
Support-Vector Machines

• Haykin chapter 6.

• See Alpaydin chapter 13 for similar content.

• Note: Part of this lecture drew material from Ricardo

Gutierrez-Osuna’s Pattern Analysis lectures.
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Introduction

• Support vector machine is a linear machine with some very nice

properties.

• The basic idea of SVM is to construct a separating hyperplane

where the margin of separation between positive and negative

examples are maximized.

• Principled derivation: structural risk minimization

– error rate is bounded by: (1) training error-rate and (2)

VC-dimension of the model.

– SVM makes (1) become zero and minimizes (2).
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Optimal Hyperplane

For linearly separable patterns {(xi, di)}Ni=1 (with

di ∈ {+1,−1}):

• The separating hyperplane is wTx + b = 0:

wTx + b ≥ 0 for di = +1

wTx + b < 0 for di = −1

• Let wo be the optimal hyperplane and bo the optimal bias.
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Distance to the Optimal Hyperplane
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• From wT
o xi = −bo , the distance from the origin to the hyperplane is

calculated as:

d = ‖xi‖ cos(xi,wo) =
−bo
‖wo‖

since

w
T
o xi = ‖wo‖‖xi‖ cos(wo,xi) = −bo
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Distance to the Optimal Hyperplane (cont’d)
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• The distance from an arbitrary point to the hyperplane can be calculated as:

– When the point is in the positive area:

r = ‖x‖ cos(x,wo)−d =
xTwo

‖wo‖
+

bo

‖wo‖
=

xTwo + bo

‖wo‖
.

– When the point is in the negative area:

r = d−‖x‖ cos(x,wo) = −xTwo

‖wo‖
− bo

‖wo‖
= −xTwo + bo

‖wo‖
.
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Optimal Hyperplane and Support Vectors
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• Support vectors: input points closest to the separating

hyperplane.

• Margin of separation ρ: distance between the separating

hyperplane and the closest input point.
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Optimal Hyperplane and Support Vectors (cont’d)

• The optimal hyperplane is supposed to maximize the margin of

separation ρ.

• With that requirement, we can write the conditions that wo and

bo must meet:

wT
o x + bo ≥ +1 for di = +1

wT
o x + bo ≤ −1 for di = −1

Note: ≥ +1 and≤ −1, and support vectors are those x(s)

where equality holds (i.e., wT
o x

(s) + bo = +1 or−1).

• Since r = (wT
o x + bo)/‖wo‖,

r =





1/‖wo‖ if d = +1

−1/‖wo‖ if d = −1
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Optimal Hyperplane and Support Vectors (cont’d)
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• Margin of separation between two classes is

ρ = 2r =
2

‖wo‖
.

• Thus, maximizing the margin of separation between two classes

is equivalent to minimizing the Euclidean norm of the weight wo!
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Primal Problem: Constrained Optimization

For the training set T = {(xi, di)}Ni=1 find w and b such that

• they minimize a certain value (1/ρ) while satisfying a constraint

(all examples are correctly classified):

– Constraint: di(wTxi + b) ≥ 1 for i = 1, 2, ..., N .

– Cost function: Φ(w) = 1
2
wTw.

This problem can be solved using the method of Lagrange multipliers

(see next two slides).
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Mathematical Aside: Lagrange Multipliers

Turn a constrained optimization problem into an unconstrained

optimization problem by absorbing the constraints into the cost

function, weighted by the Lagrange multipliers.

Example: Find point on the circle x2 + y2 = 1 closest to the point

(2, 3) (adapted from Ballard, An Introduction to Natural Computation,

1997, pp. 119–120).

• Minimize F (x, y) = (x− 2)2 + (y − 3)2 subject to the

constraint x2 + y2 − 1 = 0.

• Absorb the constraint into the cost function, after multiplying the

Lagrange multiplier α:

F (x, y, α) = (x− 2)2 + (y − 3)2 + α(x2 + y2 − 1).
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Lagrange Multipliers (cont’d)

Must find x, y, α that minimizes

F (x, y, α) = (x− 2)2 + (y − 2)2 + α(x2 + y2 − 1). Set the

partial derivatives to 0, and solve the system of equations.

∂F

∂x
= 2(x− 2) + 2αx = 0

∂F

∂y
= 2(y − 2) + 2αy = 0

∂F

∂α
= x

2
+ y

2 − 1 = 0

Solve for x and y in the 1st and 2nd, and plug in those to the 3rd equation

x = y =
2

1 + α
, so

(
2

1 + α

)2

+

(
2

1 + α

)2

= 1

from which we get α = 2
√

2− 1. Thus, (x, y) = (1/
√

2, 1/
√

2).
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Primal Problem: Constrained Optimization (cont’d)

Putting the constrained optimization problem into the Lagrangian form,

we get (utilizing the Kunh-Tucker theorem)

J(w, b, α) =
1

2
wTw −

N∑

i=1

αi

[
di(w

Txi + b)− 1
]
.

• From ∂J(w,b,α)
∂w

= 0:

w =

N∑

i=1

αidixi.

• From ∂J(w,b,α)
∂b

= 0:

N∑

i=1

αidi = 0
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Primal Problem: Constrained Optimization (cont’d)

• Note that when the optimal solution is reached, the following

condition must hold (Karush-Kuhn-Tucker complementary

condition)

αi

[
di(w

Txi + b)− 1
]

= 0

for all i = 1, 2, ..., N .

• Thus, non-zero αis can be attained only when[
di(w

Txi + b)− 1
]

= 0, i.e., when the αi is associated

with a support vector x(s)!

• Other conditions include αi ≥ 0.
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Primal Problem: Constrained Optimization (cont’d)

• Plugging in w =
∑N

i=1 αidixi and
∑N

i=1 αidi = 0 back into

J(w, b, α), we get the dual problem.

J(w, b, α) = 1
2w

Tw −∑N
i=1 αi

[
di(w

Txi + b)− 1
]

= 1
2w

Tw −∑N
i=1 αidiw

Txi

−b∑N
i=1 αidi +

∑N
i=1 αi{

noting wTw =
∑N

i=1 αidiw
Txi

and from
∑N

i=1 αidi = 0
}

= − 1
2

∑N
i=1 αidiw

Txi +
∑N

i=1 αi

= − 1
2

∑N
i=1

∑N
j=1 αiαjdidjx

T
i xj +

∑N
i=1 αi

= Q(α).

• So, J(w, b, α) = Q(α) (αi ≥ 0).

• This results in the dual problem (next slide).
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Dual Problem

• Given the training sample {(xi, di)}Ni=1, find the Lagrange

multipliers {αi}Ni=1 that maximize the objective function:

Q(α) = −1

2

N∑

i=1

N∑

j=1

αiαjdidjx
T
i xj +

N∑

i=1

αi

subject to the constraints

–
∑N
i=1 αidi = 0

– αi ≥ 0 for all i = 1, 2, ..., N .

• The problem is stated entirely in terms of the training data

(xi, di), and the dot products xTi xj play a key role.
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Solution to the Optimization Problem

Once all the optimal Lagrange mulitpliers αo,i are found (use

Sequential minimal optimization, etc.), wo and bo can be found as

follows:

wo =

N∑

i=1

αo,idixi

and from wT
o xi + bo = di when xi is a support vector:

bo = d(s) −wT
o x

(s)

Note: calculation of final estimated function does not need any explicit

calculation of wo since they can be calculated from the dot product

between the input vectors!

wT
o x =

N∑

i=1

αo,idix
T
i x
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Margin of Separation in SVM and VC Dimension

Statistical learning theory shows that it is desirable to reduce both the

error (empirical risk) and the VC dimension of the classifier.

• Vapnik (1995, 1998) showed: LetD be the diameter of the

smallest ball containing all input vectors xi. The set of optimal

hyperplanes defined by wT
o x + bo = 0 has a VC dimension h

bounded from above as

h ≤ min
{⌈

D2

ρ2

⌉
,m0

}
+ 1

where d·e is the ceiling, ρ the margin of separation equal to

2/‖wo‖, andm0 the dimensionality of the input space.

• The implication is that the VC dimension can be controlled

independetly ofm0, by choosing an appropriate (large) ρ!
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Soft-Margin Classification
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• Some problems can violate the condition:

di(w
Txi + b) ≥ 1

• We can introduce a new set of variables {ξi}Ni=1:

di(w
Txi + b) ≥ 1− ξi

where ξi is called the slack variable.
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Soft-Margin Classification (cont’d)

• We want to find a separating hyperplane that minimizes:

Φ(ξ) =
N∑

i=1

I(ξi − 1)

where I(ξ) = 0 if ξ ≤ 0 and 1 otherwise.

• Solving the above is NP-complete, so we instead solve an approximation:

Φ(ξ) =
N∑

i=1

ξi

• Furthermore, the weight vector can be factored in:

Φ(x, ξ) =
1

2
w

T
w

︸ ︷︷ ︸
Controls VC dim

+ C
N∑

i=1

ξi

︸ ︷︷ ︸
Controls error

with a control parameterC . 19

Soft-Margin Classification: Solution

• Following a similar route involving Lagrange multipliers, and a

more restrictive condition of 0 ≤ αi ≤ C , we get the solution:

wo =

Ns∑

i=1

αo,idixi

bo = di(1− ξi)−wT
o xi
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Nonlinear SVM

(xi)

xi

Input space

Feature space

( )

• Nonlinear mapping of an input vector to a high-dimensional

feature space (exploit Cover’s theorem)

• Construction of an optimal hyperplane for separating the features

identified in the above step.
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Inner-Product Kernel

• Input x is mapped to ϕ(x).

• With the weight w (including the bias b), the decision surface in

the feature space becomes (assume ϕ0(x) = 1):

wTϕ(x) = 0

• Using the steps in linear SVM, we get

w =
N∑

i=1

αidiϕ(xi)

• Combining the above two, we get the decision surface

N∑

i=1

αidiϕ
T (xi)ϕ(x) = 0.
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Inner-Product Kernel (cont’d)

• The inner product ϕT (x)ϕ(xi) is between two vectors in the

feature space.

• The calculation of this inner product can be simpified by use of a

inner-product kernelK(x,xi):

K(x,xi) = ϕT (x)ϕ(xi) =

m1∑

j=0

ϕj(x)ϕj(xi)

wherem1 is the dimension of the feature space. (Note:

K(x,xi) = K(xi,x).)

• So, the optimal hyperplane becomes:

N∑

i=1

αidiK(x,xi) = 0
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Inner-Product Kernel (cont’d)

• Mercer’s theorem states thatK(x,xi) that follow certain

conditions (continuous, symmetric, positive semi-definite) can be

expressed in terms of an inner-product in a nonlinearly mapped

feature space.

• Kernel functionK(x,xi) allows us to calculate the inner

product ϕT (x)ϕ(xi) in the mapped feature space without any

explicit calculation of the mapping function ϕ(·).
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Examples of Kernel Functions

• Linear: K(x,xi) = xTxi.

• Polynomial: K(x,xi) = (xTxi + 1)p.

• RBF:K(x,xi) = exp
(
− 1

2σ2 ‖x− xi‖2
)

.

• Two-layer perceptron: K(x,xi) = tanh
(
β0xTxi + β1

)

(for some β0 and β1).

25

Kernel Example

• Expanding

K(x,xi) = (1 + x
T
xi)

2

with x = [x1, x2]T ,xi = [xi1, xi2]T ,

K(x,xi) = 1 + x2
1x

2
i1 + 2x1x2xi1xi2

+x2
2x

2
i2 + 2x1xi1 + 2x2xi2

= [1, x2
1,
√

2x1x2, x
2
2,
√

2x1,
√

2x2]

[1, x2
i1,
√

2xi1xi2, x
2
i2,
√

2xi1,
√

2xi2]T

= ϕ(x)Tϕ(xi),

where ϕ(x) = [1, x2
1,
√

2x1x2, x
2
2,
√

2x1,
√

2x2]T .

26

Nonlinear SVM: Solution

• The solution is basically the same as the linear case, where

xTxi is replaced withK(x,xi), and an additinoal constraint

that α ≤ C is added.
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Nonlinear SVM Summary

Project input to high-dimensional space to turn the problem into a

linearly separable problem.

Issues with a projection to higher dimensional feature space:

• Statistical problem: Danger of invoking curse of dimensionality

and higher chance of overfitting

– Use large margins to reduce VC dimension

• Computational problem: computational overhead for calculating

the mapping ϕ(·):

– Solve by using the kernel trick.
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