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conscious

Function + Phenomenology
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zombie

Function only – No phenomenology
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I. Background and Motivation
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What is Consciousness?

“Man, if you gonna ask, you’re never gonna know!”
– Louis Armstrong, on jazz

• Definition is unclear, but even if definition is given,

the problem can still be intractable.

• Both objective (functional) and subjective aspects

(the “hard problem”).

• Objective and subjective aspects may be

intertwined: This talk.
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Approach and Immediate Problem

• Start with facts:

Consciousness is a product of evolution.

• Immediate problem:

– Evolution is blind to subjective phenomena, and it

is hard to measure fitness in terms of such.

zombieconscious
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Potential Solution
Potential solution: Investigate objective necessary

conditions of consciousness.

• This can address the objective part (hard to

measure degree of consciousness).

• But, what about the subjective part? – we will see

how this unfolds!

Tree (no brain) Tunicate (brain) Tunicate (no brain)
cf. Llinás et al. (1994)
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100% Predictable Future Event?

• Are there any future events that are 100%

predictable?
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100% Predictable Future Event?

• Are there any future events that are 100%

predictable?

• What if I say there is such an event?
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100% Predictable Future Event?

• Are there any future events that are 100%

predictable?

• What if I say there is such an event?

• I’ll wave my hand in the next 5 seconds.
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100% Predictable Future Event?

• Are there any future events that are 100%

predictable?

• What if I say there is such an event?

• I’ll wave my hand in the next 5 seconds.

• “My” own actions are 100% predictable, but I can’t

predict your actios.
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Main Insight
A meaningful necessary condition of consciousness is

predictive capability:

1. Consciousness has a subject, the self.

2. Self is the author of his/her actions.

3. Property of self-authored actions (authorship): They

are 100% predictable!

• Consciousness, self, and authorship are

subjective, while predictability is objective.

• Investigate predictive neural dynamics in

simulated neuroevolution!
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II. Methods
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Overview
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• Standard 2D pole balancing problem: Keep pole

upright, within square bounding region.

• Evolve neural network controllers: Neuroevolution.
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Neuroevolution

w9w3 w4w2 w5

output

Input

NEURAL NEWORK

w1 w6

w12w7

CHROMOSOME

ww w10 11 12w1 w6 w7 w8

• A single chromosome encodes a full neural network.

• Each base pair, a single bit (or a real number), maps to a

connection weight in the neural network.
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Neuroevolution: Operations

cross−over point

PARENTS OFFSPRINGS

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12 w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12 w9w3 w4 n1 w7 w8w1 w2 w5

MUTATION

CROSS−OVER

w w11 12n2

• Cross-over between two parents.

• Mutation of random base pairs.
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Neuroevolution: Cross-Over, in Detail

cross−over point

PARENTS OFFSPRINGS

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w1 w6

w7 w12

w1 w6

w7 w12

w1 w6

w7 w12

w1 w6

w7 w12

CROSS−OVER

• Cross-over of two individuals produces two offsprings with

a mixed heritage.
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Overview of the Method

internal state

analysis

internal stateanalysis

All Controllers High−perform.
Controllers

Low ISP

High ISP
selection
process

evolutionary

1. Evolve controllers to meet a fixed performance criterion (fitness

does not measure predictability) in pole-balancing tasks.

2. Group high-performance individuals into high- and low internal

state predictability (ISP) groups.

3. Test the two groups in harder tasks.
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Internal Neural Dynamics
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• Hidden layer activity can be thought of as the

internal state of the neural network.

• Internal state dynamics: Not directly observable.
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Measuring Internal State

Predictability
t+1

t
t−1

t−2

t−3

• Train a separate feedforward network to predict the

internal state trajectories.

• Measure prediction error made by the network.

→ High vs. low internal state predictability (ISP)
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Method: Experimental Setup

• Neuroevolution:

– population size 50

– mutation rate 0.2; cross over rate 0.7.

• 2D pole balancing task:

– Pole should be balanced within 15◦ within a 3 m

× 3 m arena.

– Force applied to cart every 0.1 second (= one

step).

– Success if pole balanced over 5,000 steps.
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Method: Experimental Setup

• Neural network predictor:

– 2,000 training data.

– 1,000 test data.

– Back-propagation (learning rate 0.2).
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III. Results
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Internal State Predictability (ISP)

• Trained 130 pole balancing agents.

• Chose top 10 highest ISP agents and bottom 10 lowest ISP.

– high ISPs: µ = 95.61% and σ = 5.55%.

– low ISPs: µ = 31.74% and σ = 10.79%.
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Examples of internal state dynamics

from the high ISP group

• Internal state dynamics show smooth trajectories.
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Examples of internal state dynamics

from the low ISP group

• Internal state dynamics show abrupt and jittery

trajectories.
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Comparison of High vs. Low ISP
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High

Low

• A comparison of the average predictability from two

groups: high ISP and low ISP.

• The predictive success rate of the top 10 and the

bottom 10 agents.
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Results: Learning Time
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• No significant difference in learning time
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Performance and Int. State Dyn.
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Performance and Internal State Dynamics

High
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• Made the initial conditions in the 2D pole balancing

task harder (pole more tilted).

• Performance of high- and low-ISP groups compared.

• High-ISP group outperforms the low-ISP group in the

changed environment.
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Behavioral Predictability
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• Success of high-ISP group may simply be due to

simpler behavioral trajectory.

• However, predictability in behavioral predictability is

no different between high- and low-ISP groups.
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Examples of cart x and y position

from high ISP
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• Behavioral trajectories of x and y positions show

complex trajectories.
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Examples of cart x and y position

from low ISP
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• Behavioral trajectories of x and y positions show

complex trajectories.
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IV. Brain EEG Analysis
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Appilcation to the Real Brain?

• That’s all just simulation: Can it be used in the real

world?

• Yes!

– Compare deep sleep vs. dreaming state vs.

awake EEG.
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Analysis of Real EEG Data
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• Awake, REM sleep, and Slow-wave sleep EEG data.

• Inter-Peak Interval (IPI) predictability.

Yoo et al. Frontiers in Neurorobotics 2013.
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Real EEG Data: Prediction Error
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• All differences were significant (p < 10−6) except for

subject 4, Awake vs. REM.

• Bottom line: Awake and REM more predictable than SWS.

Yoo et al. Frontiers in Neurorobotics 2013.
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V. Wrap Up
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Discussion

• Main contribution: Found that an objective

necessary condition of consciousness can evolve,

despite the neural dynamics being internal.

• From subjective, to objective, back to subjective.

• Relavance of this work to the study of

self-awareness, and the concept of self.

• Emergence of time in the brain: From the present

(reactive, no memory), to the past (recurrent, with

memory), to the future (predictive dynamics).

Page 36

Discussion

• Imporatance of action in understanding

consciousness (see e.g., Humphrey 1992; Llinás

et al. 1994): Action and consciousness has many

properties that go in parallel!

• Relationship between consciousness and grounding

(of representations): See the famous Chinese Room

Argument (Searle 1980) and action-based

grounding (Choe and Smith 2006; Choe et al. 2007).

• Consiousness as a spatiotemporal phenomenon,

and not as a “state” (cf. neural correlates of

consciousness [Crick and Koch 2003])
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Conclusion

• Internal state predictability has been identified as a

necessary condition for consciousness.

• Predictive dynamics can evolve, in an increasingly

competetive environment.

• Lesson: We can study subjective mental

phenomena in a scientific manner by investigating

non-trivial necessary conditions in the context of

brain evolution.
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Sources

• Tree:

http://homepages.inf.ed.ac.uk/jbednar/

• Tunicate: http://bill.srnr.arizona.edu/

classes/182/Lecture-9.htm
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