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Haykin Chapter 4 (both 2nd and 3rd

ed.): Multi-Layer Perceptrons

CPSC 636-600
Instructor: Yoonsuck Choe
Spring 2012

Some materials from this lecture are from Mitchell (1997) Machine Learning, McGraw-Hill.

Multilayer Perceptrons: Characteristics
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FIGURE 4.4 Signal-flow graph highlighting the details of output neuron k connected to hidden
neuron j.

e Each model neuron has a nonlinear activation function, typically a logistic

. _ 1
function: y; = m

o Network contains one or more hidden layers (layers that are not either an

input or an output layer).

e Network exhibits a high degree of connectivity.
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e Differentiable threshold unit: sigmoid ¢(v) =

e Other functions: tanh(v) =
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FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers. of error signals
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Networks typically consisting of input, hidden, and output layers.
Commonly referred to as Multilayer perceptrons.

Popular learning algorithm is the error backpropagation algorithm
(backpropagation, or backprop, for short), which is a generalization of the
LMS rule.

— Forward pass: activate the network, layer by layer

— Backward pass: error signal backpropagates from output to hidden
and hidden to input, based on which weights are updated.

Multilayer Networks
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FIGURE 4.3 Signal-flow graph highlighting the details of output neuron j.
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property: ‘5520 = ¢ (v) (1 — B (v)).

e Output: y = p(x” w)
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Multilayer Networks and Backpropagation
head hid A whod hood
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(a) One output (b) Two hidden, one output
o Another example: XOR

Error Gradient for a Sigmoid Unit

From the previous page:
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Error Gradient for a Single Sigmoid Unit
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Chain rule

Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

® For each training example, Do

1. Input the training example to the network and compute the network
outputs

2. For each output unit 7
65 < y; (1 —y;)(d; —y;)

3. For each hidden unit h
Sp < yn(l —yn) ZjEOutputs W;n0;

4. Update each network weight w; ;
wji < wj; + Aw;; where
Awj; = nd;x;.

Note: w; is the weight from i to j (i.e., w; . ;).



The 6 Term

For output unit:
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For hidden unit:
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Backpropagated error

In sum, ¢ is the derivative times the error.

Derivation to be presented later.

Derivation of Aw: Output Unit Weights
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Derivation of Aw

e Want to update weight as:

OF

)
610]'1'

iji = —n

where error is defined as

Bw)= Y (- w)?

JjE€outputs
e Givenv,; = Zj WLy,

8E . aE 8vj
811)]'2' N c%j 8wj2-

e Different formula for output and hidden.
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Derivation of Aw: Output Unit Weights

From the previous page, 5—
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e Next, calculate 8—‘37: Since y; = ¢(v;), and

J

¢ (vj) = y; (1 —y;),

8yj
= ui(l =),
Bv; y]( yj)
Putting everything together,
oFE OF 0y;
= = —(dj —yj)y; (1 —y;).
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Derivation of Aw: Output Unit Weights

From the previous page:
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Derivation of Aw: Hidden Unit Weights
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Derivation of Aw: Hidden Unit Weights
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Summary
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Extension to Different Network Topologies Backpropagation: Properties

e Gradient descent over entire network weight vector.

e Easily generalized to arbitrary directed graphs.

e Will find a local, not necessarily global error minimum:

) — In practice, often works well (can run multiple times with
e Arbitrary number of layers: for neurons in layer 1m:

5r = yr(]_ - yr) Z wsr(ss.
s€layer m—+1

different initial weights).

o Minimizes error over training examples:

) — Will it generalize well to subsequent examples?
e Arbitrary acyclic graph:

e Training can take thousands of iterations — slow!
67,, = y?"(l _ y,r-) Z wsrés.
s€ Downstream(r) e Using the network after training is very fast.
17 18
Learning Rate and Momentum Momentum (cont’d)

o Tradeoffs regarding learning rate:
— Smaller learning rate: smoother trajectory but slower n OFE(t
convergence = Owj; (t)

- i : m . . . . .
Larger learning rate: fast convergence, but can become o The weight vector is the sum of an exponentially weighted time

unstable. .
series.
o Momentum can help overcome the issues above. )
o Behavior:
iji(n) =19, (n)yi(n) + O‘iji(n —1). — When successive 8(2:?(2) take the same sign:
Jt
The update rule can be written as: Weight update is accelerated (speed up downhill).
n . n ) IE(t) — When successive 8?5%35) have different signs:
J— n— . ) — n— g
Awji(n) =n Z a7 (t)yi(t) = —n Z o dw;s(t) Weight update is damped (stabilize oscillation).
t=0 t=0
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Sequential (online) vs. Batch Training

o Sequential mode:

Update rule applied after each input-target presentation.

Order of presentation should be randomized.

Benefits: less storage, stochastic search through weight
space helps avoid local minima.

Disadvantages: hard to establish theoretical convergence

conditions.

o Batch mode:
— Update rule applied after all input-target pairs are seen.

— Benefits: accurate estimate of the gradient, convergence to
local minimum is guaranteed under simpler conditions.
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What the Hidden Layer Does
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e A smooth ramped output, monotonically increasing.

e Ramp can be oriented in different angles.

e This kind of visualization is only possible with low-dimensional input.
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Representational Power of Feedforward Networks

e Boolean functions: every boolean function representable with two
layers (hidden unit size can grow exponentially in the worst case:

one hidden unit per input example, and “OR” them).

e Continous functions: Every bounded continuous function can be
approximated with an arbitrarily small error (output units are

linear).

e Arbitrary functions: with three layers (output units are linear).
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What the Hidden Layer Does (cont’d)

Fleming and Cottrell (1990)

e We can also look at the hidden layer weight as a pattern or feature.

e Or, we can activate one hidden unit and see what output pattern it

produces (example above).
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Learning Hidden Layer Representations

Inputs Outputs
Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001
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Learned Hidden Layer Representations

® |earned encoding is similar to standard 3-bit binary code.

o Automatic discovery of useful hidden layer representations is a

key feature of ANN.

e Note: The hidden layer repres267ntation is compressed.
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Learned Hidden Layer Representations

Outputs
Input Hidden Output
Values
10000000 — .89 .04 .08 — 10000000
01000000 — .01 A1 .88 — 01000000
00100000 — .01 .97 27 — 00100000
00010000 — .99 .97 71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
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Overfitting
Ertor versus weight updates (example 1) Brtor versus weight updates (example 2)

Validation set error - o Validation set error
0008 F 1 0.06 f““‘ﬁi‘

Error

0005 7W 003 F °
0004 1 0.02 5
0003 1 001 "
) ) - S

0.002

0
5000 10000 15000 20000 0 1000 2000 3000 4000 5000 6000
Number of weight updates Number of weight updates

e Error in two different robot perception tasks.

e Training set and validation set error.

e Early stopping ensures good performance on unobserved

samples, but must be careful.

e Weight decay, use of validation sets, use of k-fold

cross-validation, etc. to overcome the problem.
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Recurrent Networks Recurrent Networks (Cont’d)

® Sequence recognition. ENEE
output
e Store tree structure (next
4 delay slide).
hidden e Can be trained with plain [ [ ek ]

backpropagation. o )
e Autoassociation (intput = output)

o Generalization may not be

input context e Represent a stack using the hidden layer representation.
perfect.
e Accuracy depends on numerical precision.
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Some Applications: NETtalk NETtalk data
aardvark a-rdvark 1<<<>2<<0
Output units

(phoneme code) ' aback xb@k-0>1<<0

abacus @bxkxs 1<0>0<0
abaft xb@ft 0>1<<0
abalone @bxloni 2<0>1>0 O

Hidden units
Y

€«€— T h ifs i e itnput abandon xb@ndxn 0>1<>0<0
abase xbes-0>1<<0
NETtalk: Sejnowski and Rosenberg (1987). abash xb@S-0>1<<0

abate xbet-0>1<<0

Learn to pronounce English text.
abatis @bxti-1<0>2<2

Demo

Data available in UCI ML repository e Word — Pronunciation — Stress/Syllable

e about 20,000 words

31 32



More Applications: Data Compression

e Construct an autoassocia-
e tive memory where Input =
7 Output.

® Train with small hidden
layer.

® Encode using input-to-
hidden weights.

® Send or store hidden layer
activation.

® Decode received or stored
hidden layer activation

with the hidden-to-output
weights.
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Backpropagation: Example Results

Backprop
OR —&—
AND ol
XOR -

Error

0.05

0 5 10 15 20 25 30 35 40
10,000 Epochs

e Epoch: one full cycle of training through all training input patterns.

® OR was easiest, AND the next, and XOR was the most difficult to
learn.

o Network had 2 input, 2 hidden and 1 output unit. Learning rate
was 0.001.
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Backpropagation Exercise

URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz

Untar and read the README file:

gzip -dc backprop-l.6.tar.gz | tar

xvi -

Run make to build (on departmental unix machines).

Run . /bp conf/xor.conf etc.

34

Backpropagation: Example Results (cont’d)

Backprop

10,000 Epochs

I AND

Output to (0,0), (0,1), (1,0), and (1,1) form each row.

\ Error
O o g 2 = ¢
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Backpropagation: Things to Try
e How does increasing the number of hidden layer units affect the
(1) time and the (2) number of epochs of training?

o How does increasing or decreasing the learning rate affect the

rate of convergence?

o How does changing the slope of the sigmoid affect the rate of

convergence?

e Different problem domains: handwriting recognition, etc.
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MLP as a General Function Approximator (cont’d)

® The universal approximation theorem is an existence theorem,

and it merely generalizes approximations by finite Fourier series.

o The universal approximation theorem is directly applicable to
neural networks (MLP), and it implies that one hidden layer is

sufficient.

o The theorem does not say that a single hidden layer is optimum in

terms of learning time, generalization, etc.
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MLP as a General Function Approximator

® MLP can be seen as performing nonlinear input-output mapping.

e Universal approximation theorem: Let ¢(-) be a nonconstant, bounded,

monotone-increasing continuous function. Let Imo denote the
m-dimensional unit hypercube [0, 1]"0. The space of continuous
functions on I, is denoted by C'(/,,,, ). Then given any function

J € C(Iy)and e > 0, there exists an integer 7721 and a set of real

constants cv;, b;, and w;;, where ¢ = 1, ..., m1 and
7 =1, ..., mg, such that we may define
77L1 TTLO
F(:cl,...,xmo): E ;¢ E ws;T; + b;
i=1 j=1

as an approximate realization of the function f(-); that is
|F(3717 R m'rno) - f(xlu ceey ano)| <€

forallzy, ..., ©m thatlie in the input space.
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Generalization

A network is said to generalize well when the input-output
mapping computed by the network is correct (or nearly so) for test
data never used during training.

This view is apt when we take the curve-fitting view.

Issues: overfitting or overtraining, due to memorization.
Smoothness in the mapping is desired, and this is related to

criteria like Occam'’s razor.
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Generalization and Training Set Size

e Generalization is influenced by three factors:
— Size of the training set, and how representative they are.
— The architecture of the network.

— Physical complexity of the problem.

e Sample complexity and VC dimension are related. In practice,

o ().

where W is the total number of free parameters, and € is the

error tolerance.

41

Cross-Validation

man [ ] [ [] B
Mean- Validation Trial 2 ‘:‘ D D D
squared sample

error
Trial3 ] 1 [
stopping sample

0 Trial 4

Number of epochs

Use of validation set (not used during training, used for measuring
generalizability).

o Model selection
e Early stopping

e Hold-out method: multiple cross-validation, leave-one-out

method, etc.
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Training Set Size and Curse of Dimensionality

1D: 4 inputs 2D: 16 inputs 3D: 64 inputs
e As the dimensionality of the input grows, exponentially more
inputs are needed to maintain the same density in unit space.

e In other words, the sampling density of /V inputs in
m-dimensional space is proportional to N1/m,

o One way to overcome this is to use prior knowledge about the

function.
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Virtues and Limitations of Backprop

e Connectionism: biological metaphor, local computation, graceful
degradation, paralellism. (Some limitations exist regarding the biological
plausibility of backprop.)

e Feature detection: hidden neurons perform feature detection.
e Function approximation: a form of nested sigmoid.

e Computational complexity: computation is polynomial in the number of
adjustable parameters, thus it can be said to be efficient.

e Sensitivity analysis: sensitivity can be estimated efficiently.
® Robustness: disturbances can only cause small estimation errors.
e Convergence: stochastic approximation, and it can be slow.

e Local minima and scaling issues

44



Heuristic for Accelerating Convergence

Learning rate adaptation
e Separate learning rate for each tunable weight.
e Each learning rate is allowed to adjust after each iteration.

e If the derivative of the cost function has the same sign for several

iterations, increase the learning rate.

e |[f the derivative of the cost function alternates the sign over

several iterations, decrease the learning rate.
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Summary

e Backprop for MLP is local and efficient (in calculating the partial
derivative).

e Backprop can handle nonlinear mappings.
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