Slide04
Haykin Chapter 4 (both 2nd and 3rd

ed.): Multi-Layer Perceptrons

CPSC 636-600
Instructor: Yoonsuck Choe
Spring 2012

Some materials from this lecture are from Mitchell (1997) Machine Learning, McGraw-Hill.

Multilayer Perceptrons: Characteristics

Neuron j Neuron k
— =\ e
yo=+1 BN
w(n) = b;(n)
dy(n)
o
\ |
vlm) () ym) wyi(n) viln) @) yim) -1
i) %{ - & - e(n)

™ =
-

FIGURE 4.4 Signal-flow graph highlighting the details of output neuron k connected to hidden
neuron j.

e Each model neuron has a nonlinear activation function, typically a logistic

. _ 1
function: y; = m

o Network contains one or more hidden layers (layers that are not either an

input or an output layer).

e Network exhibits a high degree of connectivity.
3

e Differentiable threshold unit: sigmoid ¢(v) =

e Other functions: tanh(v) =

Introduction
o w —

B . % .A <
TN

FIGURE 4.2 lllustration of
the directions of two basic

signal flows in a multilayer
Output perceptron: forward
layer propagation of function
signals and back-propagation
FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers. of error signals

Tnput
layer

First Second
hidden hidden
layer layer

Networks typically consisting of input, hidden, and output layers.
Commonly referred to as Multilayer perceptrons.

Popular learning algorithm is the error backpropagation algorithm
(backpropagation, or backprop, for short), which is a generalization of the
LMS rule.

— Forward pass: activate the network, layer by layer

— Backward pass: error signal backpropagates from output to hidden
and hidden to input, based on which weights are updated.

Multilayer Networks

Neuron j
Yo= .n\

we(n) = by(n)
AN \” dyn)
\\
RN

N\

w,(n)) o) y(n) -1
o & -

—
—/

&/

FIGURE 4.3 Signal-flow graph highlighting the details of output neuron j.

1 .
H—Tp(—v) . |ntereSt|ng

property: ‘5520 = ¢ (v) (1 — B (v)).

e Output: y = p(x” w)

1—exp(—2v)
l1+exp(—2v)

4

Multilayer Networks and Backpropagation
head hid A whod hood

s

(a) One output (b) Two hidden, one output
o Another example: XOR

Error Gradient for a Sigmoid Unit

From the previous page:

OF Oy Ovy
= dr — IRk TR
awi ;(4§ yk) (%k 8wi

But we know:
Ou _ O0tvi) = k(1 — yx)
avk 8vk : K
Ovy, 8(xgw)
= et xi k
8wi awl ’
So:
oFE
— = = (dk = yr)ur(l — yr)Tik
8’11)7; &

Error Gradient for a Single Sigmoid Unit

For m input-output pairs { (x,, dr) } 5 ;-

OF o 1)
ow; - ow; §Z(dk ~ k)
1 T k
1 0)
= 2y Za-w
2 % sz

1 19)
= = 2(de — yr) (dr — yk)
2 ko 8wl

- S (-3

ﬁyk 8vk
= dy, — —7r
Ek (dr — yx) Do D

h\,—/
Chain rule

Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

® For each training example, Do

1. Input the training example to the network and compute the network
outputs

2. For each output unit 7
65 < y; (1 —y;)(d; —y;)

3. For each hidden unit h
Sp < yn(l —yn) ZjEOutputs W;n0;

4. Update each network weight w; ;
wji < wj; + Aw;; where
Awj; = nd;x;.

Note: w; is the weight from i to j (i.e., w; . ;).

The 6 Term

For output unit:

05 =y (L — ;) (dj —y5)

¢/(vj) Error

For hidden unit:

Sn < yn(1 —yn) > wind;
— jEoutputs
¢’ (vp) N v

~~

Backpropagated error

In sum, ¢ is the derivative times the error.

Derivation to be presented later.

Derivation of Aw: Output Unit Weights

: OE _ OE 9vj
From the previous page, Bw,; . v, Oy

o First, calculate g_E :
v

J
oF o oF 8yj
8Uj - 8yj 8Uj

OF o 1
— = —= (dj —y;)?
Ay dyj 2 Z S

0 1
= —— (d; —y:)?
ﬁyj2(j yj)
1 6(d-—yj)
= 2-(dj —yj)—=—L=
J j By,

jE€outputs

2

= —(dj —yj)
11

Derivation of Aw

e Want to update weight as:

OF

)
610]'1'

iji = —n

where error is defined as

Bw)= Y (- w)?

JjE€outputs
e Givenv,; = Zj WLy,

8E . aE 8vj
811)]'2' N c%j 8wj2-

e Different formula for output and hidden.

10

Derivation of Aw: Output Unit Weights

From the previous page, 5—

OE _ 9E 9yj — —(d;
’ 8’[)] ayj 8’Uj J

— ;)

oy .
e Next, calculate 8—‘37: Since y; = ¢(v;), and

J

¢ (vj) = y; (1 —y;),

8yj
= ui(l =),
Bv; y](yj)
Putting everything together,
oFE OF 0y;
= = —(dj —yj)y; (1 —y;).
8vj 8y]’ (%)j (J y])y](yj)

12

Derivation of Aw: Output Unit Weights

From the previous page:

OF OFE Oy;
— — —(di —u (1 —
dv; By; dv; (dj —y;)y;(Y5)
. o)W) Ty
Since 88;);, = Zlawjjj =,
OF - OF (%j
owj; N Ov; Owj;
= —(dj —y)y; (L —y5) x
@ =))

dj=errorx¢’(net) input

13

Derivation of Aw: Hidden Unit Weights

Finally, given
OF OE 0w, OF
= - i,
awjz- 8’0]‘ 810]'1' 8Uj '
and SE
? — Z —5kwkj yj(l_yj)v
Vj k€ Downstream(j)
¢’ (net)
OF]
Awjy = —no— =ny; (1 = y;) 2. Okl
Wy —— k€ Downstream(j)
¢/ (net) ~~ 4
erronr

—
o5

15

Derivation of Aw: Hidden Unit Weights

o OF oE 9v; OE
rt with = 5— = ==Xy
Sta twit 8wﬂ 81;] awﬂ 8'1}] v
oOF - Z OF Ovy
8’Uj k€ Downstream(j) Ovk 8Uj
ov
= > —Or
k€ Downstream(j) V3
Ovy, 0y;
= > Ok G Do,
k€ Downstream(j) Yi ©vi
9y
— Z —6kwkj Z

k€ Downstream(j)

I
[

k€ Downstream(j)
¢’ (net)

14

Summary

8,(n) ¢i(vy(n))

ey(n)
8i(n) Swiy(n) 8,(n) @u(vi(n)
0 e(n)
FIGURE 4.5 Signal-flow))
graph of a part of the adjoint w,) g :
system pertaining to back- il O (1) e ()

propagation of error signals. @ (Vm, (1)

Awji(n) = n - &i(n) - yi(n)

N—_—— N~~~ N—— N~
weight correction learning rate |ocal gradient input signal

16

—Orwi; yi (1 —y;)
%,—/

Extension to Different Network Topologies Backpropagation: Properties

e Gradient descent over entire network weight vector.

e Easily generalized to arbitrary directed graphs.

e Will find a local, not necessarily global error minimum:

) — In practice, often works well (can run multiple times with
e Arbitrary number of layers: for neurons in layer 1m:

5r = yr(]_ - yr) Z wsr(ss.
s€layer m—+1

different initial weights).

o Minimizes error over training examples:

) — Will it generalize well to subsequent examples?
e Arbitrary acyclic graph:

e Training can take thousands of iterations — slow!
67,, = y?"(l _ y,r-) Z wsrés.
s€ Downstream(r) e Using the network after training is very fast.
17 18
Learning Rate and Momentum Momentum (cont’d)

o Tradeoffs regarding learning rate:
— Smaller learning rate: smoother trajectory but slower n OFE(t
convergence = Owj; (t)

- i : m
Larger learning rate: fast convergence, but can become o The weight vector is the sum of an exponentially weighted time

unstable. .
series.
o Momentum can help overcome the issues above.)
o Behavior:
iji(n) =19, (n)yi(n) + O‘iji(n —1). — When successive 8(2:?(2) take the same sign:
Jt
The update rule can be written as: Weight update is accelerated (speed up downhill).
n . n) IE(t) — When successive 8?5%35) have different signs:
J— n— .) — n— g
Awji(n) =n Z a7 (t)yi(t) = —n Z o dw;s(t) Weight update is damped (stabilize oscillation).
t=0 t=0

19 20

Sequential (online) vs. Batch Training

o Sequential mode:

Update rule applied after each input-target presentation.

Order of presentation should be randomized.

Benefits: less storage, stochastic search through weight
space helps avoid local minima.

Disadvantages: hard to establish theoretical convergence

conditions.

o Batch mode:
— Update rule applied after all input-target pairs are seen.

— Benefits: accurate estimate of the gradient, convergence to
local minimum is guaranteed under simpler conditions.

21

What the Hidden Layer Does

¥

f\/!"\/\\/
XK K K KK
PP O B 9
b e S &4
P B 2O K os -
P P 5. O .9
L 4
XK K
XX
op X3 ok E
x
xX X
X X X
XX KK
oSk - Ly T =
LA 0 &9
KKK KKK K
XEX KKK KX K
XHHKXA K KX
4 45

=f oE [] 0E

e A smooth ramped output, monotonically increasing.

e Ramp can be oriented in different angles.

e This kind of visualization is only possible with low-dimensional input.

23

Representational Power of Feedforward Networks

e Boolean functions: every boolean function representable with two
layers (hidden unit size can grow exponentially in the worst case:

one hidden unit per input example, and “OR” them).

e Continous functions: Every bounded continuous function can be
approximated with an arbitrarily small error (output units are

linear).

e Arbitrary functions: with three layers (output units are linear).

22

What the Hidden Layer Does (cont’d)

Fleming and Cottrell (1990)

e We can also look at the hidden layer weight as a pattern or feature.

e Or, we can activate one hidden unit and see what output pattern it

produces (example above).

24

Learning Hidden Layer Representations

Inputs Outputs
Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

25

Learned Hidden Layer Representations

® |earned encoding is similar to standard 3-bit binary code.

o Automatic discovery of useful hidden layer representations is a

key feature of ANN.

e Note: The hidden layer repres267ntation is compressed.

Inputs

04Ir \
cﬁo

©
[¥ta
0007 1 005 . 1
- g
£ 0006 % ol 2 004 . 1
53]

Learned Hidden Layer Representations

Outputs
Input Hidden Output
Values
10000000 — .89 .04 .08 — 10000000
01000000 — .01 A1 .88 — 01000000
00100000 — .01 .97 27 — 00100000
00010000 — .99 .97 71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
26
Overfitting
Ertor versus weight updates (example 1) Brtor versus weight updates (example 2)

Validation set error - o Validation set error
0008 F 1 0.06 f““‘ﬁi‘

Error

0005 7W 003 F °
0004 1 0.02 5
0003 1 001 "
)) - S

0.002

0
5000 10000 15000 20000 0 1000 2000 3000 4000 5000 6000
Number of weight updates Number of weight updates

e Error in two different robot perception tasks.

e Training set and validation set error.

e Early stopping ensures good performance on unobserved

samples, but must be careful.

e Weight decay, use of validation sets, use of k-fold

cross-validation, etc. to overcome the problem.

28

Recurrent Networks Recurrent Networks (Cont’d)

® Sequence recognition. ENEE
output
e Store tree structure (next
4 delay slide).
hidden e Can be trained with plain [[ek]

backpropagation. o)
e Autoassociation (intput = output)

o Generalization may not be

input context e Represent a stack using the hidden layer representation.
perfect.
e Accuracy depends on numerical precision.
29 30
Some Applications: NETtalk NETtalk data
aardvark a-rdvark 1<<<>2<<0
Output units

(phoneme code) ' aback xb@k-0>1<<0

abacus @bxkxs 1<0>0<0
abaft xb@ft 0>1<<0
abalone @bxloni 2<0>1>0 O

Hidden units
Y

€«€— T h ifs i e itnput abandon xb@ndxn 0>1<>0<0
abase xbes-0>1<<0
NETtalk: Sejnowski and Rosenberg (1987). abash xb@S-0>1<<0

abate xbet-0>1<<0

Learn to pronounce English text.
abatis @bxti-1<0>2<2

Demo

Data available in UCI ML repository e Word — Pronunciation — Stress/Syllable

e about 20,000 words

31 32

More Applications: Data Compression

e Construct an autoassocia-
e tive memory where Input =
7 Output.

® Train with small hidden
layer.

® Encode using input-to-
hidden weights.

® Send or store hidden layer
activation.

® Decode received or stored
hidden layer activation

with the hidden-to-output
weights.

33

Backpropagation: Example Results

Backprop
OR —&—
AND ol
XOR -

Error

0.05

0 5 10 15 20 25 30 35 40
10,000 Epochs

e Epoch: one full cycle of training through all training input patterns.

® OR was easiest, AND the next, and XOR was the most difficult to
learn.

o Network had 2 input, 2 hidden and 1 output unit. Learning rate
was 0.001.

35

Backpropagation Exercise

URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz

Untar and read the README file:

gzip -dc backprop-l.6.tar.gz | tar

xvi -

Run make to build (on departmental unix machines).

Run . /bp conf/xor.conf etc.

34

Backpropagation: Example Results (cont’d)

Backprop

10,000 Epochs

I AND

Output to (0,0), (0,1), (1,0), and (1,1) form each row.

\ Error
O o g 2 = ¢

36

Backpropagation: Things to Try
e How does increasing the number of hidden layer units affect the
(1) time and the (2) number of epochs of training?

o How does increasing or decreasing the learning rate affect the

rate of convergence?

o How does changing the slope of the sigmoid affect the rate of

convergence?

e Different problem domains: handwriting recognition, etc.

37

MLP as a General Function Approximator (cont’d)

® The universal approximation theorem is an existence theorem,

and it merely generalizes approximations by finite Fourier series.

o The universal approximation theorem is directly applicable to
neural networks (MLP), and it implies that one hidden layer is

sufficient.

o The theorem does not say that a single hidden layer is optimum in

terms of learning time, generalization, etc.

39

MLP as a General Function Approximator

® MLP can be seen as performing nonlinear input-output mapping.

e Universal approximation theorem: Let ¢(-) be a nonconstant, bounded,

monotone-increasing continuous function. Let Imo denote the
m-dimensional unit hypercube [0, 1]"0. The space of continuous
functions on I, is denoted by C'(/,,,,). Then given any function

J € C(Iy)and e > 0, there exists an integer 7721 and a set of real

constants cv;, b;, and w;;, where ¢ = 1, ..., m1 and
7 =1, ..., mg, such that we may define
77L1 TTLO
F(:cl,...,xmo): E ;¢ E ws;T; + b;
i=1 j=1

as an approximate realization of the function f(-); that is
|F(3717 R m'rno) - f(xlu ceey ano)| <€

forallzy, ..., ©m thatlie in the input space.
38

Generalization

A network is said to generalize well when the input-output
mapping computed by the network is correct (or nearly so) for test
data never used during training.

This view is apt when we take the curve-fitting view.

Issues: overfitting or overtraining, due to memorization.
Smoothness in the mapping is desired, and this is related to

criteria like Occam'’s razor.

40

Generalization and Training Set Size

e Generalization is influenced by three factors:
— Size of the training set, and how representative they are.
— The architecture of the network.

— Physical complexity of the problem.

e Sample complexity and VC dimension are related. In practice,

o ().

where W is the total number of free parameters, and € is the

error tolerance.

41

Cross-Validation

man [] [[] B
Mean- Validation Trial 2 ‘:‘ D D D
squared sample

error
Trial3] 1 [
stopping sample

0 Trial 4

Number of epochs

Use of validation set (not used during training, used for measuring
generalizability).

o Model selection
e Early stopping

e Hold-out method: multiple cross-validation, leave-one-out

method, etc.
43

Training Set Size and Curse of Dimensionality

1D: 4 inputs 2D: 16 inputs 3D: 64 inputs
e As the dimensionality of the input grows, exponentially more
inputs are needed to maintain the same density in unit space.

e In other words, the sampling density of /V inputs in
m-dimensional space is proportional to N1/m,

o One way to overcome this is to use prior knowledge about the

function.
42

Virtues and Limitations of Backprop

e Connectionism: biological metaphor, local computation, graceful
degradation, paralellism. (Some limitations exist regarding the biological
plausibility of backprop.)

e Feature detection: hidden neurons perform feature detection.
e Function approximation: a form of nested sigmoid.

e Computational complexity: computation is polynomial in the number of
adjustable parameters, thus it can be said to be efficient.

e Sensitivity analysis: sensitivity can be estimated efficiently.
® Robustness: disturbances can only cause small estimation errors.
e Convergence: stochastic approximation, and it can be slow.

e Local minima and scaling issues

44

Heuristic for Accelerating Convergence

Learning rate adaptation
e Separate learning rate for each tunable weight.
e Each learning rate is allowed to adjust after each iteration.

e If the derivative of the cost function has the same sign for several

iterations, increase the learning rate.

e |[f the derivative of the cost function alternates the sign over

several iterations, decrease the learning rate.

45

Summary

e Backprop for MLP is local and efficient (in calculating the partial
derivative).

e Backprop can handle nonlinear mappings.

46

