Dimensionality Reduction

- Olive slides: Alpaydin
- Numbered blue slides: Haykin, Neural Networks: A

Comprehensive Foundation, Second edition, Prentice-Hall, Upper Saddle River:NJ, 1999.

- Black slides: extra content.

Why Reduce Dimensionality?

\square Reduces time complexity: Less computation
\square Reduces space complexity: Fewer parameters
\square Saves the cost of observing the feature
\square Simpler models are more robust on small datasets
\square More interpretable; simpler explanation
\square Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

\square Feature selection: Choosing $k<d$ important features, ignoring the remaining $d-k$

Subset selection algorithms
\square Feature extraction: Project the
original $x_{i}, i=1, \ldots, d$ dimensions to
new $k<d$ dimensions, $z_{i}, j=1, \ldots, k$

Subset Selection

\square There are 2^{d} subsets of d features
\square Forward search: Add the best feature at each step
\square Set of features F initially \varnothing.

- At each iteration, find the best new feature $i=\operatorname{argmin}_{i} E\left(F \cup x_{i}\right)$
\square Add x_{i} to F if $E\left(F \cup x_{i}\right)<E(F)$
\square Hill-climbing $O\left(d^{2}\right)$ algorithm
Backward search: Start with all features and remove one at a time, if possible.
Floating search (Add k, remove I)

Principal Components Analysis (PCA)

Note: Q means eigenvector matrix of the covariance matrix, in Haykin slides.

Motivation

- How can we project the given data so that the variance in the projected points is maximized?

Eigenvalues/Eigenvectors

- For a square matrix \mathbf{A}, if a vector \mathbf{x} and a scalar value λ exists so that

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0
$$

then \mathbf{x} is called an eigenvector of \mathbf{A} and λ an eigenvalue.

- Note, the above is simply

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

- An intuitive meaning is: \mathbf{x} is the direction in which applying the linear transformation \mathbf{A} only changes the magnitude of \mathbf{x} (by λ) but not the angle.
- There can be as many as n eigenvector/eigenvalue for an $n \times n$ matrix.

Eigenvector/Eigenvalue Example

- Red: original data \mathbf{x}
- Green: projected data using $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 1\end{array}\right]$
- Blue: Eigenvectors $\mathbf{v}_{1}=(0.91,0.42), \mathbf{v}_{2}=(-0.76,0.65)$, $\lambda_{1}=5.3, \lambda_{2}=-1.3$. Octave/Matlab code: [V,Lamba]=eig (A)
- Magenta: A times eigenvectors.

Eigenvector/Eigenvalue Example 2

- Red: original data x
- Green: projected data using $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$
- Blue: Eigenvectors; Magenta: A times eigenvectors.
- A is a symmetric matrix, so eigenvectors are orthogonal.
\square Maximize $\operatorname{Var}(z)$ subject to $||w||=1$

$$
\max _{\mathbf{w}_{1}} \mathbf{w}_{1}^{\top} \Sigma \mathbf{w}_{1}-\alpha\left(\mathbf{w}_{1}^{\top} \mathbf{w}_{1}-1\right)
$$

$\sum w_{1}=\alpha w_{1}$ that is, w_{1} is an eigenvector of \sum
Choose the one with the largest eigenvalue for $\operatorname{Var}(z)$ to be max
Second principal component: $\operatorname{Max} \operatorname{Var}\left(z_{2}\right)$, s.t., $\left|\left|w_{2}\right|\right|=1$ and orthogonal to w_{1}

$$
\max _{\mathbf{w}_{2}} \mathbf{w}_{2}^{T} \Sigma \mathbf{w}_{2}-\alpha\left(\mathbf{w}_{2}^{T} \mathbf{w}_{2}-1\right)-\beta\left(\mathbf{w}_{2}^{T} \mathbf{w}_{1}-0\right)
$$

$\sum w_{2}=\alpha w_{2}$ that is, w_{2} is another eigenvector of \sum and so on.

Principal Components Analysis

\square Find a low-dimensional space such that when \mathbf{x} is projected there, information loss is minimized.
\square The projection of \mathbf{x} on the direction of \boldsymbol{w} is: $\boldsymbol{z}=\boldsymbol{w}^{\top} \boldsymbol{x}$
\square Find \boldsymbol{w} such that $\operatorname{Var}(z)$ is maximized

$$
\begin{aligned}
\operatorname{Var}(z) & =\operatorname{Var}\left(\boldsymbol{w}^{\top} \mathbf{x}\right)=\mathrm{E}\left[\left(\boldsymbol{w}^{\top} \mathbf{x}-\boldsymbol{w}^{\top} \boldsymbol{\mu}\right)^{2}\right] \\
& =\mathrm{E}\left[\left(\boldsymbol{w}^{T} \mathbf{x}-\mathbf{w}^{\top} \boldsymbol{\mu}\right)\left(\boldsymbol{w}^{T} \mathbf{x}-\mathbf{w}^{\top} \boldsymbol{\mu}\right)\right] \\
& =\mathrm{E}\left[\boldsymbol{w}^{\top}(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{w}\right] \\
& =\boldsymbol{w}^{\top} \mathrm{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right] \boldsymbol{w}=\boldsymbol{w}^{T} \sum \boldsymbol{w}
\end{aligned}
$$

where $\operatorname{Var}(x)=E\left[(x-\mu)(x-\mu)^{T}\right]=\sum$

What PCA does

$$
z=W^{\top}(x-m)
$$

where the columns of \mathbf{W} are the eigenvectors of \sum and m is sample mean
Centers the data at the origin and rotates the axes

How to choose k?

\square Proportion of Variance (PoV) explained

$$
\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}+\cdots+\lambda_{d}}
$$

when λ_{i} are sorted in descending orderTypically, stop at PoV>0.9
\square Scree graph plots of PoV vs k, stop at "elbow"

(a) Scree graph for Optdigits

(b) Proportion of variance explained

PCA: Usage

- Project input \mathbf{x} to the principal directions:

$$
\mathbf{a}=\mathbf{Q}^{T} \mathbf{x}
$$

- We can also recover the input from the projected point a:

$$
\mathbf{x}=\left(\mathbf{Q}^{T}\right)^{-1} \mathbf{a}=\mathbf{Q} \mathbf{a}
$$

- Note that we don't need all m principal directions, depending on how much variance is captured in the first few eigenvalues: We can do dimensionality reduction.

PCA: Dimensionality Reduction

- Encoding: We can use the first l eigenvectors to encode \mathbf{x}.

$$
\left[a_{1}, a_{2}, \ldots, a_{l}\right]^{T}=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{l}\right]^{T} \mathbf{x}
$$

- Note that we only need to calculate l projections $a_{1}, a_{2}, \ldots, a_{l}$ where $l \leq m$.
- Decoding: Once $\left[a_{1}, a_{2}, \ldots, a_{l}\right]^{T}$ is obtained, we want to reconstruct the full $\left[x_{1}, x_{2}, \ldots, x_{l}, \ldots, x_{m}\right]^{T}$.

$$
\mathbf{x}=\mathbf{Q} \mathbf{a} \approx\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{l}\right]\left[a_{1}, a_{2}, \ldots, a_{l}\right]^{T}=\hat{\mathbf{x}}
$$

Or, alternatively

$$
\hat{\mathbf{x}}=\mathbf{Q}[a_{1}, a_{2}, \ldots, a_{l}, \underbrace{0,0, \ldots, 0}_{m-l \text { zeros }}]^{T}
$$

8

PCA: Total Variance

- The total variance of th em components of the data vector is

$$
\sum_{j=1}^{m} \sigma_{j}^{2}=\sum_{j=1}^{m} \lambda_{j}
$$

- The truncated version with the first l components have variance

$$
\sum_{j=1}^{l} \sigma_{j}^{2}=\sum_{j=1}^{l} \lambda_{j}
$$

- The larger the variance in the truncated version, i.e., the smaller the variance in the remaining components, the more accurate the dimensionality reduction.

Factor Analysis

\square Find a small number of factors \mathbf{z}, which when combined generate x :

$$
x_{i}-\mu_{i}=v_{i 1} z_{1}+v_{i 2} z_{2}+\ldots+v_{i k} z_{k}+\varepsilon_{i}
$$

where $z_{i,} i=1, \ldots, k$ are the latent factors with

$$
E\left[z_{i}\right]=0, \operatorname{Var}\left(z_{i}\right)=1, \operatorname{Cov}\left(z_{i}, z_{i}\right)=0, i \neq i,
$$

ε_{i} are the noise sources

$$
\mathrm{E}\left[\varepsilon_{i}\right]=\Psi_{i}, \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{i}\right)=0, i \neq i, \operatorname{Cov}\left(\varepsilon_{i}, z_{i}\right)=0,
$$ and $v_{i j}$ are the factor loadings

PCA vs FA

Factor Analysis

\square PCA	From \mathbf{x} to \mathbf{z}	$\mathbf{z}=\mathbf{W}^{\top}(\mathbf{x}-\boldsymbol{\mu})$
\square FA	From \mathbf{z} to \mathbf{x}	$\mathbf{x}-\boldsymbol{\mu}=\mathbf{V} \mathbf{z}+\boldsymbol{\varepsilon}$

Singular Value Decomposition and Matrix Factorization

\square Singular value decomposition: $\mathbf{X}=\mathbf{V A W}^{\top}$

\boldsymbol{V} is $N \times N$ and contains the eigenvectors of $\boldsymbol{X} \mathbf{X}^{\top}$
\boldsymbol{W} is $d x d$ and contains the eigenvectors of $\boldsymbol{X}^{\top} \boldsymbol{X}$ and \mathbf{A} is $N x d$ and contains singular values on its first k diagonal
$\boldsymbol{X}=\mathbf{u}_{1} \boldsymbol{a}_{1} \boldsymbol{v}_{1}{ }^{\top}+\ldots+\mathbf{u}_{k} \boldsymbol{a}_{k} \boldsymbol{v}_{k}{ }^{\top}$ where k is the rank of \boldsymbol{X}
$\square \ln$ FA, factors z_{i} are stretched, rotated and translated to generate x

Multidimensional Scaling

\square Given pairwise distances between N points,

$$
d_{i j}, i, i=1, \ldots, N
$$

place on a low-dim map s.t. distances are preserved (by feature embedding)
$\square \mathbf{z}=\mathbf{g}(\mathbf{x} \mid \theta) \quad$ Find θ that min Sammon stress

$$
\begin{aligned}
E(\theta \mid \mathcal{X}) & =\sum_{r, s} \frac{\left(\left\|\mathbf{z}^{r}-\mathbf{z}^{s}\right\|-\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|\right)^{2}}{\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|^{2}} \\
& =\sum_{r, s} \frac{\left(\left\|\mathbf{g}\left(\mathbf{x}^{r} \mid \theta\right)-\mathbf{g}\left(\mathbf{x}^{s} \mid \theta\right)\right\|-\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|\right)^{2}}{\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|^{2}}
\end{aligned}
$$

Map of Europe by MDS

Map from CIA - The World Factbook: http://www.cia.gov/

Manifold Learning

- A: 2D manifold embedded in 3D embedding space.
- B: Data points extraced from A.
- C: Recovered 2D structure.
- Task: recover C from B, without knowledge of A.

- A topological space that is locally Euclidean (flat, not curved).
- Dimensionality of the manifold = dimensionality of the Euclidean space it resembles, locally.
- Straight line, wiggly curves, etc. are 1D manifolds.
- Flat plane, surface of sphere, etc. are 2D manifolds.
- Detecting curvature of space: sum of internal angles of triangle $=180^{\circ}$?

Isomap

\square Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

Geodesic Distance

Geodesic distance = Shortest path.

- A: Manifold with two points.
- B: Euclidean distance between the two points.
- C: Geodesic distance between the two points.

Isomap

\square Instances r and s are connected in the graph if $\left|\left|x^{r}-\boldsymbol{x}^{s}\right|\right|<\varepsilon$ or if \boldsymbol{x}^{s} is one of the k neighbors of \boldsymbol{x}^{r} The edge length is $\left|\left|x^{r}-\mathbf{x}^{s}\right|\right|$
\square For two nodes r and s not connected, the distance is equal to the shortest path between them
\square Once the $N x N$ distance matrix is thus formed, use MDS to find a lower-dimensional mapping

Locally Linear Embedding

1. Given \boldsymbol{x}^{r} find its neighbors $\boldsymbol{x}^{s}{ }_{(r)}$
2. Find $\mathbf{W}_{\text {rs }}$ that minimize

$$
E(\mathbf{W} \mid X)=\sum_{r}\left\|\mathbf{x}^{r}-\sum_{s} \mathbf{W}_{r s} \mathbf{x}_{(r)}^{s}\right\|^{2}
$$

3. Find the new coordinates z^{r} that minimize

$$
E(\mathbf{z} \mid \mathbf{W})=\sum_{r}\left\|z^{r}-\sum_{s} \mathbf{W}_{r s} z_{(r)}^{s}\right\|^{2}
$$

LLE on Optdigits

References

