Dimensionality Reduction

- Olive slides: Alpaydin
- Numbered blue slides: Haykin, Neural Networks: A Comprehensive Foundation, Second edition, Prentice-Hall, Upper Saddle River:NJ, 1999.
- Black slides: extra content.

Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Fewer parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

\square Feature selection: Choosing $k < d$ important features,
ignoring the remaining $d - k$

Subset selection algorithms

Feature extraction: Project the

original x_i , i = 1, ..., d dimensions to

new k < d dimensions, z_i , j = 1, ..., k

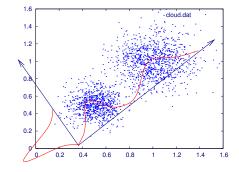
Subset Selection

- □ There are 2^d subsets of d features
- Forward search: Add the best feature at each step
 Set of features F initially Ø.
 - At each iteration, find the best new feature $i = \operatorname{argmin}_i E(F \cup x_i)$
 - Add x_i to F if $E(F \cup x_i) < E(F)$
- \Box Hill-climbing O(d^2) algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- □ Floating search (Add k, remove l)

Principal Components Analysis (PCA)

Note: \mathbf{Q} means eigenvector matrix of the covariance matrix, in Haykin slides.

Motivation



• How can we project the given data so that the variance in the projected points is maximized?

2

Eigenvalues/Eigenvectors

• For a square matrix ${\bf A}$, if a vector ${\bf x}$ and a scalar value λ exists so that

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$$

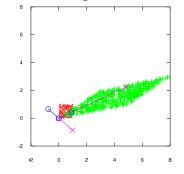
then \mathbf{x} is called an **eigenvector** of \mathbf{A} and λ an **eigenvalue**.

• Note, the above is simply

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

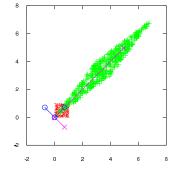
- An intuitive meaning is: x is the direction in which applying the linear transformation A only changes the magnitude of x (by λ) but not the angle.
- There can be as many as n eigenvector/eigenvalue for an $n\times n$ matrix.

Eigenvector/Eigenvalue Example



- $\bullet~$ Red: original data x
- Green: projected data using $A = \begin{bmatrix} 3 & 5 \\ 2 & 1 \end{bmatrix}$.
- Blue: Eigenvectors \mathbf{v}_1 =(0.91, 0.42), \mathbf{v}_2 =(-0.76,0.65), $\lambda_1 = 5.3, \lambda_2 = -1.3$. Octave/Matlab code: [V, Lamba]=eig(A)
- Magenta: A times eigenvectors.

Eigenvector/Eigenvalue Example 2



- Red: original data x
- Green: projected data using $A = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$.
- Blue: Eigenvectors; Magenta: A times eigenvectors.
- *A* is a symmetric matrix, so eigenvectors are orthogonal.

Principal Components Analysis

- □ Find a low-dimensional space such that when **x** is projected there, information loss is minimized.
- □ The projection of **x** on the direction of **w** is: $z = w^T x$
- \Box Find w such that Var(z) is maximized

$$Var(z) = Var(\boldsymbol{w}^{T}\boldsymbol{x}) = E[(\boldsymbol{w}^{T}\boldsymbol{x} - \boldsymbol{w}^{T}\boldsymbol{\mu})^{2}]$$

$$= E[(\boldsymbol{w}^{T}\boldsymbol{x} - \boldsymbol{w}^{T}\boldsymbol{\mu})(\boldsymbol{w}^{T}\boldsymbol{x} - \boldsymbol{w}^{T}\boldsymbol{\mu})]$$

$$= E[\boldsymbol{w}^{T}(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^{T}\boldsymbol{w}]$$

$$= \boldsymbol{w}^{T} E[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^{T}]\boldsymbol{w} = \boldsymbol{w}^{T} \sum \boldsymbol{w}$$

where $Var(\boldsymbol{x}) = E[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^{T}] = \sum$

□ Maximize Var(z) subject to ||w|| = 1

$$\max_{\mathbf{w}_1} \mathbf{w}_1^{\mathsf{T}} \Sigma \mathbf{w}_1 - \alpha (\mathbf{w}_1^{\mathsf{T}} \mathbf{w}_1 - 1)$$

 $\sum w_1 = \alpha w_1$ that is, w_1 is an eigenvector of $\sum \sum$

Choose the one with the largest eigenvalue for Var(z) to be max

□ Second principal component: Max Var(z_2), s.t., || w_2 ||=1 and orthogonal to w_1

$$\max_{\mathbf{w}_2} \mathbf{x} \mathbf{w}_2^{\mathsf{T}} \Sigma \mathbf{w}_2 - \alpha (\mathbf{w}_2^{\mathsf{T}} \mathbf{w}_2 - 1) - \beta (\mathbf{w}_2^{\mathsf{T}} \mathbf{w}_1 - 0)$$

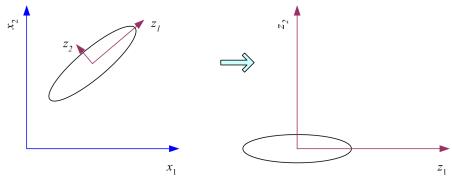
 $\sum w_2 = \alpha w_2$ that is, w_2 is another eigenvector of \sum and so on.

What PCA does

 $\mathbf{z} = \mathbf{W}^{\mathsf{T}}(\mathbf{x} - \mathbf{m})$

where the columns of W are the eigenvectors of \sum and m is sample mean

Centers the data at the origin and rotates the axes



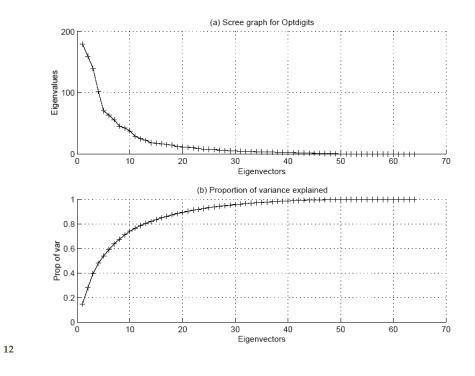
How to choose k ?

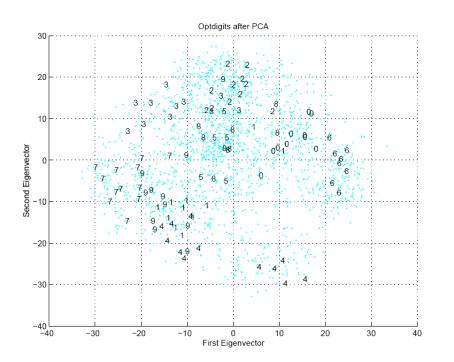
Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d}$$

when λ_i are sorted in descending order

- □ Typically, stop at PoV>0.9
- \Box Scree graph plots of PoV vs k, stop at "elbow"





PCA: Usage

• Project input **x** to the principal directions:

$$\mathbf{a} = \mathbf{Q}^T \mathbf{x}$$

• We can also recover the input from the projected point $\boldsymbol{a}:$

$$\mathbf{x} = (\mathbf{Q}^T)^{-1}\mathbf{a} = \mathbf{Q}\mathbf{a}.$$

• Note that we don't need all *m* principal directions, depending on how much variance is captured in the first few eigenvalues: We can do dimensionality reduction.

PCA: Dimensionality Reduction

• Encoding: We can use the first l eigenvectors to encode \mathbf{x} .

$$[a_1, a_2, ..., a_l]^T = [\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_l]^T \mathbf{x}.$$

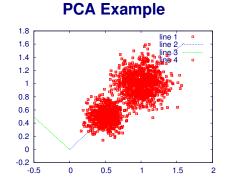
- Note that we only need to calculate l projections $a_1, a_2, ..., a_l$, where $l \leq m$.
- **Decoding**: Once $[a_1, a_2, ..., a_l]^T$ is obtained, we want to reconstruct the full $[x_1, x_2, ..., x_l, ..., x_m]^T$.

$$\mathbf{x} = \mathbf{Q}\mathbf{a} \approx [\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_l][a_1, a_2, ..., a_l]^T = \hat{\mathbf{x}}.$$

Or, alternatively

$$\hat{\mathbf{x}} = \mathbf{Q}[a_1, a_2, ..., a_l, \underbrace{0, 0, ..., 0}_{m-l \text{ zeros}}]^T.$$

8



inp=[randn(800,2)/9+0.5;randn(1000,2)/6+ones(1000,2)];

$$\mathbf{Q} = \begin{bmatrix} 0.70285 & -0.71134 \\ 0.71134 & 0.70285 \end{bmatrix}$$
$$\boldsymbol{\lambda} = \begin{bmatrix} 0.14425 & 0.00000 \\ 0.00000 & 0.02161 \\ 10 \end{bmatrix}$$

PCA: Total Variance

• The total variance of the m components of the data vector is

$$\sum_{j=1}^{m} \sigma_j^2 = \sum_{j=1}^{m} \lambda_j$$

• The truncated version with the first l components have variance

$$\sum_{j=1}^{l} \sigma_j^2 = \sum_{j=1}^{l} \lambda_j.$$

• The larger the variance in the truncated version, i.e., the smaller the variance in the remaining components, the more accurate the dimensionality reduction.

9

Factor Analysis

□ Find a small number of factors *z*, which when combined generate *x* :

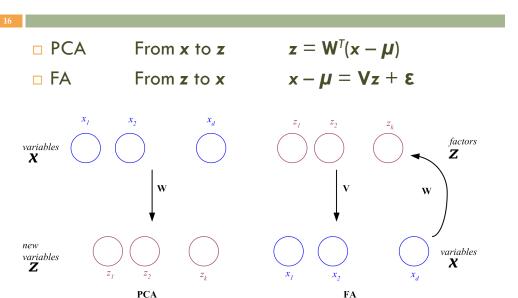
$$\mathbf{x}_i - \boldsymbol{\mu}_i = \mathbf{v}_{i1} \mathbf{z}_1 + \mathbf{v}_{i2} \mathbf{z}_2 + \dots + \mathbf{v}_{ik} \mathbf{z}_k + \mathbf{\varepsilon}_i$$

where z_i , j = 1,...,k are the latent factors with E[z_j]=0, Var(z_j)=1, Cov(z_{i_j}, z_j)=0, $i \neq j$,

 \mathcal{E}_i are the noise sources

$$\begin{split} & \mathsf{E}[\ \epsilon_i\] = \psi_i, \mathsf{Cov}(\epsilon_i\ ,\ \epsilon_j) = 0, i \neq j, \mathsf{Cov}(\epsilon_i\ ,\ z_j) = 0 \ , \\ & \mathsf{and}\ v_{ij} \ \mathsf{are}\ \mathsf{the}\ \mathsf{factor}\ \mathsf{loadings} \end{split}$$

PCA vs FA



Singular Value Decomposition and Matrix Factorization

□ Singular value decomposition: **X**=**VAW**^T

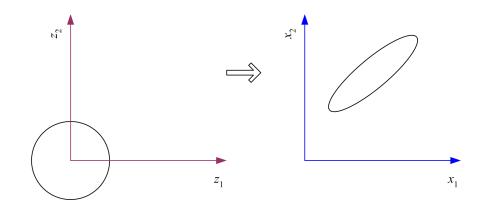
V is $N \times N$ and contains the eigenvectors of $X X^T$

W is dxd and contains the eigenvectors of $X^T X$

and **A** is Nxd and contains singular values on its first *k* diagonal

$$\Box \mathbf{X} = \mathbf{u}_1 \mathbf{a}_1 \mathbf{v}_1^T + \dots + \mathbf{u}_k \mathbf{a}_k \mathbf{v}_k^T \text{ where } k \text{ is the rank of } \mathbf{X}$$

 In FA, factors z_i are stretched, rotated and translated to generate x



Multidimensional Scaling

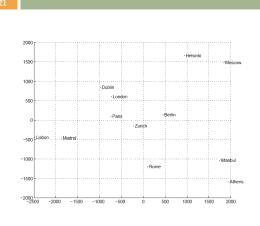
□ Given pairwise distances between N points,

d_{ii}, i, j = 1,...,N

place on a low-dim map s.t. distances are preserved (by feature embedding)

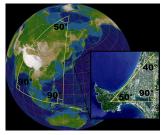
 $\mathbf{z} = \mathbf{g} (\mathbf{x} | \boldsymbol{\theta}) \quad \text{Find } \boldsymbol{\theta} \text{ that min Sammon stress}$ $E(\boldsymbol{\theta} | \boldsymbol{X}) = \sum_{r,s} \frac{\left(\left\| \mathbf{z}^{r} - \mathbf{z}^{s} \right\| - \left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\| \right)^{2}}{\left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}$ $= \sum_{r,s} \frac{\left(\left\| \mathbf{g} \left(\mathbf{x}^{r} | \boldsymbol{\theta} \right) - \mathbf{g} \left(\mathbf{x}^{s} | \boldsymbol{\theta} \right) \right\| - \left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\| \right)^{2}}{\left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}$

Map of Europe by MDS



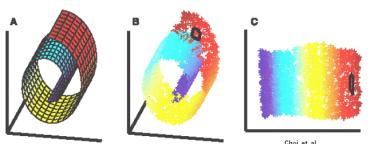
Map from CIA - The World Factbook: http://www.cia.gov/





Lars H. Rohwedder, Wikimedia Commons

- A topological space that is locally Euclidean (flat, not curved).
- Dimensionality of the manifold = dimensionality of the Euclidean space it resembles, locally.
 - Straight line, wiggly curves, etc. are 1D manifolds.
 - Flat plane, surface of sphere, etc. are 2D manifolds.
- Detecting curvature of space: sum of internal angles of triangle = 180°?



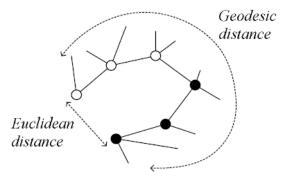
Manifold Learning

Choi, et. al J. Pattern Recognition (2007)

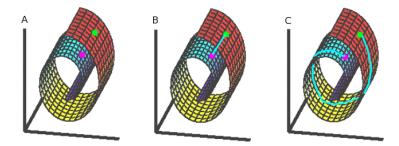
- A: 2D manifold embedded in 3D embedding space.
- B: Data points extraced from A.
- C: Recovered 2D structure.
- Task: recover C from B, without knowledge of A.

Isomap

- 30
 - Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space



Geodesic Distance



Geodesic distance = Shortest path.

- A: Manifold with two points.
- B: Euclidean distance between the two points.
- C: Geodesic distance between the two points.

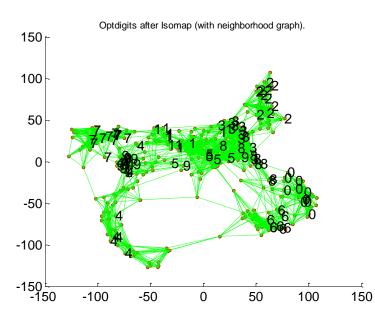
Isomap

□ Instances r and s are connected in the graph if

 $||\mathbf{x}^{r}-\mathbf{x}^{s}|| \leq \varepsilon$ or if \mathbf{x}^{s} is one of the k neighbors of \mathbf{x}^{r}

The edge length is $||\mathbf{x}^{r}-\mathbf{x}^{s}||$

- For two nodes r and s not connected, the distance is equal to the shortest path between them
- Once the NxN distance matrix is thus formed, use
 MDS to find a lower-dimensional mapping



- 1. Given \mathbf{x}^r find its neighbors $\mathbf{x}^{s}_{(r)}$
- 2. Find \mathbf{W}_{rs} that minimize

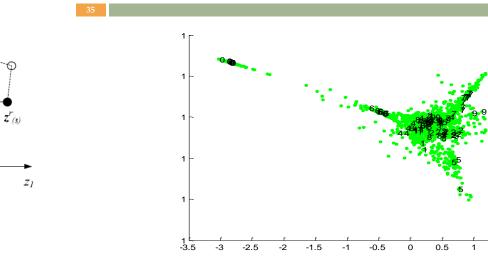
$$E(\mathbf{W} \mid X) = \sum_{r} \left\| \mathbf{x}^{r} - \sum_{s} \mathbf{W}_{rs} \mathbf{x}_{(r)}^{s} \right\|^{2}$$

3. Find the new coordinates \mathbf{z}^r that minimize

$$E(\mathbf{z} \mid \mathbf{W}) = \sum_{r} \left\| z^{r} - \sum_{s} \mathbf{W}_{rs} z^{s}_{(r)} \right\|^{2}$$

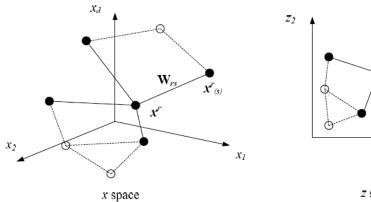
Locally Linear Embedding

LLE on Optdigits



Matlab source from http://www.cs.toronto.edu/~roweis/Ile/code.html

1.5



z

References

34