Deep Learning Overview

e Fall2016

o Yoonsuck Choe

Brief Intro to Neural Networks

Deep learning is based on neural networks.
o Weighted sum followed by nonlinear activation function.

o Weights adjusted using gradient descent (1) = learning rate):
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What Is Deep Learning?
e Learning higher level abstractions/representations from data.

o Motivation: how the brain represents and processes sensory
information in a hierarchical manner.

# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ...
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From LeCun’s Deep Learning Tutorial

Intro to Neural Network: Backpropagation

Weight w ;; is updated as: w;; <— wj; + 1d;a;, where
® a; : activity at input side of weight w ;.
e Hidden to output weights (thick red weight). 17, is target value.
op = (T — ag)o’ (nety,)

e Deeper weights (green line in figure above).
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Deep Learning

Complex models with large number of parameters
— Hierarchical representations
— More parameters = more accurate on training data

— Simple learning rule for training (gradient-based).

Lots of data
— Needed to get better generalization performance.
— High-dimensional input need exponentially many inputs
(curse of dimensionality).
Lots of computing power: GPGPU, etc.

— Training large networks can be time consuming.

The Rise of Deep Learning

Made popular in recent years

Geoffrey Hinton et al. (2006).
Andrew Ng & Jeff Dean (Google Brain team, 2012).

Schmidhuber et al’s deep neural networks (won many
competitions and in some cases showed super human
performance; 2011-). Recurrent neural networks using LSTM
(Long Short-Term Memory).

Google Deep Mind: Atari 2600 games (2015), AlphaGo (2016).

ICLR, International Conference on Learning Representations:
First meeting in 2013.

Deep Learning, in the Context of Al/ML
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6 From LeCun’s Deep Learning Tutorial

Long History (in Hind Sight)

Fukushima’s Neocognitron (1980).
LeCun et al’s Convolutional neural networks (1989).

Schmidhuber’s work on stacked recurrent neural networks (1993).
Vanishing gradient problem.

See Schmidhuber’s extended review: Schmidhuber, J. (2015).
Deep learning in neural networks: An overview. Neural Networks,
61, 85-117.



History: Fukushima’s Neocognitron History: LeCun’s Colvolutional Neural Nets
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® Appeared in journal Biological Cybernetics (1980).
e Multiple layers with local receptive fields. e Convolution kernel (weight sharing) + Subsampling
e S cells (trainable) and C cells (fixed weight). e Fully connected layers near the end.
o Deformation-resistent recognition. e Became a main-stream method in deep learning.
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Motivating Deep Learning: Tensorflow Demo Current Trends

Neural Network Right Here in Y

ou Can't Break It e Deep belief networks (based on Boltzmann machine)

o 0 000,106
oara FeatuRes

o Convolutional neural networks

o Deep Q-learning Network (extensions to reinforcement learning)

e Deep recurrent neural networks using (LSTM)

e Applications to diverse domains.

— Vision, speech, video, NLP, etc.

: e Lots of open source tools available.

e http://playground.tensorflow.org

o Demo to explore why deep nnet is powerful and how it is limited.
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Boltzmann Machine to Deep Belief Nets Boltzmann Machine

o Haykin Chapter 11: Stochastic Methods rooted in statistical ]

mechanics.

| S —"

Stochastic binary machine: +1 or -1.

Fully connected symmetric connections: w;; = wj;.

Visible vs. hidden neurons, clamped vs. free-running.

Goal: Learn weights to model prob. dist of visible units.

e Unsupervised. Pattern completion.
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Boltzmann Machine: Energy Boltzmann Machine: Prob. of a State x

o Network state: x from random variable X. Probability of a state x given F/(x) follows the Gibbs distribution:

gy e 1 FE
® W, w;; and w;; = 0. P(X = x) = ~ exp( (X)> ’

T
e Energy (in analogy to thermodynamics):

— Z: partition function (normalization factor — hard to compute)

i JyiFg

1
E(x) =75 E g WjiTiTy Z = g exp(—E(x)/T)
Vx

— T: temperature parameter.

— Low energy states are exponentially more probable.

e State x changed over time following the probability distribution
P(X = x).
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Boltzmann Learning Rule

® Learning based on correlation p;ri (clamped) and p;i

(free-running).

Aw]z =" awﬁ =N (pji - pj¢>

where L(w) is the log likelihood of the pattern being any of the
training patterns, and 7 is the learning rate. This is gradient

ascent.
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Logistic (or Directed) Belief Net

> Outputs

J

Output
layer
Input

Vayer Hidden
layer

Similar to Boltzmann Machine, but with directed, acyclic
connections.

P(X] = ‘LJ‘XI =z1,...,X;_1 = ,’_L‘jil) = P(XJ = :Ej\pu'r‘ents(Xj))

Same learning rule:
OL(w
iji = 777( )
iji

With dense connetions, calculation of 2 becomes intractable.
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Boltzmann Machine Summary

e Theoretically elegant.

e \ery slow in practice (especially the unclamped phase).
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Deep Belief Net (1)

Hidden layer

Visible layer

(o]

o Overcomes issues with Logistic Belief Net. Hinton et al. (2006)

o Based on Restricted Boltzmann Machine (RBM): visible and
hidden layers, with layer-to-layer full connection but no
within-layer connections.

e RBM Back-and-forth update: update hidden given visible, then
update visible given hidden, etc., then train w based on

OL(W) _ (0) _ (o0
8w]~i Jr Jr
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Deep Belief Net (2)

Deep Belief Net = Layer-by-layer training using RBM.

Hybrid architecture: Top layer = undirected, lower layers directed.
1. Train RBM based on input to form hidden representation.
2. Use hidden representation as input to train another RBM.
3. Repeat steps 2-3.

* Similar approach: Stacked denoising autoencoders.

Applications: NIST digit recognition, etc.
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Deep Convolutional Neural Networks (2)

® |earned kernels (first convolutional layer).

® Resembles mammalian RFs: oriented Gabor patterns, color
opponency (red-green, blue-yellow).
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Deep Convolutional Neural Networks (1)

' Jo4g \dense

1000

128 Max
Max 128 Max pooling
pooling pooling

2043 2048

e Krizhevsky et al. (2012)

e Applied to ImageNet competition (1.2 million images, 1,000
classes).

e Network: 60 million parameters and 650,000 neurons.

e Top-1 and top-5 error rates of 37.5% and 17.0%.

e Trained with backprop.
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Deep Convolutional Neural Networks (3)

o Left: Bold = correct label. 5 ranked labels: model’s estimation.

e Right: Test (1st column) vs. training images with closest hidden
representation to the test data.
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Deep Q-Network (DQN)
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Google Deep Mind (Mnih et al. Nature 2015).

Latest application of deep learning to a reinforcement learning
domain (( as in (0-learning).

Applied to Atari 2600 video game playing.
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DQN Overview

Input preprocessing

Experience replay (collect and replay state, action, reward, and
resulting state)

Delayed (periodic) update of ().

Moving target Q value used to compute error (loss function L,
parameterized by weights 6;).

— Gradient descent:
oL

00;
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DQN Overview
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e Input: video screen; Output: () (s, a); Reward: game score.

e (J(s,a): action-value function

— Value of taking action a when in state s.
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DQN Algorithm
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
Initialize target action-value function O with weights 0 =0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢; = ¢(s;)
Fort=1,T do
With probability & select a random action a,
otherwise select a; = argmax, Q(¢(s;).a; 6)
Execute action a, in emulator and observe reward r, and image x, ;
Set s 1="5¢.a1,%:+1 and preprocess ¢, , ; =¢(s;41)
Store transition (qﬁf.af.r}.qﬁﬁ ]) inD
Sample random minibatch of transitions (qiv_,-.a_,-.r'_,-.qiv_,-ﬂ) from D

if episode terminates at step j+ 1

i
Sety;= { rj+7y maxy Q(@H s ﬁ_) otherwise
Perform a gradient descent step on (yj — Q(qﬁj.aj; H))d with respect to the
network parameters 6
Every C steps reset 0= Q
End For
End For

28



DQN Results DQN Hidden Layer Representation (t-SNE map)
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o Superhuman performance on over half of the games. e Similar perception, similar reward clustered.
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DQN Operation Deep Recurrent Neural Networks
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Feedforward Recurrent
e Feedforward: No memory of past input.
}_- | [ }_- e e Recurrent:
‘nf? e — Good: Past input affects present output.

— Bad: Cannot remember far into the past.
32

Action-Values (Q)

® Value vs. game state; Game state vs. action value.



Long Short-Term Memory

Version 1

RNN Training: Backprop in Time

iy, ft, 0 - input, forget and output
gatesfromOto 1

C¢ = memory

fee - input, y; - output

i = 0 (WipTt + WieCr—1 + WiyYe—1 + bi)
An unrolled recurrent neural network. fi = (W7t + Wyttt + Wy + by)
01 = 0(WorTt + WoeCt + Woyli—1 + bo)
L. ¢ = frer—1 + i - tanh(weaxy + u/cyyf,L) yi = oy - tanh(ct)
o Can unfold recurrent loop: Make it into a feedforward net.
. - ° i i .
e Use the same backprop algorithm for training. LSTM to the rescue (Hochreiter and Schmidhuber, 2017)
) i e Built-in recurrent memory that can be written (Input gate), reset
e Again, cannot remember too far into the past.
(Forget gate), and outputted (Output gate).

Figfromhttp://colah.github.io/posts/2015-08-Understanding-LSTMs/
From http:

//www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
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Long Short-Term Memory Long Short-Term Memory in Action

Captures info Keeps info Releases info @

J
9 The repeating module in a standard RNN contains a single layer.
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The repeating module in an LSTM contains four interacting layers.
LSTM Unit

® |ong-term retention possible with LSTM.
e Unfold in time and use backprop as usual.

Fromhttp:
//www.machinelearning.ru/wiki/images/6/6¢c/RNN_and_LSTM_16102015.pdf Figfromhttp://colah.github.io/posts/2015-08-Understanding—LSTMs/
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LSTM Applications LSTM Applications

handwriting -> handwriting
* Sequence classification

Next pen position (we predict parameters):
P x1,x2 - mixture of bivariate Gaussians
x3 - Bernoulli distribution
end oo e

Current pen position:

* Sequence translation x1,x2 — pen offset
x3 —is it end of the stroke

jstart

end

T
Input sequence

e Applications: Sequence classification, Sequence translation.
e Applications: Sequence prediction

Fromhttp://machinelearning.ru

Fromhttp://machinelearning.ru
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LSTM Applications Deep Learning Applications: Vision
o # Give the name of the dominant object in the image
text -> ha ndw\ntlng # Top-5 error rates: if correct class is not in top 5, count as error

b Red:ConvNet, blue: no ConvNet

Next pen position 2012 Teams Yerror 2013 Teams Y%error 2014 Teams Y%error
Supervision (Toronto) 15.3 Clarifai (NYU spinoff)  11.7 GooglLeNet 6.6
ISI (Tokyo) 26.1 NUS (singapore) 12.9 VGG (Oxford) 7.3
VGG (Oxford) 26.9 Zeiler-Fergus (NYU) 13.5 MSRA 8.0
Current pen position XRCE/INRIA 27.0 A. Howard 135 | A Howard 8.1
UVA (Amsterdam) 29.6 OverFeat (NYU) 14.1 DeeperVision 95
Which letter we write now INRIA/LEAR 334  |UvA(Amsterdam) 142  |NUS-BST 97
dobe 152  |TTIC-ECP 102
VGG (Oxford) 152 YZ 1.2
e Applications: Sequence classification, Sequence prediction, VGG (Oxford) 230  UVA 12.1
Sequence translation.
From http://machinelearning.ru o ConvNet sweepting image recognition challenges.

From LeCun’s Deep Learning Tutorial
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Translation quality

Deep Learning Applications: Speech

The dramatic impact of Dee
Learning oh Speech Recognition
f2¢>.cco ding to Microsoft)

100%
B
©
Q
Qo
e .
L Using DL
&
c
]
o 10%
3
=
2
o 4%
<]
=

2%

1%

1990 2000 2010

o Deep learning led to major improvement in speech recognition.

From LeCun’s Deep Learning Tutorial
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Deep Learing Applications: NLP

perfect translation

. Encoder €0 > O > e * e > e *| es
I neural (GNMT)

phrase-based (PBMT)

Decoder do > d > d;

English English English Spanish French Chinese
Spanish  French Chinese  English  English  English | l |

Translation model

® Based on encoding/decoding and attention.

Fromhttps:
//research.googleblog.com/2016/09/a-neural-network-for-machine.html
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Deep Learning Applications: Speech

Training sampls. )
40 MEL froquency Copstal Coeficients &
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#Acoustic Model: ConvNet with 7 layers. 54.4 million parameters.

#Classifies acoustic signal into 3000 context-dependent subphones categories
#Rel U units + dropout for last layers

#Trained on GPU. 4 days of training

o ConvNet applied to speech recognition.

e Use spectrogram and treat it like a 2D image.

From LeCun’s Deep Learning Tutorial
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Deep Learing Applications: NLP
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o Google’s LSTM-based machine translation.

Wu et al. arXiv:1609.08144 (2016).
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Limitations Deep Learning Tools

e Discriminative vs. generative learning.

o Kaffe: UC Berkeley’s deep learning tool box

- Discriminative: P(class|data). Can easily be fooled with

o e TensorFlow (Google)
adversarial input.

— Generative: ® Deep learning modules for Torch (Facebook)
P(class,data) = P(class|data)P(data). Explicitly e Microsoft CNTK (Computational Network Tool Kit)
models the data.

e Other: Apache Mahout (MapReduce-based ML)
® Deep neural nets mostly use discriminative learning, so can be
fooled by adversarial input. Generative adversarial learning can
overcome this (Goodfellow et al. arXiv:1406.2661 (2014)).
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Summary

Deep belief network: Based on Boltzmann machine. Elegant
theory, good performance.

Deep convolutional networks: High computational demand, over
the board great performance.

Deep Q-Network: unique apporach to reinforcement learning.

End-to-end machine learning. Super-human performance.

e Deep recurrent neural networks: sequence learning. LSTM a

powerful mechanism.

Diverse applications. Top performance.

Flood of deep learning tools available.
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