Slide10

Haykin Chapter 8: Principal

Components Analysis

CPSC 636-600
Instructor: Yoonsuck Choe
Spring 2015

Motivation

- How can we project the given data so that the variance in the projected points is maximized?

2

Principal Component Analysis: Variance Probe

(cont'd)

- This is sort of a variance probe: $\psi(\mathbf{q})=\mathbf{q}^{T} \mathbf{R q}$.
- Using different unit vectors q for the projection of the input data points will result in smaller or larger variance in the projected points.
- With this, we can ask which vector direction does the variance probe $\psi(\mathbf{q})$ has extermal value?
- The solution to the question is obtained by finding unit vectors satisfying the following condition:

$$
\mathbf{R q}=\lambda \mathbf{q}
$$

where λ is a scaling factor. This is basically an eigenvalue problem.

- With an $m \times m$ covariance matrix \mathbf{R}, we can get m eigenvectors and m eigenvalues:

$$
\mathbf{R q}_{j}=\lambda_{j} \mathbf{q}_{j}, j=1,2, \ldots, m
$$

- We can sort the eigenvectors/eigenvalues according to the eigenvalues, so that

$$
\lambda_{1}>\lambda_{2}>\ldots>\lambda_{m}
$$

and arrange the eigenvectors in a column-wise matrix

$$
\mathbf{Q}=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{m}\right]
$$

- Then we can write

$$
\mathbf{R Q}=\mathbf{Q} \boldsymbol{\lambda}
$$

where $\boldsymbol{\lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$.

- \mathbf{Q} is orthogonal, so that $\mathbf{Q Q}^{T}=\mathbf{I}$. That is, $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$.

PCA: Usage

- Project input x to the principal directions:

$$
\mathbf{a}=\mathbf{Q}^{T} \mathbf{x}
$$

- We can also recover the input from the projected point a:

$$
\mathbf{x}=\left(\mathbf{Q}^{T}\right)^{-1} \mathbf{a}=\mathbf{Q} \mathbf{a}
$$

- Note that we don't need all m principal directions, depending on how much variance is captured in the first few eigenvalues: We can do dimensionality reduction.

PCA: Summary

- The eigenvectors of the covariance matrix \mathbf{R} of zero-mean random input vector \mathbf{X} define the principal directions \mathbf{q}_{j} along with the variance of the projected inputs have extremal values.
- The associated eigenvaluess define the extremal values of the variance probe.

PCA: Dimensionality Reduction

- Encoding: We can use the first l eigenvectors to encode \mathbf{x}.

$$
\left[a_{1}, a_{2}, \ldots, a_{l}\right]^{T}=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{l}\right]^{T} \mathbf{x}
$$

- Note that we only need to calculate l projections $a_{1}, a_{2}, \ldots, a_{l}$, where $l \leq m$.
- Decoding: Once $\left[a_{1}, a_{2}, \ldots, a_{l}\right]^{T}$ is obtained, we want to reconstruct the full $\left[x_{1}, x_{2}, \ldots, x_{l}, \ldots, x_{m}\right]^{T}$.

$$
\mathbf{x}=\mathbf{Q} \mathbf{a} \approx\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{l}\right]\left[a_{1}, a_{2}, \ldots, a_{l}\right]^{T}=\hat{\mathbf{x}}
$$

Or, alternatively

$$
\hat{\mathbf{x}}=\mathbf{Q}[a_{1}, a_{2}, \ldots, a_{l}, \underbrace{0,0, \ldots, 0}_{m-l \text { zeros }}]^{T}
$$

PCA: Total Variance

- The total variance of th em components of the data vector is

$$
\sum_{j=1}^{m} \sigma_{j}^{2}=\sum_{j=1}^{m} \lambda_{j}
$$

- The truncated version with the first l components have variance

$$
\sum_{j=1}^{l} \sigma_{j}^{2}=\sum_{j=1}^{l} \lambda_{j}
$$

- The larger the variance in the truncated version, i.e., the smaller the variance in the remaining components, the more accurate the dimensionality reduction.

9

PCA's Relation to Neural Networks: Hebbian-Based Maximum Eigenfilter

- How does all the above relate to neural networks?
- A remarkable result by Oja (1982) shows that a single linear neuron with Hebbian synapse can evolve into a filter for the first principal component of the input distribution!
- Activation:

$$
y=\sum_{i=1}^{m} w_{i} x_{i}
$$

- Learning rule:

$$
w_{i}(n+1)=\frac{w_{i}(n)+\eta y(n) x_{i}(n)}{\left(\sum_{i=1}^{m}\left[w_{i}(n)+\eta y(n) x_{i}(n)\right]^{2}\right)^{1 / 2}}
$$

PCA Example

inp $=[r \operatorname{andn}(800,2) / 9+0.5 ; \operatorname{randn}(1000,2) / 6+$ ones $(1000,2)]$;

$$
\begin{gathered}
\mathbf{Q}=\left[\begin{array}{cc}
0.70285 & -0.71134 \\
0.71134 & 0.70285
\end{array}\right] \\
\boldsymbol{\lambda}=\left[\begin{array}{rc}
0.14425 & 0.00000 \\
0.00000 & 0.02161
\end{array}\right]
\end{gathered}
$$

Hebbian-Based Maximum Eigenfilter

- Expanding the denominator as a power series, dropping the higher order terms, etc., we get
$w_{i}(n+1)=w_{i}(n)+\eta y(n)\left[x_{i}(n)-y(n) w_{i}(n)\right]+O\left(\eta^{2}\right)$,
with $O\left(\eta^{2}\right)$ including the second- and higher-order effects of η, which we can ignore for small η.
- Based on that, we get

$$
\begin{aligned}
w_{i}(n+1) & =w_{i}(n)+\eta y(n)\left[x_{i}(n)-y(n) w_{i}(n)\right] \\
& =w_{i}(n)+\eta(\underbrace{y(n) x_{i}(n)}_{\text {Hebbian term }}-\underbrace{y(n)^{2} w_{i}(n)}_{\text {Stabilization term }})
\end{aligned}
$$

Matrix Formulation of the Algorithm

- Activation

$$
y(n)=\mathbf{x}^{T}(n) \mathbf{w}(n)=\mathbf{w}^{T}(n) \mathbf{x}(n)
$$

- Learning

$$
\mathbf{w}(n+1)=\mathbf{w}(n)+\eta y(n)[\mathbf{x}(n)-y(n) \mathbf{w}(n)]
$$

- Combining the above,

$$
\begin{aligned}
\mathbf{w}(n+1)= & \mathbf{w}(n)+\eta\left[\mathbf{x}(n) \mathbf{x}^{T}(n) \mathbf{w}(n)\right. \\
& \left.-\mathbf{w}^{T}(n) \mathbf{x}(n) \mathbf{x}^{T}(n) \mathbf{w}(n) \mathbf{w}(n)\right]
\end{aligned}
$$

represents a nonlinear stochastic difference equation, which is hard to analyze.

Conditions for Stability

1. $\eta(n)$ is a decreasing sequence of positive real numbers such that $\sum_{n=1}^{\infty} \eta(n)=\infty, \sum_{n=1}^{\infty} \eta^{p}(n)<\infty$ for $p>1$,
$\eta(n) \rightarrow 0$ as $n \rightarrow \infty$.
2. Sequence of parameter vectors $\mathbf{w}(\cdot)$ is bounded with probability 1 .
3. The update function $h(\mathbf{w}, \mathbf{x})$ is continuously differentiable w.r.t. \mathbf{w} and \mathbf{x}, and it derivatives are bounded in time.
4. The limit $\bar{h}(\mathbf{w})=\lim _{n \rightarrow \infty} E[h(\mathbf{w}, \mathbf{X})]$ exists for each \mathbf{w}, where \mathbf{X} is a random vector.
5. There is a locally asymptotically stable solution to the ODE

$$
\frac{d}{d t} \mathbf{w}(t)=\hat{h}(\mathbf{w}(t))
$$

6. Let \mathbf{q}_{1} denote the solution to the ODE above with a basin of attraction $\mathcal{B}(\mathbf{q})$. The parameter vector $\mathbf{w}(n)$ enters the compact subset \mathcal{A} of $\mathcal{B}(\mathbf{q})$ infinitely often with prob. 1 .

- To ease the analysis, we rewrite the learning rule as

$$
\mathbf{w}(n+1)=\mathbf{w}(n)+\eta(n) h(\mathbf{w}(n), \mathbf{x}(n))
$$

- The goal is to associate a deterministic ordinary differential equation (ODE) with the stochastic equation.
- Under certain reasonable conditions on $\eta, \mathbf{h}(\cdot, \cdot)$, and \mathbf{w}, we get the asymptotic stability theorem stating that

$$
\lim _{n \rightarrow \infty} \mathbf{w}(n)=\mathbf{q}_{1}
$$

infinitely often with probability 1.

Stability Analysis of Maximum Eigenfilter

Set it up to satisfy the conditions of the asymptotic stability theorem

- Set the learning rate to be $\eta(n)=1 / n$.
- Set $h(\cdot, \cdot)$ to

$$
\begin{aligned}
h(\mathbf{w}, \mathbf{x}) & =\mathbf{x}(n) y(n)-y^{2} \mathbf{w}(n) \\
& =\mathbf{x}(n) \mathbf{x}^{T}(n) \mathbf{w}(n)-\left[\mathbf{w}^{T}(n) \mathbf{x}(n) \mathbf{x}^{T}(n) \mathbf{w}(n)\right] \mathbf{w}(n)
\end{aligned}
$$

- Taking expectaion over all \mathbf{x},

$$
\begin{aligned}
\bar{h} & =\lim _{n \rightarrow \infty} E\left[\mathbf{X}(n) \mathbf{X}^{T}(n) \mathbf{w}(n)-\left(\mathbf{w}^{T}(n) \mathbf{X}(n) \mathbf{X}^{T}(n) \mathbf{w}(n)\right) \mathbf{w}(n)\right] \\
& =\mathbf{R w}(\infty)-\left[\mathbf{w}^{T}(\infty) \mathbf{R w}(\infty)\right] \mathbf{w}(\infty)
\end{aligned}
$$

- Substituting \bar{h} into the ODE,

$$
\frac{d}{d t} \mathbf{w}(t)=\bar{h}(\mathbf{w}(t))=\mathbf{R} \mathbf{w}(t)-\left[\mathbf{w}^{T}(t) \mathbf{R} \mathbf{w}(t)\right] \mathbf{w}(t)
$$

Stability Analysis of Maximum Eigenfilter

- Expanding $\mathbf{w}(t)$ with the eigenvectors of \mathbf{R},

$$
\mathbf{w}(t)=\sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k}
$$

and using basic definitions

$$
\mathbf{R q}_{k}=\lambda_{k} \mathbf{q}, \mathbf{q}_{k}^{T} \mathbf{R} \mathbf{q}_{k}=\lambda_{k}
$$

we get (see next slide for derivation)

$$
\sum_{k=1}^{m} \frac{d \theta_{k}(t)}{d t} \mathbf{q}_{k}=\sum_{k=1}^{m} \lambda_{k} \theta_{k}(t) \mathbf{q}_{k}-\left[\sum_{l=1}^{m} \lambda_{l} \theta_{l}^{2}(t)\right] \sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k}
$$

Stability Analysis of Maximum Eigenfilter (cont'd)

First, we show $\mathbf{R w}(t)=\sum_{k=1}^{m} \lambda_{k} \theta_{k}(t) \mathbf{q}_{k}$, using $\mathbf{R q}_{k}=\lambda_{k} \mathbf{q}$.

$$
\begin{aligned}
\mathbf{R w}(t) & =\mathbf{R} \sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k} \\
& =\sum_{k=1}^{m} \theta_{k}(t) \mathbf{R q}_{k} \\
& =\sum_{k=1}^{m} \lambda_{k} \theta_{k}(t) \mathbf{q}_{k}
\end{aligned}
$$

Stability Analysis of Maximum Eigenfilter (cont'd)

Equating the RHS's of the following

$$
\frac{d \mathbf{w}(t)}{d t}=\frac{d}{d t}\left(\sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k}\right)
$$

$$
\frac{d}{d t} \mathbf{w}(t)=\bar{h}(\mathbf{w}(t))=\mathbf{R} \mathbf{w}(t)-\left[\mathbf{w}^{T}(t) \mathbf{R} \mathbf{w}(t)\right] \mathbf{w}(t)
$$

we get
$\sum_{k=1}^{m} \frac{d \theta_{k}(t)}{d t} \mathbf{q}_{k}=\sum_{k=1}^{m} \lambda_{k} \theta_{k}(t) \mathbf{q}_{k}-\left[\sum_{l=1}^{m} \lambda_{l} \theta_{l}^{2}(t)\right] \sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k}$.

Stability Analysis of Maximum Eigenfilter (cont'd)

Next, we show

$$
\begin{aligned}
& {\left[\mathbf{w}^{T}(t) \mathbf{R} \mathbf{w}(t)\right] \mathbf{w}(t)=\left[\sum_{l=1}^{m} \lambda_{l} \theta_{l}^{2}(t)\right] \sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k} .} \\
& {\left[\mathbf{w}^{T}(t) \mathbf{R} \mathbf{w}(t)\right] \mathbf{w}(t)} \\
& =\left[\mathbf{w}^{T}(t) \mathbf{R} \mathbf{w}(t)\right] \sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\text { Inner sum disappears since } \mathbf{q}_{l}^{T} \mathbf{q}_{k}=0 \text { for } l \neq k \text { and }=1 \text { for } l=k\right\} \\
& =\left[\sum_{l=1}^{m} \theta_{l}(t) \theta_{l}(t) \lambda_{l}\right]_{m}^{l} \sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k}
\end{aligned}
$$

Stability Analysis of Maximum Eigenfilter (cont'd)

- Factoring out \mathbf{q}_{k}, we get

$$
\frac{d \theta_{k}(t)}{d t}=\lambda_{k} \theta_{k}(t)-\left[\sum_{l=1}^{m} \lambda_{l} \theta_{l}^{2}(t)\right] \theta_{k}(t)
$$

- We can analyze the above in two cases (details in following slides):
- Case $\mathrm{I}: k \neq 1$

In this case, $\alpha_{k}(t)=\frac{\theta_{k}(t)}{\theta_{1}(t)} \rightarrow 0$ as $t \rightarrow \infty$, by using $\frac{d \theta_{k}(t)}{d t}$ above to derive $\frac{d \alpha_{k}(t)}{d t}=-(\underbrace{\lambda_{1}-\lambda_{k}}_{\text {positive! }}) \alpha_{k}(t)$.

- Case II: $k=1$

In this case, $\theta_{1}(t) \rightarrow \pm 1$ as $t \rightarrow \infty$, from

$$
\frac{d \theta_{1}(t)}{d t}=\lambda_{1} \theta_{1}(t)\left[1-\theta_{21}^{2}(t)\right]
$$

Stability Analysis of Maximum Eigenfilter (cont'd)

Case II: $k=1$

$$
\begin{aligned}
\frac{d \theta_{1}(t)}{d t} & =\lambda_{1} \theta_{1}(t)-\left[\sum_{l=1}^{m} \lambda_{l} \theta_{l}^{2}(t)\right] \theta_{k}(t) \\
& =\lambda_{1} \theta_{1}(t)-\lambda_{1} \theta_{1}^{3}(t)-\theta_{1}(t) \sum_{l=2}^{m} \lambda_{l} \theta_{l}^{2}(t) \\
& =\lambda_{1} \theta_{1}(t)-\lambda_{1} \theta_{1}^{3}(t)-\theta_{1}^{3}(t) \sum_{l=2}^{m} \lambda_{l} \alpha_{l}^{2}(t)
\end{aligned}
$$

Using results from Case $\mathrm{I}\left(\alpha_{l} \rightarrow 0\right.$ for $l \neq 1$ and $\left.t \rightarrow \infty\right), \theta_{1}(t) \rightarrow \pm 1$ as $t \rightarrow \infty$, from $\frac{d \theta_{1}(t)}{d t}=\lambda_{1} \theta_{1}(t)\left[1-\theta_{1}^{2}(t)\right]$.

Stability Analysis of Maximum Eigenfilter (cont'd)

Case I (in detail): $k \neq 1$

- Given

$$
\frac{d \theta_{k}(t)}{d t}=\lambda_{k} \theta_{k}(t)-\left[\sum_{l=1}^{m} \lambda_{l} \theta_{l}^{2}(t)\right] \theta_{k}(t) \cdot(1)
$$

- Define $\alpha_{k}(t)=\frac{\theta_{k}(t)}{\theta_{1}(t)}$.
- Derive

$$
\frac{d \alpha_{k}(t)}{d t}=\frac{1}{\theta_{1}(t)} \frac{d \theta_{k}(t)}{d t}-\frac{\theta_{k}(t)}{\theta_{1}^{2}(t)} \frac{d \theta_{1}(t)}{d t}(2)
$$

- Plug in (1) above into (2). (Both $d \theta_{k}(t) / d t$ and $d \theta_{1}(k) / d t$.)
- Finally, we get: $\frac{d \alpha_{k}(t)}{d t}=-\left(\lambda_{1}-\lambda_{k}\right) \alpha_{k}(t)$, so $\alpha_{k}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Stability Analysis of Maximum Eigenfilter (cont'd)

- Recalling the original expansion

$$
\mathbf{w}(t)=\sum_{k=1}^{m} \theta_{k}(t) \mathbf{q}_{k}
$$

we can conclude that

$$
\mathbf{w}(t) \rightarrow \mathbf{q}_{1}, \text { as } t \rightarrow \infty
$$

where q_{1} is the normalized eigenvector associated with the largest eigenvalue λ_{1} of the covariance matrix \mathbf{R}.

- Other conditions of stability can also be shown to hold (see the textbook).

Summary of Hebbian-Based Maximum Eigenfilter

Hebbian-based linear neuron converges with probability 1 to a fixed point, which is characterized as follows:

- Variance of output approaches the largest eigenvalue of the covariance matrix $\mathbf{R}(y(n)$ is the output):

$$
\lim _{n \rightarrow \infty} \sigma^{2}(n)=\lim _{n \rightarrow \infty} E\left[Y^{2}(n)\right]=\lambda_{1}
$$

- Synaptic weight vector approaches the associated eigenvector

$$
\lim _{n \rightarrow \infty} \mathbf{w}(n)=\mathbf{q}_{1}
$$

with

$$
\lim _{n \rightarrow \infty}\|w(n)\|=1
$$

Generalized Hebbian Algorithm for full PCA

- Sanger (1989) showed how to construct a feedfoward network to learn all the eigenvectors of \boldsymbol{R}.
- Activation

$$
y_{j}(n)=\sum_{i=1}^{m} w_{j i}(n) x_{i}(n), j=1,2, \ldots, l
$$

- Learning

$$
\begin{gathered}
\Delta w_{j i}(n)=\eta\left[y_{j}(n) x_{i}(n)-y_{j}(n) \sum_{k=1}^{j} w_{k i}(n) y_{k}(n)\right], \\
i=1,2, \ldots, m, \quad j=1,2, \ldots, l .
\end{gathered}
$$

