Why Reduce Dimensionality?
N

71 Reduces time complexity: Less computation

Dimensionality Reduction

e Olive slides: Alpaydin

Comprehensive Foundation, Second edition, Prentice-Hall, Upper

Saddle River:NJ. 1999, o1 Saves the cost of observing the feature

_ o1 Simpler models are more robust on small datasets
o Black slides: extra content.

= More interpretable; simpler explanation

=1 Data visualization (structure, groups, outliers, etc) if
plottedin 2 or 3 dimensions

Feature Selection vs Extraction Subset Selection

0 Feature selection: Choosing k<d important features,

d
ignoring the remaining d — k 01 There are 29 subsets of d features

-1 Forward search: Add the best feature at each step

Subset selection algorithms 3 Set of features F initially @.
0 Feature extraction: Proiect the o At each iteration, find the best new feature
. e P . . j = argmin; E (F U x;)
original x, , i =1,...,d dimensions to o Add x to F if E(FUx)<E(F)

new k<d dimensions, z; , j =1,...,k

Hill-climbing O(d?) algorithm

Backward search: Start with all features and remove
one at a time, if possible.

01 Floating search (Add k, remove )

O O



Motivation
Principal Components Analysis (PCA)

" Gloud.dat | -

Note: (Q means eigenvector matrix of the covariance matrix, in
Haykin slides. N

e How can we project the given data so that the variance in the

projected points is maximized?

Eigenvalues/Eigenvectors
g g Eigenvector/Eigenvalue Example

e For a square matrix A, if a vector x and a scalar value \ exists T

so that s L |
(A — )\I)x =0

then x is called an eigenvector of A and )\ an eigenvalue.

e Note, the above is simply

Ax = \x

e An intuitive meaning is: x is the direction in which applying the

linear transformation A only changes the magnitude of x (by \) Red: original data x

but not the angle.

Green: projected data using A = { 2 ° }

o There can be as many as n eigenvector/eigenvalue foran n X n

Blue: Eigenvectors v1=(0.91, 0.42), v2=(-0.76,0.65),
A1 = 5.3, Ao = —1.3. Octave/Matlab code: [V, Lamba]=eig (A)

matrix.
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Magenta: A times eigenvectors.



Eigenvector/Eigenvalue Example 2

Red: original data x
Green: projected data using A = [ i i }

Blue: Eigenvectors; Magenta: A times eigenvectors.

A is a symmetric matrix, so eigenvectors are orthogonal.

Maximize Var(z) subjectto | |w| | =1

maxw; W, — a(wlTW1 —1)
W.
1

> w, = aw;, that is, w, is an eigenvector of )

Choose the one with the largest eigenvalue for Var(z) to be
max

Second principal component: Max Var(z,), s.t.,
| I[w,| | =1 and orthogonalto w,

maxw,w, — oz(wgw2 —1)— ﬂ(wgw1 — 0)

Wo

> w, = a w, that is, w, is another eigenvector of )

and so on.

Principal Components Analysis

Find a low-dimensional space such that when x is
projected there, information loss is minimized.

Tx

The projection of x on the directionof wis: z = w
Find w such that
Var(z) = Var(w'x) = E[(w'x — w'l)?]
= El(w'x = w')(w'x — wp)]
= E[w'(x — U)(x — 4)'w]
=wE[(x— M)(x =) Tw=w"} w
where Var(x)=E[(x — M)(x =) = >

What PCA does

z=WT(x—m)
where the columns of W are the eigenvectors of )
and m is sample mean
Centers the data at the origin and rotates the axes

A A

= Z1 N

=

\/

\/

-_—
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How to choose k ¢

Second Eigenvector

Proportion of Variance (PoV) explained

A+ 4+t A
A+ + A 4+ A

when A, are sorted in descending order

Typically, stop at PoV>0.9

Scree graph plots of PoV vs k, stop at “elbow”
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Optdigits after PCA
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(a) Scree graph for Optdigits
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(b) Proportion of variance explained
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PCA: Usage

Project input x to the principal directions:
a= QTx.
We can also recover the input from the projected point a:

x=(Q")'a=Qa.

e Note that we don’t need all m principal directions, depending on

how much variance is captured in the first few eigenvalues: We

can do dimensionality reduction.



PCA: Dimensionality Reduction

e Encoding: We can use the first [ eigenvectors to encode x.

[a1,az, ...

e Note that we only need to calculate [ projections a1, a2, ..., aj,

where [ < m.

7al]T

- [qla q2, ..., ql]TX'

e Decoding: Once [a1, a2, ..., a;]” is obtained, we want to

reconstruct the full [z1, T2, ..., T], ..., Ty |

x = Qa =~ [q1,q2, ...,q][a1, a2, ...

Or, alternatively

% = Qla1,az,...,a;, 0,0,...,0]%.
——
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PCA Example

line 1
s line 2.~

ling8
ine =]

-0.5

inp=[randn(800,2)/9+0.5; randn (1000, 2) /6+ones (1000,2) 1;

Q

0

0.
0.

0.5 1 1.5

70285 —0.71134
71134 0.70285

0.14425 0.00000
0.00000 0.02161
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PCA: Total Variance

e The total variance of th e components of the data vector is
m m
2 _ .
E o; = E Aj.
j=1 Jj=1

e The truncated version with the first [ components have variance

l l
2 _ .
E o; = E Aj.
Jj=1 Jj=1

e The larger the variance in the truncated version, i.e., the smaller
the variance in the remaining components, the more accurate the

dimensionality reduction.

Factor Analysis

Find a small number of z, which when

combined generate x :
;= H; = vinzy T vigzy Tt vz T

where z, j =1,...,k are the with
E[ z,]=0, Var(z)=1, Cov(z; , z)=0,i # |,
€. are the
E[ € ]= @, Cov(g;, €) =0,i # |, Cov(g;, z) =0,

and v, are the



PCA vs FA Factor Analysis

o PCA From x to z z=W'(x-pu) 0 In FA, factors z; are stretched, rotated and
translated to generate x

o FA From z to x x—M=Vz+E¢g

*) X, Xq z, z, z,
. Sactors N
OO0 O 00 Ous

A

\/

\/

Xa

new variables \
variables X
V4 z, z, z, X, X,
PCA FA

Singular Value Decomposition and
Matrix Factorization

Multidimensional Scaling

[ 20 |
~ Singularvalue decomposition: X=VAWT -1 Given pairwise distances between N points,
V is NxN and contains the eigenvectors of XX o 1] =1,N
W is dxd and contains the eigenvectors of X'X place on a low-dim map s.t. distances are preserved
by feature embeddin
and A is Nxd and contains singular values on its first (by ) 9) )
k diagonal nz=g(x| @) Find 6 that min Sammon stress
0 X=u,a,v, +...+u.q,v," where k is the rank of X E(QlX)zqu —Z ; _ Xs 2_X )2
r,s X —X

S

J

X" =X

(lx 16)-glo 16 -

2

S

r,s

X" =X




Map of Europe by MDS

Manifolds
-);ie!smk\
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* Dublin
000 b tendon
SR S S O T A = 0 W
-Zurich
_5UU_I-'.SDD."..‘,.-.Madud-. JUUUTIS SUOUURTI FOUUUTUUS SEVUURPN PTG SUUTVUUNE T Lars H. Rohwedder, Wikimedia Commons
f I S B U S S o e A topological space that is locally Euclidean (flat, not curved).
-1s00f -Athens
S N T R N N N o Dimensionality of the manifold = dimensionality of the Euclidean space it
~2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000
resembles, locally.
— Straight line, wiggly curves, etc. are 1D manifolds.

o — Flat plane, surface of sphere, etc. are 2D manifolds.
Map from CIA - The World Factbook: http://www.cia.gov/

e Detecting curvature of space: sum of internal angles of triangle = 180°?

Isomap
Manifold Learning

Geodesic distance is the distance along the
manifold that the data lies in, as opposed to the
Euclidean distance in the input space

L ~._ Geodesic
' . distance

Choi, et. al ;/
J. Pattern Recognition {2007} =

o A: 2D manifold embedded in 3D embedding space.

B: Data points extraced from A. Euclidean
distance u '

C: Recovered 2D structure. )

Task: recover C from B, without knowledge of A.
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Geodesic Distance

Geodesic distance = Shortest path.
e A: Manifold with two points.
e B: Euclidean distance between the two points.

e C: Geodesic distance between the two points.

Optdigits after Isomap (with neighborhood graph).

1
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Matlab source from http://web.mit.edu/cocosci /isomap /isomap.html

Isomap
I

7 Instances r and s are connected in the graph if
| | x"-x®| | <€ or if x*is one of the k neighbors of x
The edge length is | | x™-x¢| |

71 For two nodes r and s not connected, the distance is
equal to the shortest path between them

71 Once the NxN distance matrix is thus formed, use
MDS to find a lower-dimensional mapping

Locally Linear Embedding
B
1. Given x" find its neighbors x*

2. Find W, that minimize

2

E(WIX)=D X => W x:,

3. Find the new coordinates z" that minimize

2

EZIW)=) [z => W, 2,
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X space

References

oy

z space

LLE on Optdigits

Matlab source from http://www.cs.toronto.edu/~roweis/lle /code html



