount of information. However, this it is meaningless to think of

infinite-precision measurement, in most cases values ofX can

be quantized into a finite number of discrete levels.

X = {xk|k = 0,±1, ...,±K}

• Let eventX = xk occur with probability

pk = P (X = xk)

with the requirement

0 ≤ pk ≤ 1,

K∑

k=−K

pk = 1
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Uncertainty, Surprise, Information, and Entropy

• If pk is 1 (i.e., probability of eventX = xk is 1), whenX = xk
is observed, there is no surprise. You are also pretty sure about

the next outcome (X = xk), so you are more certain (i.e., less

uncertain).

– High probability events are less surprising.

– High probability events are less uncertain.

– Thus, surprisal/uncertainty of an event are related to the

inverse of the probability of that event.

• You gain information when you go from a high-uncertainty state

to a low-uncertainty state.
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Entropy

• Uncertainty measure for eventX = xk (log assumes log2):

I(xk) = log

(
1

pk

)
= − log pk.

– I(xk) = 0 when pk = 1 (no uncertainty, no surprisal).

– I(xk) ≥ 0 for 0 ≤ pk ≤ 1: no negative uncertainty.

– I(xk) > I(xi) for pk < pi: more uncertain for less

probable events.

• Average uncertainty = Entropy of a random variable:

H(X) = E[I(xk)]

=
∑K

k=−K
pkI(xk)

= −
∑K

k=−K
pk log pk
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Properties of Entropy

• The higher theH(X), the higher the potential information you

can gain through observation/measurement.

• Bounds on the entropy:

0 ≤ H(X) ≤ log(2K + 1)

– H(X) = 0 when pk = 1 and pj = 0 for j 6= k: No

uncertainty.

– H(X) = log(2K + 1) when pk = 1/(2K + 1) for all

k: Maximum uncertainty, when all events are equiprobable.
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Properties of Entropy (cont’d)

• Max entropy when pk = 1/(2K + 1) for all k follows from

∑

k

pk log

(
pk

qk

)
≥ 0

for two probability distributions {pk} and {qk}, with the equality

holding when pk = qk for all k. (Multiply both sides with -1.)

• Kullback-Leibler divergence (relative entropy):

Dp‖q =
∑

x∈X

pX(x) log

(
pX(x)

qX(x)

)

measures how different two probability distributions are (note that

it is not symmetric, i.e.,Dp‖q 6= Dq‖p.
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Differential Entropy of Cont. Rand. Variables

• Differential entropy:

h(X) = −
∫ ∞

−∞
fX(x) log fX(x)dx = −E[log fX(x)]

• Note thatH(X), in the limit, does not equal h(X):

H(X) = − limδx→0

∑∞
k=−∞ fX(xk)δx︸ ︷︷ ︸

pk

log(fX(x)δx︸ ︷︷ ︸
pk

)

= − limδx→0

[∑∞
k=−∞ fX(xk) log(fX(x))δx

+ log(δx)
∑∞

k=−∞ fX(xk)δx
]

= −
∫∞
−∞

fX(xk) log(fX(x))dx

− limδx→0 log δx
∫∞
−∞

fX(x)δx

= h(X)− limδx→0 log δx
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Diff. Entropy of Uniform Distribution

• Uniform distribution within interval [0, 1]:

fX(x) = 1 for 0 ≤ x ≤ 1 and 0 otherwise

h(X) = −
∫ ∞

−∞
1 · log 1dx

= −
∫ ∞

−∞
1 · 0dx

= 0. (1)
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Properties of Differential Entropy

• h(X + c) = h(X)

• h(aX) = h(X) + log |a|

fY (y) =
1

|a|fY
(
y

a

)

h(Y ) = −E[log fY (y)]

= −E
[
log
(

1
|a|fY

(
y
a

))]

= −E
[
log fY

(
y
a

)]
+ log |a|.

Plugging in Y = aX to the above, we get the desired result.

• For vector random variable X,

h(AX) = h(X) + log |det(A)|.
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Maximum Entropy Principle

• When choosing a probability model given a set of known states of

a stochastic system and constraints, there could be potentially an

infinite number of choices. Which one to choose?

• Jaynes (1957) proposed the maximum entropy principle:

– Pick the probability distribution that maximizes the entropy,

subject to constraints on the distribution.
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One Dimensional Gaussian Dist.

• Stating the problem in an constrained optimization framework, we

can get interesting general results.

• For a given variance σ2, the Gaussian random variable has the

largest differential entropy attainable by any random variable.

• The entropy of a Gaussian random variableX is uniquely

determined by the variance ofX .
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Mutual Information

• Conditional entropy: What is the entropy inX after observing

Y ? How much uncertainty remains inX after observing Y ?

H(X|Y ) = H(X,Y )−H(Y )

where the joint-entropy is defined as

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y)

• Mutual information: How much uncertainty is reduced inX

when we observe Y ? The amount of reduced uncertainty is

equal to the amount of information we gained!

I(X;Y ) = H(X)−H(X|Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
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Mutual Information for Continuous Random

Variables

• In analogy with the discrete case:

I(X;Y ) =

∫ ∞

∞

∫ ∞

∞
fX,Y (x, y) log

(
fX(x|y)

fX(x)

)
dxdy

• And it has the same property

I(X;Y ) = h(X)− h(X|Y )

= h(Y )− h(Y |X)

= h(X) + h(Y )− h(X,Y )
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Summary

• Various relationships among entropy, conditional entropy, joint

entropy, and mutual information can be summarized as shown

above.
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Properties of KL Divergence

• It is always positive or zero. Zero, when there is a perfect match

between the two distributions.

• It is invariant w.r.t.

– Permutation of the order in which the components of the

vector random variable x are arranged.

– Amplitude scaling.

– Monotonic nonlinear transformation.

• It is related to mutual information:

I(X;Y) = DfX,Y‖fXfY
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Application of Information Theory to Neural Network

Learning

• We can use mutual information as an objective function to be

optimized when developing learning rules for neural networks.
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Mutual Information as an Objective Function

• (a) Maximize mutual info between input vector X and output

vector Y.

• (b) Maximize mutual info between Ya and Yb driven by near-by

input vectors Xa and Xb from a single image.
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Mutual Info. as an Objective Function (cont’d)

• (c) Minimize information between Ya and Yb driven by input

vectors from different images.

• (d) Minimize statistical dependence between Yi ’s.

21

Maximum Mutual Information Principle

• Infomax principle by Linsker (1987, 1988, 1989): Maximize

I(Y;X) for input vector X and output vector Y.

• Appealing as the basis for statistical signal processing.

• Infomax provides a mathematical framework for self-organization.

• Relation to channel capacity, which defines the Shannon limit on

the rate of information transmission through a communication

channel.
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Example: Single Neuron + Output Noise

• Single neuron with additive output noise:

Y =

(
m∑

i=1

wiXi

)
+N,

where Y is the output,wi the weight,Xi the input, andN the

processing noise.

• Assumptions:

– Output Y is a Gaussian r.v. with variance σ2
Y .

– NoiseN is also a Gaussian r.v. with µ = 0 and variance

σ2
N .

– Input and noise are uncorrelated: E[XiN ] = 0 for all i.
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Ex.: Single Neuron + Output Noise (cont’d)

• Mutual information between input and output:

I(Y ;X) = h(Y )− h(Y |X).

• Since P (Y |X) = c+ P (N), where c is a constant,

h(Y |X) = h(N).

Given X, what remains in Y is just noiseN . So, we get

I(Y ;X) = h(Y )− h(N).
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Entropy of the Normal Distribution

p(x) =
1√
2πσ2

e
− (x−µ)2

2σ2

H(X) = −

∫ ∞

−∞

p(x) log p(x)dx

= −

∫ ∞

−∞

p(x) log

[
1√
2πσ2

e
− (x−µ)2

2σ2

]
dx

= −

∫ ∞

−∞

p(x)

[
− log

√
2πσ2 −

(x − µ)2

2σ2

]
dx

=
1

2
log 2πσ

2

∫ ∞

−∞

p(x)dx +
1

2σ2

∫ ∞

−∞

p(x)(x − µ)2dx

=
1

2
log 2πσ

2
+

1

2
=

1

2

(
log 2πσ

2
+ 1

)
. (2)
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Ex.: Single Neuron + Output Noise (cont’d)

• Since both Y andN are Gaussian,

h(Y ) =
1

2
[1 + log(2πσ2

Y )]

h(N) =
1

2
[1 + log(2πσ2

N )]

• So, finally we get:

I(Y ;X) =
1

2
log

(
σ2
Y

σ2
N

)
.

• The ratio σ2
Y /σ

2
N can be viewed as a signal-to-noise ratio. If

noise variance σ2
N is fixed, the mutual information I(Y ;X) can

be maximized simply by maximizing the output variance σ2
Y !
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Example: Single Neuron + Input Noise

• Single neuron, with noise on each input line:

Y =

m∑

i=1

wi(Xi +Ni).

• We can decompose the above to

Y =

m∑

i=1

wiXi +

m∑

i=1

wiNi

︸ ︷︷ ︸
call this N′

• N ′ is also a Gaussian distribution, with variance:

σ2
N′ =

m∑

i=1

w2
i σ

2
N .
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Example: Single Neuron + Input Noise

• As before:

h(Y |X) = h(N ′) =
1

2
(1+2πσ2

N′ ) =
1

2

[
1 + 2πσ2

N

m∑

i=1

w2
i

]
.

• Again, we can get the mutual information as:

I(Y ;X) = h(Y )− h(N ′) =
1

2
log

(
σ2
Y

σ2
N

∑m

i=1
w2

i

)

• Now, with fixed σ2
N , information is maximized by maximizing the

ratio σ2
Y /
∑m

i=1
w2

i , where σ2
Y is a function ofwi.
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Lessons Learned

• Application of Infomax principle is problem-dependent.

• When
∑m

i=1
w2

i = 1, then the two additive noise models

behave similarly.

• Assumptions such as Gaussianity need to be justified (it’s hard to

calculate mutual information without such tricks).

• Adpoting a Gaussian noise model, we can invoke a “surrogate”

mutual information computed relatively easily.
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Noiseless Network

• Noiseless network that transforms a random vector X of arbitrary

distribution to a new random vector Y of different distribution:

Y = WX.

• Mutual information in this case is:

I(Y;X) = H(Y)−H(Y|X).

With noiseless mapping,H(Y|X) attains the lowest value (−∞).

• However, we can consider the gradient instead:

∂I(Y;X)

∂W
=
∂H(Y)

∂W
.

SinceH(Y|X) is independent of W, it drops out.

• Maximizing mutual information between input and output is equivalent ot

maximing entropy in the output, both with respect to the weight matrix W

(Bell and Sejnowski 1995).
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Infomax and Redundancy Reduction

• In Shannon’s framework, Order and structure = Redundancy.

• Increase in the above reduces uncertainty.

• More redundancy in the signal implies less information conveyed.

• More information conveyed means less redundancy.

• Thus, Infomax principle leads to reduced reduncancy in output Y

compared to input X.

• When noise is present:

– Input noise: add redundancy in input to combat noise.

– Output noise: add more output components to combat noise.

– High level of noise favors redundancy of representation.

– Low level of noise favors diversity of representation.
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Modeling of a Perceptual System

• Importance of redundancy in sensory messages: Attneave

(1954), Barlow (1959).

• Redundancy provides knowledge that enables the brain to build

“cognitive maps” or “working models” of the environment (Barlow

1989).

• Reduncany reduction: specific form of Barlow’s hypothesis – early

processing is to turn highly redundant sensory input into more

efficient factorial code. Outputs become statistically independent.

• Atick and Redlich (1990): principle of minumum redundancy.
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Principle of Minimum Redundancy

• Sensory signal S, Noisy input X, Recoding system A, noisy

output Y.

X = S + N1

Y = AX + N2

• Retinal input includes redundant information. Purpose of retinal

coding is to reduce/eliminate the redundant bits of data due to

correlations and noise, before sending the signal along the optic

nerve.

• Redundancy measure (with channel capacity C(·)):

R = 1− I(Y;S)

C(Y)
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Principle of Minimum Redundancy (cont’d)

• Objective: find recoder matrix A such that

R = 1− I(Y;S)

C(Y)

is minimized, subject to the no information loss constaraint:

I(Y;X) = I(X;X)− ε.

• When S and Y have the same dimensionality and there is no

noise, principle of minimum redundancy is equivalent to the

Infomax principle.

• Thus, Infomax on input/output lead to reduncancy reduction.
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Spatially Coherent Features

• Infomax for unsupervised processing of the image of natural

scenes (Becker and Hinton, 1992).

• Goal: design a self-organizing system that is capable of learning

to encode complex scene information in a simpler form.

• Objective: extract higher-order features that exhibit simple

coherence across space so that representation for one spatial

region can be used to produce that of representation of

neighboring regions.
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Spatially Coherent Features (cont’d)

• Let S denote a signal component common to both Ya and Yb.

We can then express the outputs in terms of S and some noise:

Ya = S +Na

Yb = S +Nb

and further assume thatNa andNb are independent and

zero-mean Gaussian. Also assume S is Gaussian.

• The mutual information then becomes

I(Ya;Yb) = h(Ya) + h(Yb)− h(Ya, Yb).
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Spatially Coherent Features (cont’d)

• With I(Ya;Yb) = h(Ya) + h(Yb)− h(Ya, Yb) and

h(Ya) =
1

2

[
1 + log

(
2πσ

2
a

)]

h(Yb) =
1

2

[
1 + log

(
2πσ

2
b

)]

h(Ya, Yb) = 1 + log(2π) +
1

2
log |det(Σ), |

Σ =

[
σ2
a ρabσaσb

ρabσaσb σ2
b

]
(covariance matrix)

ρab =
E[(Ya − E[Ya])(Yb − E[Yb])]

σaσb
(correlation)

we get

I(Ya;Yb) = − 1

2
log
(

1− ρ2ab
)
.
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Spatially Coherent Features (cont’d)

• The final results was:

I(Ya;Yb) = −1

2
log
(
1− ρ2ab

)
.

• That is, maximizing information is equivalent to maximizing

correlation between Ya and Yb, which is intuitively appealing.

• Relation to canonical correlation in statistics:

– Given random input vectors Xa and Xb,

– find two weight vectors wa and wb so that

– Ya = wT
a Xa and Yb = wT

b Xb have maximum

correlation between them (Anderson 1984).

– Applications: stereo disparity extraction (Becker and Hinton,

1992).
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Spatially Coherent Features

• When the inputs come from two separate regions, we want to

minimize the mutual information between the two outputs

(Ukrainec and Haykin, 1992, 1996).

• Applications include when input sources such as different

polarizations of the signal are imaged: mutual information

between outputs driven by two orthogonal polarizations should be

minimized.
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Independent Components Analysis (ICA)

• Unknown random source vector U(n):

U = [U1, U2, ..., Um]T ,

where them components are supplied by a set of independent

sources. Note that we need a series of source vectors.

• U is transformed by an unknown mixing matrix A:

X = AU,

where

X = [X1, X2, ..., Xm]T .
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ICA (cont’d)

A =

[
2 3

2 1

]
.

• Left: u1 on x-axis, u2 on y-axis (source)

• Right: x1 on x-axis, x2 on y-axis (observation)

• Thoughts: how would PCA transform this?

Examples from Aapo Hyvarinen’s ICA tutorial:

http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/.
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ICA (cont’d)

Examples from AApo Hyvarinen’s ICA tutorial:

http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/.
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ICA (cont’d)

• In X = AU, both A and U are unknown.

• Task: find an estimate of the inverse of the mixing matrix (the

demixing matrix W)

Y = WX.

The hope is to recover the unknown source U. (A good example

is the cocktail party problem.)

This is known as the blind source separation problem.

• Solution: It is actually feasible, but certain ambiguities cannot be

resolved: sign, permutation, scaling (variance). Solution can be

obtained by enforcing independence among components of Y

while adjusting W, thus the name independent components

analysis.
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ICA: Ambiguities

Consider X = AU, and Y = WX.

• Permutation: X = AP−1PU, where P is a permutation

matrix. Permuting U and A in the same way will give the same

X.

• Sign: the model is unaffected by multiplication of one of the

sources by -1.

• Scaling (variance): estimate scaling up U and scaling down A

will give the same X.
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ICA: Neural Network View
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• The mixer on the left is an unknown physical process.

• The demixer on the right could be seen as a neural network.
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ICA: Independence

• Two random variablesX and Y are statistically independent

when

fX,Y (x, y) = fX(x)fY (y),

where f(·) is the probability density function.

• A weaker form of independence is uncorrelatedness (zero

covariance), which is

E[(X − µX)(Y − µY )] = E[XY ]− E[X]E[Y ] = 0,

i.e.,

E[XY ] = E[X]E[Y ].

• Gaussians are bad: When the unknown source is Gaussian, any

orthogonal transformationA results in the same Gaussian

distribution.
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Statistical Aside: Central Limit Theorem
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• When i.i.d. random variablesX1, X2, ... are added to get

another random variableX ,X tends to a normal distribution.

• So, Gaussians are prevalent and hard to avoid in statistics.
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ICA: Non-Gaussianity

• Non-Gaussianity can be used as a measure of independence.

• The intuition is as follows:

X = AU, Y = WX

Consider one component of Y:

Yi = [Wi1,Wi2, ...,Wim]X

Yi = [Wi1,Wi2, ...,Wim]A︸ ︷︷ ︸
call this ZT

U

So, Yi is a linear combination of random variablesUk
(Yi =

∑m

j=1
ZiUi), so it is more Gaussian than any individualUk ’s.

The Gaussianity is minimized when Yi equals one ofUk ’s (oneZp is 1

and all the rest 0).
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ICA: Measures of Non-Gaussianity

There are several measures of non-Gaussianity

• Kurtosis

• Negentropy

• etc.
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ICA: Kurtosis

• Kurtosis is the fourth-order cumulant.

Kurtosis(Y ) = E[Y 4]− 3
(
E
[
Y 2
])2

.

• Gaussian distributions have kurtosis = 0.

• More peaked distributions have kurtosis> 0.

• More flatter distributions have kurtosis< 0.

• Learning: Start with random W. Adjust W and measure

change in kurtosis. We can also use gradient-based methods.

• Drawback: Kurtosis is sensitive to outliers, and thus not robust.
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ICA: Negentropy

• Negentropy J is defined as

J(Y) = H(Ygauss)−H(Y)

where Ygauss is a Gaussian random variable that has the same

covariance matrix as Y.

• Negentropy is always non-negative, and it is zero iff Y is

Gaussian.

• Thus, maximizing negentropy is to maximize non-Gaussianity.

• Problem is that estimating negentropy is difficult, and requires the

knowledge of the pdfs.
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ICA: Approximation of Negentropy

• Classical method:

J(Y ) ≈ 1

2
E[Y

3
]
2

+
1

48
Kurtosis(Y )

2

but it is not robust due to the involvement of the kurtoris.

• Another variant:

J(Y ) ≈
p∑

k=1

ki (E[Gi(Y )]− E[Gi(N)])
2

where ki ’s are coefficients,Gi(·)’s are nonquadratic functions, andN is

a zero-mean, unit-variance Gaussian r.v.

• This can be further simplified by

J(Y ) ≈ (E[G(Y )]− E[G(N)])
2

G1(Y ) =
1

a1
log cosh a1Y, G2(Y ) = − exp(−Y 2

/2).
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ICA: Minimizing Mutual Information

• We can also aim to minimize mutual information between Yi ’s.

• This turns out to be equivalent to maximizing negentropy (when

Yi ’s have unit variance).

I(Y1;Y2; ...;Ym) = C −
∑

i

J(Yi)

where C is a constant that does not depend on the weight matrix

W.
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ICA: Achieving Independence

• Given output vector Y, we want Yi and Yj to be statistically

independent.

• This can achieved when I(Yi;Yj) = 0.

• Another alternative is to make the probability density fY(y,W)

parameterized by the matrix W to approach the factorial

distribution:

f̃Y(y,W) =

m∏

i=1

f̃Yi (yi,W),

where f̃Yi (yi,W) is the marginal probability density of Yi.

This can be measured byD
f‖f̃ (W).
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ICA: KL Divergence with Factorial Dist

• The KL divergence can be shown to be:

D
f‖f̃ (W) = −h(Y) +

m∑

i=1

h̃(Yi).

• Next, we need to calculate the output entropy:

h(Y) = h(WX) = h(X) + log |det(W)|.

• Finally, we need to calculate the marginal entropy h̃(Yi), which

gets tricky. This calculation involves a polynomial activation

function ϕ(yi). See the textbook for details.
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ICA: Learning W

• Learning objective is to minimize the KL divergenceD
f‖f̃ .

• We can do gradient descent:

∆wik = −η ∂
∂wik

D
f‖f̃

= η
(
(W−T )ik − ϕ(yi)xk

)
.

• The final learning rule, in matrix form, is:

W(n+1) = W(n)+η(n)
[
I−ϕ(y(n))yT (n)

]
W−T (n).
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ICA Examples

• Visit the url http://www.cis.hut.fi/projects/

compneuro/whatisica.html for interesting results.
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