Support-Vector Machines Introduction

® Support vector machine is a linear machine with some very nice
properties.

e The basic idea of SVM is to construct a separating hyperplane

e Haykin chapter 6.
y P where the margin of separation between positive and negative

® See Alpaydin chapter 13 for similar content. examples are maximized.
o Note: Part of this lecture drew material from Ricardo e Principled derivation: structural risk minimization
Gutierrez-Osuna’s Pattern Analysis lectures. — error rate is bounded by: (1) training error-rate and (2)

VC-dimension of the model.

— SVM makes (1) become zero and minimizes (2).
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Optimal Hyperplane Distance to the Optimal Hyperplane
For linearly separable patterns { (x;, di)}i\le (with &

d; € {+1, —1}):

® The separating hyperplane is wlix+b=0:

wlix+b >0 ford; = +1
wix+b<0 ford; = —1 T
ora; = e Fromw_ x; = —b,, the distance from the origin to the hyperplane is

. . . calculated as:
e Let w,, be the optimal hyperplane and b, the optimal bias.

—b,

Iwoll

d = ||x;]| cos(x;, wy) =

since

wix; = ||[woll[|x; | cos(wWo, x;) = —b,



Distance to the Optimal Hyperplane (cont’d)

® The distance from an arbitrary point to the hyperplane can be calculated as:

— When the point is in the positive area:

xTwo b, xTwO + b,

r = ||z|| cos(x,w,)—d = =
[woll ~ llwoll Iwoll

— When the point is in the negative area:

r = d—||z|| cos(x,w,) = — — = —
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Optimal Hyperplane and Support Vectors (cont’d)

e The optimal hyperplane is supposed to maximize the margin of
separation p.

e With that requirement, we can write the conditions that w, and
bo must meet:

wlx +b,>+1 ford; = +1
w?x—i—bo < —1 ford; = —1

Note: > +1 and < —1, and support vectors are those x(5)
where equality holds (i.e., WOTX(S) +bo = +1or—1).

e Sincer = (WL +bo)/||wo

’

1/||wo| ifd=+1
—1/||wol| ifd= -1
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Optimal Hyperplane and Support Vectors

Support Vlectors

e Support vectors: input points closest to the separating
hyperplane.

e Margin of separation p: distance between the separating
hyperplane and the closest input point.

Optimal Hyperplane and Support Vectors (cont’d)

Support Vlectors
e Margin of separation between two classes is

2
p=2r= .
[[wol

e Thus, maximizing the margin of separation between two classes

is equivalent to minimizing the Euclidean norm of the weight w !
8



Primal Problem: Constrained Optimization

For the training set 7 = {(x;,d;)}_, find w and b such that
e they minimize a certain value (1/,0) while satisfying a constraint
(all examples are correctly classified):
— Constraint: d; (WwTx; +b) > 1fori =1,2,...,N.

— Cost function: ®(w) = %WTW.

This problem can be solved using the method of Lagrange multipliers
(see next two slides).

Lagrange Multipliers (cont’d)

Must find x, v, « that minimizes
F(z,y,a) = (x —2)? + (y — 2)%2 + a(z? + y? — 1). Setthe
partial derivatives to 0, and solve the system of equations.

oF

— =2(z—2)+2ax=0
oz

oF

— =2(y—2)+2ay =0
oy

OF
—:x2+y2—1:0
oo

Solve for x and y in the 1st and 2nd, and plug in those to the 3rd equation

v=rie e () +(i9a) =
$_y_1—|—a’ s° 1+ « 1+« N

from which we get @ = 2v/2 — 1. Thus, (z, y) = (1/v/2,1/1/2).
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Mathematical Aside: Lagrange Multipliers

Turn a constrained optimization problem into an unconstrained
optimization problem by absorbing the constraints into the cost
function, weighted by the Lagrange multipliers.

Example: Find point on the circle x? + y2 = 1 closest to the point

(2, 3) (adapted from Ballard, An Introduction to Natural Computation,
1997, pp. 119-120).

e Minimize F'(z,y) = (x — 2)2? + (y — 3)? subject to the
constraint 2 + y? — 1 = 0.

e Absorb the constraint into the cost function, after multiplying the
Lagrange multiplier cc:

F(z,y,0) = (z —2)* + (y — 3)* + a(z® + y* — 1).
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Primal Problem: Constrained Optimization (cont’d)

Putting the constrained optimization problem into the Lagrangian form,
we get (utilizing the Kunh-Tucker theorem)

N
J(w,b,a) = %WTW — ZO% [di(WTXi +b) — 1] .
=1

e From —8“7(5‘;’:)’0‘) =0
N
W = Z ozidixi.
=1
e From 2/(w:b:2) _ .

ob

N
Z Oéidi =0
=1
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Primal Problem: Constrained Optimization (cont’d) Primal Problem: Constrained Optimization (cont’d)
e Plugginginw = Z _, a;d;x; and Z _, a;d; = 0 back into

o Note that when the optimal solution is reached, the following J(w, b, @), we get the dual problem.
condition must hold (Karush-Kuhn-Tucker complementary L
condition) J(w,b,0) = ?w w— 30 @ [d (W' +) - 1]
ai[di(wai—l—b)—l}:O - Ww Z 1OédWXZ
=032 auds + 300
forallz =1,2,..., N. {notlnngw: Zé\rzl cidiwT x;
® Thus, non-zero a;s can be attained only when and from ZN 1 idy = 0}
[di(wai +b) — 1} = 0, i.e., when the «; is associated = —% 1 a;diwlx; + Z 1 o
with a support vector x(5)| = -3 Z 23—1 ajojdidg x Xj + Z =1 %

Q(a).

e So, J(w,b,a) = Q(a) (x; > 0).

e Other conditions include c; > 0.

e This results in the dual problem (next slide).
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Dual Problem Solution to the Optimization Problem

Once all the optimal Lagrange mulitpliers ¢, ; are found (use

. L N .
i) s f he L
® Given the training sample {(xi, d;) };_ 1. find the Lagrange Sequential minimal optimization, etc.), w,, and b, can be found as

multipliers | o; N _ that maximize the objective function: .
=1 follows:

N
Q(Oé Z Z OézOéjd d X X + Zaz Wo = ;Oﬁoﬂ‘dixi

2—1 Jj=1
and from w1 x; + bo = d; when x; is a support vector:
o pp

subject to the constraints

- Zz]il aidi =0
- a; > 0foralle =1,2,..., N.

bo = d®) — ng(s)

Note: calculation of final estimated function does not need any explicit
calculation of w, since they can be calculated from the dot product

o The problem is stated entirely in terms of the training data between the input vectors!
(x;,d;), and the dot products xZij play a key role. N
ng = Z a07idix?x
=1
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Margin of Separation in SVM and VC Dimension

Statistical learning theory shows that it is desirable to reduce both the
error (empirical risk) and the VC dimension of the classifier.

e Vapnik (1995, 1998) showed: Let D be the diameter of the
smallest ball containing all input vectors x;. The set of optimal
hyperplanes defined by ng + b, = 0 has a VC dimension h
bounded from above as

D2
hgmmH—J ,mo}—l—l
p

where [ -] is the ceiling, p the margin of separation equal to
2/||lwo||, and mq the dimensionality of the input space.

e The implication is that the VC dimension can be controlled
independetly of T, by choosing an appropriate (large) p!
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Soft-Margin Classification (cont’d)

e We want to find a separating hyperplane that minimizes:

N

(=D I(&—1)

i=1
where I(§) = 0if & < 0 and 1 otherwise.

e Solving the above is NP-complete, so we instead solve an approximation:
N
Q(¢) = Z 3
i=1

o Furthermore, the weight vector can be factored in:

N
1
®(x,&) = EWTW + CE &
N —’ =1

Controls VC dim —
Controls error

with a control parameter C'. 19

Soft-Margin Classification

X7 Support Vectors
? [ o

Inside margin, correctly classified
e Some problems can violate the condition:
dz‘(WTXZ‘ + b) >1
e We can introduce a new set of variables {&; } 2V, :
di(w'x; +b) > 1-¢

where &; is called the slack variable.
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Soft-Margin Classification: Solution

e Following a similar route involving Lagrange multipliers, and a

more restrictive condition of 0 < «; < C, we get the solution:
N
Wo = aoidiX;
i=1

bo = dz(l — 52) - WZXZ'
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Nonlinear SVM

Input space

Feature space

e Nonlinear mapping of an input vector to a high-dimensional

feature space (exploit Cover’s theorem)

Construction of an optimal hyperplane for separating the features
identified in the above step.

21

Inner-Product Kernel (cont’d)

The inner product o7 (x) ¢ (x; ) is between two vectors in the
feature space.

The calculation of this inner product can be simpified by use of a
inner-product kernel K (x, x; ):

K(x,xi) =" (x)p(xi) = > _ ©;(x)p;(xi)
=0

where M1 is the dimension of the feature space. (Note:
K(x,x;) = K(xi,x).)

® So, the optimal hyperplane becomes:

N
Z OzidiK(X, Xi) =0
=1
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Inner-Product Kernel
Input x is mapped to ¢(x).

With the weight w (including the bias b), the decision surface in
the feature space becomes (assume g (x) = 1):

wlp(x) =0

Using the steps in linear SVM, we get
N
w = Zaidigo(xi)
i=1
Combining the above two, we get the decision surface
N
Z aidigoT(xi)go(x) = 0.
i=1
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Inner-Product Kernel (cont’d)

Mercer’s theorem states that K (x, x; ) that follow certain
conditions (continuous, symmetric, positive semi-definite) can be
expressed in terms of an inner-product in a nonlinearly mapped

feature space.

Kernel function K (x, x;) allows us to calculate the inner
product o7 (x) ¢ (x;) in the mapped feature space without any
explicit calculation of the mapping function ¢ (-).
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Examples of Kernel Functions Kernel Example

Linear: K (x,x;) = x7 x;. e Expanding

K(x,x;)=(1+ xTxi)2

Polynomial: K (x,x;) = (xTx; + 1)P.

with x = [331,302]T,Xi = [wilaxiQ]T,
e RBF: K(x,x;) = exp (—#||x—xi||2). 5 5
K(X,Xi) = 1+ xziz]; + 2122751242
e Two-layer perceptron: K (x,x;) = tanh (Box’'x; + 51) +xia?, + 2z1xi1 + 2T2T40
(for some Bg and 51). = |1, w%, V2zx1x9, :1:%, V2x1,V2x3]
(1,22, V2xi12i2, T35, V2241, V2zi9]T
= =) Te(x:),
where p(x) = [1, :L’?, V2x1 9, m%, V21,V 2x2] 7.
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Nonlinear SVM: Solution Nonlinear SVM Summary
® The solution is basically the same as the linear case, where Project input to high-dimensional space to turn the problem into a
xTx; is replaced with K (x, x; ), and an additinoal constraint linearly separable problem.

that v < C'is added. Issues with a projection to higher dimensional feature space:

e Statistical problem: Danger of invoking curse of dimensionality
and higher chance of overfitting
— Use large margins to reduce VC dimension
e Computational problem: computational overhead for calculating
the mapping ¢ (+):

— Solve by using the kernel trick.
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