Slide11

Haykin Chapter 10:

Information-Theoretic Models

CPSC 636-600
Instructor: Yoonsuck Choe
Spring 2015
ICA section is heavily derived from Aapo Hyvärinen's ICA tutorial:
http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/.

Shannon's Information Theory

- Originally developed to help design communication systems that are efficient and reliable (Shannon, 1948).
- It is a deep mathematical theory concerned with the essence of the communication process.
- Provides a framework for: efficiency of information representation, limitations in reliable transmission of information over a communication channel.
- Gives bounds on optimum representation and transmission of signals.

Information Theory Review

Topics to be covered:

- Entropy
- Mutual information
- Relative entropy
- Differential entropy of continuous random variables

Random Variables

- Notations: X random variable, x value of random variable.
- If X can take continuous values, theoretically it can carry infinite amount of information. However, this it is meaningless to think of infinite-precision measurement, in most cases values of X can be quantized into a finite number of discrete levels.

$$
X=\left\{x_{k} \mid k=0, \pm 1, \ldots, \pm K\right\}
$$

- Let event $X=x_{k}$ occur with probability

$$
p_{k}=P\left(X=x_{k}\right)
$$

with the requirement

$$
0 \leq p_{k} \leq 1, \quad \sum_{5}^{K} p_{k}=1
$$

Entropy

- Uncertainty measure for event $X=x_{k}\left(\log\right.$ assumes $\left.\log _{2}\right)$:

$$
I\left(x_{k}\right)=\log \left(\frac{1}{p_{k}}\right)=-\log p_{k}
$$

- $I\left(x_{k}\right)=0$ when $p_{k}=1$ (no uncertainty, no surprisal).
$-I\left(x_{k}\right) \geq 0$ for $0 \leq p_{k} \leq 1$: no negative uncertainty.
- $I\left(x_{k}\right)>I\left(x_{i}\right)$ for $p_{k}<p_{i}$: more uncertain for less probable events.
- Average uncertainty = Entropy of a random variable:

$$
\begin{aligned}
H(X) & =E\left[I\left(x_{k}\right)\right] \\
& =\sum_{k=-K}^{K} p_{k} I\left(x_{k}\right) \\
& =-\sum_{k=-K}^{K} p_{k} \log p_{k}
\end{aligned}
$$

Uncertainty, Surprise, Information, and Entropy

- If p_{k} is 1 (i.e., probability of event $X=x_{k}$ is 1), when $X=x_{k}$ is observed, there is no surprise. You are also pretty sure about the next outcome ($X=x_{k}$), so you are more certain (i.e., less uncertain).
- High probability events are less surprising.
- High probability events are less uncertain.
- Thus, surprisal/uncertainty of an event are related to the inverse of the probability of that event.
- You gain information when you go from a high-uncertainty state to a low-uncertainty state.

6

Properties of Entropy

- The higher the $H(X)$, the higher the potential information you can gain through observation/measurement.
- Bounds on the entropy:

$$
0 \leq H(X) \leq \log (2 K+1)
$$

- $H(X)=0$ when $p_{k}=1$ and $p_{j}=0$ for $j \neq k$: No uncertainty.
- $H(X)=\log (2 K+1)$ when $p_{k}=1 /(2 K+1)$ for all k : Maximum uncertainty, when all events are equiprobable.

Properties of Entropy (cont'd)

- Max entropy when $p_{k}=1 /(2 K+1)$ for all k follows from

$$
\sum_{k} p_{k} \log \left(\frac{p_{k}}{q_{k}}\right) \geq 0
$$

for two probability distributions $\left\{p_{k}\right\}$ and $\left\{q_{k}\right\}$, with the equality holding when $p_{k}=q_{k}$ for all k. (Multiply both sides with -1 .)

- Kullback-Leibler divergence (relative entropy):

$$
D_{p \| q}=\sum_{x \in \mathcal{X}} p_{X}(x) \log \left(\frac{p_{X}(x)}{q_{X}(x)}\right)
$$

measures how different two probability distributions are (note that it is not symmetric, i.e., $D_{p \| q} \neq D_{q \| p}$.

Diff. Entropy of Uniform Distribution

- Uniform distribution within interval $[0,1]$:

$$
\begin{align*}
& f_{X}(x)=1 \text { for } 0 \leq x \leq 1 \text { and } 0 \text { otherwise } \\
& \qquad \begin{aligned}
h(X) & =-\int_{-\infty}^{\infty} 1 \cdot \log 1 d x \\
& =-\int_{-\infty}^{\infty} 1 \cdot 0 d x \\
& =0
\end{aligned}
\end{align*}
$$

Differential Entropy of Cont. Rand. Variables

- Differential entropy:

$$
h(X)=-\int_{-\infty}^{\infty} f_{X}(x) \log f_{X}(x) d x=-E\left[\log f_{X}(x)\right]
$$

- Note that $H(X)$, in the limit, does not equal $h(X)$:

$$
\begin{aligned}
H(X)= & -\lim _{\delta x \rightarrow 0} \sum_{k=-\infty}^{\infty} \underbrace{f_{X}\left(x_{k}\right) \delta x}_{p_{k}} \log (\underbrace{f_{X}(x) \delta x}_{p_{k}}) \\
= & -\lim _{\delta x \rightarrow 0}\left[\sum_{k=-\infty}^{\infty} f_{X}\left(x_{k}\right) \log \left(f_{X}(x)\right) \delta x\right. \\
& \left.+\log (\delta x) \sum_{k=-\infty}^{\infty} f_{X}\left(x_{k}\right) \delta x\right] \\
= & -\int_{-\infty}^{\infty} f_{X}\left(x_{k}\right) \log \left(f_{X}(x)\right) d x \\
& -\lim _{\delta x \rightarrow 0} \log \delta x \int_{-\infty}^{\infty} f_{X}(x) \delta x \\
= & h(X)-\lim _{\delta x \rightarrow 0} \log \delta x
\end{aligned}
$$

Properties of Differential Entropy

- $h(X+c)=h(X)$
- $h(a X)=h(X)+\log |a|$

$$
\begin{aligned}
& f_{Y}(y)=\frac{1}{|a|} f_{Y}\left(\frac{y}{a}\right) \\
h(Y)= & -E\left[\log f_{Y}(y)\right] \\
= & -E\left[\log \left(\frac{1}{|a|} f_{Y}\left(\frac{y}{a}\right)\right)\right] \\
= & -E\left[\log f_{Y}\left(\frac{y}{a}\right)\right]+\log |a|
\end{aligned}
$$

Plugging in $Y=a X$ to the above, we get the desired result.

- For vector random variable \mathbf{X},

$$
h(\mathbf{A X})=h(\mathbf{X})+\log |\operatorname{det}(\mathbf{A})|
$$

Maximum Entropy Principle

- When choosing a probability model given a set of known states of a stochastic system and constraints, there could be potentially an infinite number of choices. Which one to choose?
- Jaynes (1957) proposed the maximum entropy principle:
- Pick the probability distribution that maximizes the entropy, subject to constraints on the distribution.

13

Mutual Information

- Conditional entropy: What is the entropy in X after observing Y ? How much uncertainty remains in X after observing Y ?

$$
H(X \mid Y)=H(X, Y)-H(Y)
$$

where the joint-entropy is defined as

$$
H(X, Y)=-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)
$$

- Mutual information: How much uncertainty is reduced in X when we observe Y ? The amount of reduced uncertainty is equal to the amount of information we gained!
$I(X ; Y)=H(X)-H(X \mid Y)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}$

One Dimensional Gaussian Dist.

- Stating the problem in an constrained optimization framework, we can get interesting general results.
- For a given variance σ^{2}, the Gaussian random variable has the largest differential entropy attainable by any random variable.
- The entropy of a Gaussian random variable X is uniquely determined by the variance of X.

Mutual Information for Continuous Random

Variables

- In analogy with the discrete case:

$$
I(X ; Y)=\int_{\infty}^{\infty} \int_{\infty}^{\infty} f_{X, Y}(x, y) \log \left(\frac{f_{X}(x \mid y)}{f_{X}(x)}\right) d x d y
$$

- And it has the same property

$$
\begin{aligned}
I(X ; Y) & =h(X)-h(X \mid Y) \\
& =h(Y)-h(Y \mid X) \\
=h(X)+h(Y)-h(X, Y) &
\end{aligned}
$$

Summary

- Various relationships among entropy, conditional entropy, joint entropy, and mutual information can be summarized as shown above.

Application of Information Theory to Neural Network

Learning

(a)

(d)

(b)

(c)

- We can use mutual information as an objective function to be optimized when developing learning rules for neural networks.

Properties of KL Divergence

- It is always positive or zero. Zero, when there is a perfect match between the two distributions.
- It is invariant w.r.t.
- Permutation of the order in which the components of the vector random variable \mathbf{x} are arranged.
- Amplitude scaling.
- Monotonic nonlinear transformation.
- It is related to mutual information:

$$
I(\mathbf{X} ; \mathbf{Y})=D_{f_{\mathbf{X}, \mathbf{Y}} \| f_{\mathbf{X}} f_{\mathbf{Y}}}
$$

Mutual Information as an Objective Function

- (a) Maximize mutual info between input vector \mathbf{X} and output vector \mathbf{Y}.
- (b) Maximize mutual info between Y_{a} and Y_{b} driven by near-by input vectors \mathbf{X}_{a} and \mathbf{X}_{b} from a single image.

Mutual Info. as an Objective Function (cont'd)

(b)

Maximum Mutual Information Principle

- Infomax principle by Linsker (1987, 1988, 1989): Maximize $I(\mathbf{Y} ; \mathbf{X})$ for input vector \mathbf{X} and output vector \mathbf{Y}.
- Appealing as the basis for statistical signal processing.
- Infomax provides a mathematical framework for self-organization.
- Relation to channel capacity, which defines the Shannon limit on the rate of information transmission through a communication channel.
- (c) Minimize information between Y_{a} and Y_{b} driven by input vectors from different images.
- (d) Minimize statistical dependence between Y_{i} 's.

Example: Single Neuron + Output Noise

- Single neuron with additive output noise:

$$
Y=\left(\sum_{i=1}^{m} w_{i} X_{i}\right)+N
$$

where Y is the output, w_{i} the weight, X_{i} the input, and N the processing noise.

- Assumptions:
- Output Y is a Gaussian r.v. with variance σ_{Y}^{2}.
- Noise N is also a Gaussian r.v. with $\mu=0$ and variance σ_{N}^{2}.
- Input and noise are uncorrelated: $E\left[X_{i} N\right]=0$ for all i.

Ex.: Single Neuron + Output Noise (cont'd)

- Mutual information between input and output:

$$
I(Y ; \mathbf{X})=h(Y)-h(Y \mid \mathbf{X})
$$

- Since $P(Y \mid \mathbf{X})=c+P(N)$, where c is a constant,

$$
h(Y \mid \mathbf{X})=h(N)
$$

Given \mathbf{X}, what remains in Y is just noise N. So, we get

$$
I(Y ; \mathbf{X})=h(Y)-h(N)
$$

Ex.: Single Neuron + Output Noise (cont'd)

- Since both Y and N are Gaussian,

$$
\begin{aligned}
& h(Y)=\frac{1}{2}\left[1+\log \left(2 \pi \sigma_{Y}^{2}\right)\right] \\
& h(N)=\frac{1}{2}\left[1+\log \left(2 \pi \sigma_{N}^{2}\right)\right]
\end{aligned}
$$

- So, finally we get:

$$
I(Y ; \mathbf{X})=\frac{1}{2} \log \left(\frac{\sigma_{Y}^{2}}{\sigma_{N}^{2}}\right)
$$

- The ratio $\sigma_{Y}^{2} / \sigma_{N}^{2}$ can be viewed as a signal-to-noise ratio. If noise variance σ_{N}^{2} is fixed, the mutual information $I(Y ; \mathbf{X})$ can be maximized simply by maximizing the output variance σ_{Y}^{2} !

25

Example: Single Neuron + Input Noise

- As before:

$$
h(Y \mid \mathbf{X})=h\left(N^{\prime}\right)=\frac{1}{2}\left(1+2 \pi \sigma_{N^{\prime}}^{2}\right)=\frac{1}{2}\left[1+2 \pi \sigma_{N}^{2} \sum_{i=1}^{m} w_{i}^{2}\right]
$$

- Again, we can get the mutual information as:

$$
I(Y ; \mathbf{X})=h(Y)-h\left(N^{\prime}\right)=\frac{1}{2} \log \left(\frac{\sigma_{Y}^{2}}{\sigma_{N}^{2} \sum_{i=1}^{m} w_{i}^{2}}\right)
$$

- Now, with fixed σ_{N}^{2}, information is maximized by maximizing the ratio $\sigma_{Y}^{2} / \sum_{i=1}^{m} w_{i}^{2}$, where σ_{Y}^{2} is a function of w_{i}.

Example: Single Neuron + Input Noise

- Single neuron, with noise on each input line:

$$
Y=\sum_{i=1}^{m} w_{i}\left(X_{i}+N_{i}\right)
$$

- We can decompose the above to

$$
Y=\sum_{i=1}^{m} w_{i} X_{i}+\underbrace{\sum_{i=1}^{m} w_{i} N_{i}}_{\text {call this } N^{\prime}}
$$

- N^{\prime} is also a Gaussian distribution, with variance:

$$
\sigma_{N^{\prime}}^{2}=\sum_{\substack{i=1 \\ 26}}^{m} w_{i}^{2} \sigma_{N}^{2}
$$

Lessons Learned

- Application of Infomax principle is problem-dependent.
- When $\sum_{i=1}^{m} w_{i}^{2}=1$, then the two additive noise models behave similarly.
- Assumptions such as Gaussianity need to be justified (it's hard to calculate mutual information without such tricks).
- Adpoting a Gaussian noise model, we can invoke a "surrogate" mutual information computed relatively easily.

Noiseless Network

- Noiseless network that transforms a random vector \mathbf{X} of arbitrary distribution to a new random vector \mathbf{Y} of different distribution: $\mathbf{Y}=\mathbf{W X}$.
- Mutual information in this case is:

$$
I(\mathbf{Y} ; \mathbf{X})=H(\mathbf{Y})-H(\mathbf{Y} \mid \mathbf{X})
$$

With noiseless mapping, $H(\mathbf{Y} \mid \mathbf{X})$ attains the lowest value $(-\infty)$.

- However, we can consider the gradient instead:

$$
\frac{\partial I(\mathbf{Y} ; \mathbf{X})}{\partial \mathbf{W}}=\frac{\partial H(\mathbf{Y})}{\partial \mathbf{W}}
$$

Since $H(\mathbf{Y} \mid \mathbf{X})$ is independent of \mathbf{W}, it drops out.

- Maximizing mutual information between input and output is equivalent ot maximing entropy in the output, both with respect to the weight matrix \mathbf{W} (Bell and Sejnowski 1995).

Modeling of a Perceptual System

- Importance of redundancy in sensory messages: Attneave (1954), Barlow (1959).
- Redundancy provides knowledge that enables the brain to build "cognitive maps" or "working models" of the environment (Barlow 1989).
- Reduncany reduction: specific form of Barlow's hypothesis - early processing is to turn highly redundant sensory input into more efficient factorial code. Outputs become statistically independent.
- Atick and Redlich (1990): principle of minumum redundancy.

Infomax and Redundancy Reduction

- In Shannon's framework, Order and structure = Redundancy.
- Increase in the above reduces uncertainty.
- More redundancy in the signal implies less information conveyed.
- More information conveyed means less redundancy.
- Thus, Infomax principle leads to reduced reduncancy in output \mathbf{Y} compared to input \mathbf{X}.
- When noise is present:
- Input noise: add redundancy in input to combat noise.
- Output noise: add more output components to combat noise.
- High level of noise favors redundancy of representation.
- Low level of noise favors diversity of representation.

30

Principle of Minimum Redundancy

- Sensory signal S , Noisy input \mathbf{X}, Recoding system A, noisy output Y.

$$
\begin{gathered}
\mathbf{X}=\mathbf{S}+\mathbf{N}_{1} \\
\mathbf{Y}=\mathbf{A X}+\mathbf{N}_{2}
\end{gathered}
$$

- Retinal input includes redundant information. Purpose of retinal coding is to reduce/eliminate the redundant bits of data due to correlations and noise, before sending the signal along the optic nerve.
- Redundancy measure (with channel capacity $C(\cdot)$):

$$
R=1-\frac{I(\mathbf{Y} ; \mathbf{S})}{C(\mathbf{Y})}
$$

Principle of Minimum Redundancy (cont'd)

- Objective: find recoder matrix \mathbf{A} such that

$$
R=1-\frac{I(\mathbf{Y} ; \mathbf{S})}{C(\mathbf{Y})}
$$

is minimized, subject to the no information loss constaraint:

$$
I(\mathbf{Y} ; \mathbf{X})=I(\mathbf{X} ; \mathbf{X})-\epsilon
$$

- When \mathbf{S} and \mathbf{Y} have the same dimensionality and there is no noise, principle of minimum redundancy is equivalent to the Infomax principle.
- Thus, Infomax on input/output lead to reduncancy reduction.

33

Spatially Coherent Features

- Infomax for unsupervised processing of the image of natural scenes (Becker and Hinton, 1992).
- Goal: design a self-organizing system that is capable of learning to encode complex scene information in a simpler form.
- Objective: extract higher-order features that exhibit simple coherence across space so that representation for one spatial region can be used to produce that of representation of neighboring regions.

Spatially Coherent Features (cont'd)

- With $I\left(Y_{a} ; Y_{b}\right)=h\left(Y_{a}\right)+h\left(Y_{b}\right)-h\left(Y_{a}, Y_{b}\right)$ and

$$
\begin{gathered}
h\left(Y_{a}\right)=\frac{1}{2}\left[1+\log \left(2 \pi \sigma_{a}^{2}\right)\right] \\
h\left(Y_{b}\right)=\frac{1}{2}\left[1+\log \left(2 \pi \sigma_{b}^{2}\right)\right] \\
h\left(Y_{a}, Y_{b}\right)=1+\log (2 \pi)+\frac{1}{2} \log |\operatorname{det}(\Sigma),| \\
\Sigma=\left[\begin{array}{cc}
\sigma_{a}^{2} & \rho_{a b} \sigma_{a} \sigma_{b} \\
\rho_{a b} \sigma_{a} \sigma_{b} & \sigma_{b}^{2}
\end{array}\right] \quad \text { (covariance matrix) } \\
\rho_{a b}=\frac{E\left[\left(Y_{a}-E\left[Y_{a}\right]\right)\left(Y_{b}-E\left[Y_{b}\right]\right)\right]}{\sigma_{a} \sigma_{b}} \text { (correlation) }
\end{gathered}
$$

we get

$$
I\left(Y_{a} ; Y_{b}\right)=-\frac{1}{2} \log \left(1-\rho_{a b}^{2}\right)
$$

Spatially Coherent Features (cont'd)

- The final results was:

$$
I\left(Y_{a} ; Y_{b}\right)=-\frac{1}{2} \log \left(1-\rho_{a b}^{2}\right)
$$

- That is, maximizing information is equivalent to maximizing correlation between Y_{a} and Y_{b}, which is intuitively appealing.
- Relation to canonical correlation in statistics:
- Given random input vectors \mathbf{X}_{a} and \mathbf{X}_{b},
- find two weight vectors \mathbf{w}_{a} and \mathbf{w}_{b} so that
- $Y_{a}=\mathbf{w}_{a}^{T} \mathbf{X}_{a}$ and $Y_{b}=\mathbf{w}_{b}^{T} \mathbf{X}_{b}$ have maximum correlation between them (Anderson 1984)
- Applications: stereo disparity extraction (Becker and Hinton, 1992).

37

Independent Components Analysis (ICA)

- Unknown random source vector $\mathrm{U}(n)$:

$$
\mathbf{U}=\left[U_{1}, U_{2}, \ldots, U_{m}\right]^{T}
$$

where the m components are supplied by a set of independent sources. Note that we need a series of source vectors.

- U is transformed by an unknown mixing matrix \mathbf{A} :

$$
\mathbf{X}=\mathbf{A} \mathbf{U}
$$

where

$$
\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{m}\right]^{T}
$$

- When the inputs come from two separate regions, we want to minimize the mutual information between the two outputs (Ukrainec and Haykin, 1992, 1996).
- Applications include when input sources such as different polarizations of the signal are imaged: mutual information between outputs driven by two orthogonal polarizations should be minimized.

Spatially Coherent Features

$$
A=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]
$$

- Left: u_{1} on x-axis, u_{2} on y-axis (source)
- Right: x_{1} on x -axis, x_{2} on y -axis (observation)
- Thoughts: how would PCA transform this?

[^0]http://www.cis.hut.fi/aapo/papers/ 40 CNN99_tutorialweb/.

ICA (cont'd)

Examples from AApo Hyvarinen's ICA tutorial
http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/.

41

ICA: Ambiguities

Consider $\mathbf{X}=\mathbf{A U}$, and $\mathbf{Y}=\mathbf{W X}$.

- Permutation: $\mathbf{X}=\mathbf{A P}{ }^{-1} \mathbf{P U}$, where \mathbf{P} is a permutation matrix. Permuting \mathbf{U} and \mathbf{A} in the same way will give the same X.
- Sign: the model is unaffected by multiplication of one of the sources by -1 .
- Scaling (variance): estimate scaling up U and scaling down A will give the same \mathbf{X}.

ICA (cont'd)

- $\ln \mathbf{X}=\mathbf{A U}$, both \mathbf{A} and U are unknown.
- Task: find an estimate of the inverse of the mixing matrix (the demixing matrix \mathbf{W}

$$
\mathbf{Y}=\mathbf{W} \mathbf{X}
$$

The hope is to recover the unknown source U . (A good example is the cocktail party problem.)

This is known as the blind source separation problem.

- Solution: It is actually feasible, but certain ambiguities cannot be resolved: sign, permutation, scaling (variance). Solution can be obtained by enforcing independence among components of \mathbf{Y} while adjusting \mathbf{W}, thus the name independent components analysis.

42

ICA: Neural Network View

- The mixer on the left is an unknown physical process.
- The demixer on the right could be seen as a neural network.

ICA: Independence

- Two random variables X and Y are statistically independent when

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

where $f(\cdot)$ is the probability density function.

- A weaker form of independence is uncorrelatedness (zero covariance), which is

$$
E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-E[X] E[Y]=0
$$

i.e.,

$$
E[X Y]=E[X] E[Y]
$$

- Gaussians are bad: When the unknown source is Gaussian, any orthogonal transformation A results in the same Gaussian distribution.

45

ICA: Non-Gaussianity

- Non-Gaussianity can be used as a measure of independence.
- The intuition is as follows:

$$
\mathbf{X}=\mathbf{A} \mathbf{U}, \quad \mathbf{Y}=\mathbf{W} \mathbf{X}
$$

Consider one component of \mathbf{Y} :

$$
\begin{aligned}
Y_{i} & =\left[W_{i 1}, W_{i 2}, \ldots, W_{i m}\right] \mathbf{X} \\
Y_{i} & =\underbrace{\left[W_{i 1}, W_{i 2}, \ldots, W_{i m}\right] \mathbf{A}}_{\text {call this } \mathbf{Z}^{T}} \mathbf{U}
\end{aligned}
$$

So, Y_{i} is a linear combination of random variables U_{k}
($Y_{i}=\sum_{j=1}^{m} Z_{i} U_{i}$), so it is more Gaussian than any individual U_{k} 's. The Gaussianity is minimized when Y_{i} equals one of U_{k} 's (one Z_{p} is 1 and all the rest 0).

Statistical Aside: Central Limit Theorem

- When i.i.d. random variables X_{1}, X_{2}, \ldots are added to get another random variable X, X tends to a normal distribution.
- So, Gaussians are prevalent and hard to avoid in statistics.

ICA: Measures of Non-Gaussianity

There are several measures of non-Gaussianity

- Kurtosis
- Negentropy
- etc.

ICA: Kurtosis

- Kurtosis is the fourth-order cumulant.

$$
\operatorname{Kurtosis}(Y)=E\left[Y^{4}\right]-3\left(E\left[Y^{2}\right]\right)^{2}
$$

- Gaussian distributions have kurtosis $=0$.
- More peaked distributions have kurtosis >0.
- More flatter distributions have kurtosis <0.
- Learning: Start with random \mathbf{W}. Adjust \mathbf{W} and measure change in kurtosis. We can also use gradient-based methods.
- Drawback: Kurtosis is sensitive to outliers, and thus not robust.

49

ICA: Negentropy

- Negentropy J is defined as

$$
J(\mathbf{Y})=H\left(\mathbf{Y}_{\text {gauss }}\right)-H(\mathbf{Y})
$$

where $Y_{\text {gauss }}$ is a Gaussian random variable that has the same covariance matrix as \mathbf{Y}.

- Negentropy is always non-negative, and it is zero iff \mathbf{Y} is Gaussian.
- Thus, maximizing negentropy is to maximize non-Gaussianity.
- Problem is that estimating negentropy is difficult, and requires the knowledge of the pdfs.

ICA: Approximation of Negentropy

- Classical method:

$$
J(Y) \approx \frac{1}{2} E\left[Y^{3}\right]^{2}+\frac{1}{48} \text { Kurtosis }(Y)^{2}
$$

but it is not robust due to the involvement of the kurtoris.

- Another variant:

$$
J(Y) \approx \sum_{k=1}^{p} k_{i}\left(E\left[G_{i}(Y)\right]-E\left[G_{i}(N)\right]\right)^{2}
$$

where k_{i} 's are coefficients, $G_{i}(\cdot)$'s are nonquadratic functions, and N is a zero-mean, unit-variance Gaussian r.v.

- This can be further simplified by

$$
\begin{gathered}
J(Y) \approx(E[G(Y)]-E[G(N)])^{2} \\
G_{1}(Y)=\frac{1}{a_{1}} \log \cosh a_{1} Y, \quad G_{2}(Y)=-\exp \left(-Y^{2} / 2\right) .
\end{gathered}
$$

ICA: Achieving Independence

- Given output vector \mathbf{Y}, we want Y_{i} and Y_{j} to be statistically independent.
- This can achieved when $I\left(Y_{i} ; Y_{j}\right)=0$.
- Another alternative is to make the probability density $f_{\mathbf{Y}}(\mathbf{y}, \mathbf{W})$ parameterized by the matrix \mathbf{W} to approach the factorial distribution:

$$
\widetilde{f}_{\mathbf{Y}}(\mathbf{y}, \mathbf{W})=\prod_{i=1}^{m} \widetilde{f}_{Y_{i}}\left(y_{i}, \mathbf{W}\right)
$$

where $\widetilde{f}_{Y_{i}}\left(y_{i}, \mathbf{W}\right)$ is the marginal probability density of Y_{i}. This can be measured by $D_{f \| f}(\mathbf{W})$.

ICA: Learning W

- Learning objective is to minimize the KL divergence $D_{f \|}$.
- We can do gradient descent:

$$
\begin{aligned}
\Delta w_{i k} & =-\eta \frac{\partial}{\partial w_{i k}} D_{f \| \widetilde{f}} \\
& =\eta\left(\left(\mathbf{W}^{-T}\right)_{i k}-\varphi\left(y_{i}\right) x_{k}\right)
\end{aligned}
$$

- The final learning rule, in matrix form, is:
$\mathbf{W}(n+1)=\mathbf{W}(n)+\eta(n)\left[\mathbf{I}-\varphi(\mathbf{y}(n)) \mathbf{y}^{T}(n)\right] \mathbf{W}^{-T}(n)$.

ICA: KL Divergence with Factorial Dist

- The KL divergence can be shown to be:

$$
D_{f \| f}(\widetilde{f})=-h(\mathbf{Y})+\sum_{i=1}^{m} \widetilde{h}\left(Y_{i}\right) .
$$

- Next, we need to calculate the output entropy:

$$
h(\mathbf{Y})=h(\mathbf{W X})=h(\mathbf{X})+\log |\operatorname{det}(\mathbf{W})|
$$

- Finally, we need to calculate the marginal entropy $\widetilde{h}\left(Y_{i}\right)$, which gets tricky. This calculation involves a polynomial activation function $\varphi\left(y_{i}\right)$. See the textbook for details.

ICA Examples

- Visit the url http: / /www.cis.hut.fi/projects/ compneuro/whatisica.html for interesting results.

[^0]: Examples from Aapo Hyvarinen's ICA tutorial:

