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Understanding Vision

(Logothetis 2002)

• How is a system as complex as the human visual system constructed?

• How can it be both genetically and environmentally determined?

• How does its structure support functions such as perceptual grouping?

Role of Computational Modeling
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• Computational model is an artificial subject with full access
– Test hypotheses computationally, make predictions

• Computational theory of the visual cortex
– Build better artificial systems
– Improve medical treatment
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• Retina, LGN, V1...etc.

• Structure well known



Receptive Fields
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Spatiotemporal

• Center-surround; static and moving lines; combinations

Columnar Organization of V1

(Kandel et al. 1991)

• Roughly hierarchical ordering:
– Retinotopy, OD, OR, DR
– Color, spatial frequency, disparity?

• Within column, similar responses: 2D structure

Measuring Cortical Maps

• Surface reflectance changes with activity

• Optical imaging can be used to detect

Orientation Map

(7.5 mm × 5.5 mm in macaque V1; Blasdel, 1992)

• Preferences mapped systematically

• Linear zones, pinwheels, saddles, fractures



Orientation & Ocular Dominance Map

(4 mm × 3 mm in macaque V1; Blasdel, 1992)

• Systematic interactions

– OD, OR boundaries at right angles

– Pinwheels, saddles in the middle

Orientation & Direction Map

(1.4 mm × 1.1 mm in ferret V1; Weliky et al. 1996)

• Systematic interactions

– OD, OR boundaries at right angles

– OR patches contain opposite DR

Lateral Connections

(2.5 mm × 2 mm in tree shrew V1; Bosking et al. 1997)

• Link to similar responses

• Patchy structure, extend along OR preference

Development

(4 mm × 3 mm OR+select in ferret V1; Chapman et al. 1996)

• Structure emerges during development

• Some prenatally, much postnatally

• How and why?



LISSOM Model
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• Combined OR, OD, DR

• Retina, LGN, V1 (+ other areas)

• 2D sheets, afferent and lateral connections

• Hebbian learning in V1

Activation

Retinal activation LGN response V1 initial V1 settled

• Luminance adjustment in retina

• Sharpening in LGN (ON−OFF shown)

• Settling in V1:

η′i = σ (ΣkχkAki +ΣjηjEji − ΣjηjIji)
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• Normalized Hebbian learning: A′
ki =

Aki+αχkηi

Σmn(Aki+αχkηi)

→ Input-driven self-organization

• Pruning unused connections

• Results in realistic receptive fields, patchy lateral connections

Orientation Map

OR+selectivity, iteration 0 OR+selectivity, iteration 10,000

• Systematic preferences emerge

• Similar structures as in biology



Orientation & Ocular Dominance Orientation & Direction

OR & OD & DR Map Lateral Connections
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• Link similar responses
• OR primary factor
• Matches biology; detailed predictions



Self-Organization Conclusions

• How is V1 constructed?

– Input-driven self-organization

• Predictions:

– Input deprivation (e.g. strabismus)

– Connection patterns

– Plasticity

– Illusions and aftereffects

– Visual coding

What Is the Goal of Visual Coding?
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• Representing the important features of the input

• Efficient use of resources:

Can represent more information within a limited system

How is Such a Coding Constructed?

Initial response Redundancy-reduced

sparse response

• Not by reducing units: V1 is much larger than the retina

• Could be a sparse code with few active units

• Need to make sparse by reducing redundancy
(Barlow 1972; Atick 1992; Field 1994; Simoncelli & Olshausen 2001)

Lateral Connection Hypothesis

(2.5 mm × 2 mm in tree shrew V1; Bosking et al. 1997)

• Afferent connections respond to input features

• Inhibitory lateral connections decorrelate the response

– Connect neurons that respond to similar inputs

– Response of one neuron can be predicted from the other

– Can be suppressed without losing information



Testing the Hypothesis
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• Difficult to test experimentally

– Requires many neurons, short time scales

• Can be tested in computational models

Does LISSOM Form a Sparse Code?

Retinal activation Initial V1:

Kurtosis 37.9

Settled V1:

Kurtosis 63.0

• Self-organize a LISSOM map

• Measure kurtosis of the response

• → The settled response is sparser

Does LISSOM Reduce Redundancy?

Retinal activation Reconstruction

from initial V1:

Avg. RMS error 0.094

Reconstruction

from settled V1:

Avg. RMS error 0.094

• Reconstruct the input from V1 activity

• Nonlinear: train a backprop net to map back

• → No information lost

Is Self-Organization Necessary?

Retinal activation Settled V1:

Kurtosis 63.0

SoG-settled V1 :

Kurtosis 60.1

• Isotropic (Sum-of-Gaussians; SoG) lateral

connections instead

• Can be adjusted to match kurtosis

• → Sparse code can be formed



Is Self-Organization Necessary?

Retinal activation Reconstruction

from LISSOM V1:

Avg. RMS error 0.094

Reconstruction

from SoG V1:

Avg. RMS error 0.137

• Reconstruction no longer works!

• Information reduced, not just redundancy

• → Self-organization is necessary

• → Forms a sparse, redundancy-reduced code

Nature vs. Nurture

(Johnson and Morton 1991)

• Development through input-driven self-organization

• But some order appears innate

– E.g. orientation maps

– E.g. newborn face preferences

Newborn Face Preferences
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(Johnson et al. 1991)

• Significant preference for face-like schematics

• Genome too small to specify connectivity, behavior

• Three-dot patterns strongest; why?

Retinal Waves

(1 mm × 1 mm in ferret retina; Feller et al. 1996)

• Traveling waves in the retina before birth

• Could serve as input for self-organization



PGO Waves

V1

LGN

(Marks et al. 1995)

• Ponto-geniculo-occipital waves

• Shape unknown, but activates V1

• Could introduce the three-dot bias

HLISSOM Model
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• Include PGO & FSA
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• Three-dot input patterns

in PGO

• Study prenatal and

postnatal

self-organization

Newborn LISSOM Face Preferences
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• Matches newborn preferences in every known case

Newborn LISSOM Face Preferences (2)
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• Prefers top-lit faces; not objects

• Images not tested on infants



Effect of Pattern Types
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• Three dots not the only possible pattern

• Not all patterns work

Pattern Generation Conclusions

• How are nature and nurture combined?

– Through internal pattern generation

• Predictions

– Types of internal patterns

– Postnatal decline of preferences

– Holistic perception of the face develops

– Mother preferences develop

Perceptual Grouping

Proximity Good continuation World knowledge

• Perceiving whole objects

• Low-level based on “Gestalt” principles

• Mediated by lateral connections in V1?

PGLISSOM Model
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• Self-organization needs long-range

inhibition

• Grouping needs long-range

excitation

• → 2-layer model of the column



Leaky Integrator Neuron
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• Binding and segmentation by synchronization

• Need spiking neurons

Self-Organized Lateral Connections
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Lateral excitation in GMAP

• PGLISSOM self-organizes like LISSOM

• Lateral connections match visual environment

Contour Integration Process
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• Synchronizes continuous contours

• Depends on how “good” the contour is

PGLISSOM vs. Human Performance
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Contour Segmentation
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• Multiple contours by alternating

• Upto 5-9 contours

Contour Completion
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• Filling in gaps

• Basis for edge-induced illusory contours?

Illusory Contours
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• Kanizsa: proximity & continuation

• Closed contours easier

• Matches human performance

Perceptual Grouping Conclusions

• How does the structure support functions like grouping?

– Synchronization mediated by self-organized lateral connections

• Predictions:

• Effect of activation decay, noise, refractory period on synchronization

• Image statistics → lateral connectivity → performance

– Frequency, curvature, etc. differ across visual fields

– Performance differs in fovea vs. periphery, upper vs. lower hemifield



Future Work

• Self-organization

– Color, frequency, disparity

– Hierarchy, feedback, multimodal integration

• Development

– Characterizing internal patterns

– Constructing complex systems

• Grouping

– Verify synchronization hypothesis with TMS

– Line-end-induced illusions in V2?

Topographica

• General simulator for cortical maps (v0.8.2 Feb 2006)

Conclusion

• Wealth of data + powerful computing available

• Neuroscience research in vitro, in vivo, in silico

• Computational theory of the visual cortex

– Continuously adapting self-organizing system

– Shaped by internal and external input

– Lateral connections play a major role

• Exciting possibilities for future work

Further Details

(Springer, 2005)

Demos, software, etc.:
www.computationalmaps.org


