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Motivation
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• How can we project the given data so that the variance in the

projected points is maximized?

2

Principal Component Analysis: Variance Probe

• X: m-dimensional random vector (vector random variable

following a certain probability distribution).

• AssumeE[X] = 0.

• Projection of a unit vector q ((qqT )1/2 = 1) onto X:

A = XTq = qTX.

• We knowE[A] = E[qTX] = qTE[X] = 0.

• The variance can also be calculated:

σ2 = E[A2] = E[(qTX)(XTq)]

= qT E[XXT ]︸ ︷︷ ︸
covariance matrix

q

= qTRq.
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Principal Component Analysis: Variance Probe

(cont’d)

• This is sort of a variance probe: ψ(q) = qTRq.

• Using different unit vectors q for the projection of the input data

points will result in smaller or larger variance in the projected

points.

• With this, we can ask which vector direction does the variance

probe ψ(q) has extermal value?

• The solution to the question is obtained by finding unit vectors

satisfying the following condition:

Rq = λq,

where λ is a scaling factor. This is basically an eigenvalue

problem.
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PCA

• With anm×m covariance matrix R, we can getm eigenvectors and

m eigenvalues:

Rqj = λjqj , j = 1, 2, ...,m

• We can sort the eigenvectors/eigenvalues according to the eigenvalues, so

that

λ1 > λ2 > ... > λm.

and arrange the eigenvectors in a column-wise matrix

Q = [q1,q2, ...,qm].

• Then we can write

RQ = Qλ

where λ = diag(λ1, λ2, ..., λm).

• Q is orthogonal, so that QQT = I. That is, Q−1 = QT .
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PCA: Summary

• The eigenvectors of the covariance matrix R of zero-mean

random input vector X define the principal directions qj along

with the variance of the projected inputs have extremal values.

• The associated eigenvaluess define the extremal values of the

variance probe.
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PCA: Usage

• Project input x to the principal directions:

a = QTx.

• We can also recover the input from the projected point a:

x = (QT )−1a = Qa.

• Note that we don’t need allm principal directions, depending on

how much variance is captured in the first few eigenvalues: We

can do dimensionality reduction.
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PCA: Dimensionality Reduction

• Encoding: We can use the first l eigenvectors to encode x.

[a1, a2, ..., al]
T = [q1,q2, ...,ql]

Tx.

• Note that we only need to calculate l projections a1, a2, ..., al,

where l ≤ m.

• Decoding: Once [a1, a2, ..., al]
T is obtained, we want to

reconstruct the full [x1, x2, ..., xl, ..., xm]T .

x = Qa ≈ [q1,q2, ...,ql][a1, a2, ..., al]
T = x̂.

Or, alternatively

x̂ = Q[a1, a2, ..., al, 0, 0, ..., 0︸ ︷︷ ︸
m− l zeros

]T .
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PCA: Total Variance

• The total variance of th em components of the data vector is

m∑

j=1

σ2
j =

m∑

j=1

λj .

• The truncated version with the first l components have variance

l∑

j=1

σ2
j =

l∑

j=1

λj .

• The larger the variance in the truncated version, i.e., the smaller

the variance in the remaining components, the more accurate the

dimensionality reduction.
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PCA Example
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line 2
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line 4

inp=[randn(800,2)/9+0.5;randn(1000,2)/6+ones(1000,2)];

Q =

[
0.70285 −0.71134

0.71134 0.70285

]

λ =

[
0.14425 0.00000

0.00000 0.02161

]

10

PCA’s Relation to Neural Networks: Hebbian-Based

Maximum Eigenfilter

• How does all the above relate to neural networks?

• A remarkable result by Oja (1982) shows that a single linear

neuron with Hebbian synapse can evolve into a filter for the first

principal component of the input distribution!

• Activation:

y =

m∑

i=1

wixi

• Learning rule:

wi(n+ 1) =
wi(n) + ηy(n)xi(n)(∑m

i=1
[wi(n) + ηy(n)xi(n)]2

)1/2
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Hebbian-Based Maximum Eigenfilter

• Expanding the denominator as a power series, dropping the

higher order terms, etc., we get

wi(n+1) = wi(n)+ηy(n)[xi(n)−y(n)wi(n)]+O(η2),

withO(η2) including the second- and higher-order effects of η,

which we can ignore for small η.

• Based on that, we get

wi(n+ 1) = wi(n) + ηy(n)[xi(n)− y(n)wi(n)]

= wi(n) + η


 y(n)xi(n)︸ ︷︷ ︸

Hebbian term

− y(n)2wi(n)︸ ︷︷ ︸
Stabilization term


 .

12



Matrix Formulation of the Algorithm

• Activation

y(n) = xT (n)w(n) = wT (n)x(n)

• Learning

w(n+ 1) = w(n) + ηy(n)[x(n)− y(n)w(n)]

• Combining the above,

w(n+ 1) = w(n) + η[x(n)xT (n)w(n)

−wT (n)x(n)xT (n)w(n)w(n)]
,

represents a nonlinear stochastic difference equation, which is

hard to analyze.
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Asymptotic Stability Theorem

• To ease the analysis, we rewrite the learning rule as

w(n+ 1) = w(n) + η(n)h(w(n),x(n)).

• The goal is to associate a deterministic ordinary differential

equation (ODE) with the stochastic equation.

• Under certain reasonable conditions on η, h(·, ·), and w, we get

the asymptotic stability theorem stating that

lim
n→∞

w(n) = q1

infinitely often with probability 1.
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Conditions for Stability

1. η(n) is a decreasing sequence of positive real numbers such that∑∞
n=1

η(n) =∞,
∑∞

n=1
ηp(n) <∞for p > 1,

η(n)→ 0 as n→∞.

2. Sequence of parameter vectors w(·) is bounded with probability 1.

3. The update function h(w,x) is continuously differentiable w.r.t. w and

x, and it derivatives are bounded in time.

4. The limit h̄(w) = limn→∞ E[h(w,X)] exists for each w, where

X is a random vector.

5. There is a locally asymptotically stable solution to the ODE

d

dt
w(t) = ĥ(w(t)).

6. Let q1 denote the solution to the ODE above with a basin of attraction

B(q). The parameter vector w(n) enters the compact subsetA of

B(q) infinitely often with prob. 1.
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Stability Analysis of Maximum Eigenfilter

Set it up to satisfy the conditions of the asymptotic stability theorem:

• Set the learning rate to be η(n) = 1/n.

• Set h(·, ·) to

h(w,x) = x(n)y(n)− y2w(n)

= x(n)xT (n)w(n)− [wT (n)x(n)xT (n)w(n)]w(n)

• Taking expectaion over all x,

h̄ = limn→∞ E[X(n)XT (n)w(n) − (wT (n)X(n)XT (n)w(n))w(n)]

= Rw(∞) −
[
wT (∞)Rw(∞)

]
w(∞)

• Substituting h̄ into the ODE,

d

dt
w(t) = h̄(w(t)) = Rw(t)− [w

T
(t)Rw(t)]w(t).
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Stability Analysis of Maximum Eigenfilter

• Expanding w(t) with the eigenvectors of R,

w(t) =

m∑

k=1

θk(t)qk,

and using basic definitions

Rqk = λkq,q
T
kRqk = λk

we get (see next slide for derivation)

m∑

k=1

dθk(t)

dt
qk =

m∑

k=1

λkθk(t)qk−

[
m∑

l=1

λlθ
2
l (t)

]
m∑

k=1

θk(t)qk.
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Stability Analysis of Maximum Eigenfilter (cont’d)

Equating the RHS’s of the following

dw(t)

dt
=

d

dt

(
m∑

k=1

θk(t)qk

)
,

d

dt
w(t) = h̄(w(t)) = Rw(t)− [w

T
(t)Rw(t)]w(t).

we get

m∑

k=1

dθk(t)

dt
qk =

m∑

k=1

λkθk(t)qk−

[
m∑

l=1

λlθ
2
l (t)

]
m∑

k=1

θk(t)qk.
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Stability Analysis of Maximum Eigenfilter (cont’d)

First, we show Rw(t) =
∑m

k=1
λkθk(t)qk , using Rqk = λkq.

Rw(t) = R

m∑

k=1

θk(t)qk

=

m∑

k=1

θk(t)Rqk

=

m∑

k=1

λkθk(t)qk
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Stability Analysis of Maximum Eigenfilter (cont’d)
Next, we show
[wT (t)Rw(t)]w(t) =

[∑m

l=1
λlθ

2
l

(t)

]∑m

k=1
θk(t)qk.

[wT (t)Rw(t)]w(t)

= [wT (t)Rw(t)]
∑m

k=1
θk(t)qk

=

[(∑m

l=1
θl(t)q

T
l

)
R

(∑m

k=1
θk(t)qk

)]∑m

k=1
θk(t)qk

=

[∑m

l=1

(
θl(t)q

T
l

R

(∑m

k=1
θk(t)qk

))]∑m

k=1
θk(t)qk

=

[∑m

l=1

(∑m

k=1
θl(t)q

T
l

Rθk(t)qk

)]∑m

k=1
θk(t)qk

=

[∑m

l=1

(∑m

k=1
θl(t)θk(t)qT

l
Rqk

)]∑m

k=1
θk(t)qk

=

[∑m

l=1

(∑m

k=1
θl(t)θk(t)qT

l
(λkqk)

)]∑m

k=1
θk(t)qk

=

[∑m

l=1

(∑m

k=1
θl(t)θk(t)λkqT

l
qk)

)]∑m

k=1
θk(t)qk

{ Inner sum disappears since qT
l

qk = 0 for l 6= k and = 1 for l = k}

=

[∑m

l=1
θl(t)θl(t)λl

]∑m

k=1
θk(t)qk

=

[∑m

l=1
θ2
l

(t)λl

]∑m

k=1
θk(t)qk
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Stability Analysis of Maximum Eigenfilter (cont’d)

• Factoring out qk , we get

dθk(t)

dt
= λkθk(t)−

[
m∑

l=1

λlθ
2
l (t)

]
θk(t).

• We can analyze the above in two cases (details in following

slides):

– Case I: k 6= 1

In this case, αk(t) =
θk(t)
θ1(t)

→ 0 as t→∞, by using
dθk(t)
dt

above to derive
dαk(t)
dt

= −(λ1 − λk︸ ︷︷ ︸
positive!

)αk(t).

– Case II: k = 1

In this case, θ1(t)→ ±1 as t→∞, from
dθ1(t)
dt

= λ1θ1(t)
[
1− θ21(t)

]
.
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Stability Analysis of Maximum Eigenfilter (cont’d)

Case I (in detail): k 6= 1

• Given

dθk(t)

dt
= λkθk(t)−

[
m∑

l=1

λlθ
2
l (t)

]
θk(t).(1)

• Define αk(t) =
θk(t)

θ1(t)
.

• Derive

dαk(t)

dt
=

1

θ1(t)

dθk(t)

dt
− θk(t)

θ2
1(t)

dθ1(t)

dt
(2)

• Plug in (1) above into (2). (Both dθk(t)/dt and dθ1(k)/dt.)

• Finally, we get:
dαk(t)

dt = −(λ1 − λk)αk(t), so αk(t)→ 0 as

t→∞.
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Stability Analysis of Maximum Eigenfilter (cont’d)

Case II: k = 1

dθ1(t)

dt
= λ1θ1(t)−

[
m∑

l=1

λlθ
2
l (t)

]
θk(t)

= λ1θ1(t)− λ1θ
3
1(t)− θ1(t)

m∑

l=2

λlθ
2
l (t)

= λ1θ1(t)− λ1θ
3
1(t)− θ3

1(t)

m∑

l=2

λlα
2
l (t)

Using results from Case I (αl → 0 for l 6= 1 and t→∞), θ1(t)→ ±1

as t→∞, from
dθ1(t)

dt = λ1θ1(t)
[
1− θ2

1(t)
]

.
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Stability Analysis of Maximum Eigenfilter (cont’d)

• Recalling the original expansion

w(t) =

m∑

k=1

θk(t)qk,

we can conclude that

w(t)→ q1, as t→∞.

where q1 is the normalized eigenvector associated with the

largest eigenvalue λ1 of the covariance matrix R.

• Other conditions of stability can also be shown to hold (see the

textbook).
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Summary of Hebbian-Based Maximum Eigenfilter

Hebbian-based linear neuron converges with probability 1 to a fixed

point, which is characterized as follows:

• Variance of output approaches the largest eigenvalue of the

covariance matrix R (y(n) is the output):

lim
n→∞

σ2(n) = lim
n→∞

E[Y 2(n)] = λ1

• Synaptic weight vector approaches the associated eigenvector

lim
n→∞

w(n) = q1

with

lim
n→∞

‖w(n)‖ = 1.
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Generalized Hebbian Algorithm for full PCA

• Sanger (1989) showed how to construct a feedfoward network to

learn all the eigenvectors of R.

• Activation

yj(n) =

m∑

i=1

wji(n)xi(n), j = 1, 2, ..., l

• Learning

∆wji(n) = η

[
yj(n)xi(n)− yj(n)

j∑

k=1

wki(n)yk(n)

]
,

i = 1, 2, ...,m, j = 1, 2, ..., l.
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