Slide04

Haykin Chapter 4 (both 2nd and 3rd ed.): Multi-Layer Perceptrons

CPSC 636-600 Instructor: Yoonsuck Choe Spring 2012

Some materials from this lecture are from Mitchell (1997) Machine Learning, McGraw-Hill

1

Multilayer Perceptrons: Characteristics

FIGURE 4.4 Signal-flow graph highlighting the details of output neuron k connected to hidden neuron j.

- Each model neuron has a nonlinear activation function, typically a logistic function: $y_j = \frac{1}{1 + \exp(-v_j)}$
- Network contains one or more *hidden layers* (layers that are not either an input or an output layer).
- Network exhibits a high degree of connectivity.

Introduction

- Networks typically consisting of input, hidden, and output layers.
- Commonly referred to as Multilayer perceptrons.
- Popular learning algorithm is the error backpropagation algorithm (backpropagation, or backprop, for short), which is a generalization of the LMS rule.
 - Forward pass: activate the network, layer by layer
 - Backward pass: error signal backpropagates from output to hidden and hidden to input, based on which weights are updated.

2

Multilayer Networks

FIGURE 4.3 Signal-flow graph highlighting the details of output neuron j.

- Differentiable threshold unit: sigmoid $\phi(v)=\frac{1}{1+\exp(-v)}$. Interesting property: $\frac{d\phi(v)}{dv}=\phi(v)(1-\phi(v))$.
- Output: $y = \phi(\mathbf{x}^T \mathbf{w})$
- Other functions: $tanh(v) = \frac{1 exp(-2v)}{1 + exp(-2v)}$

Multilayer Networks and Backpropagation

Nonlinear decision surfaces.

Output surpressed (-y-1,1)+sign(-xy+1,13)-1)
Output 0.55
Output 0.

(a) One output

(b) Two hidden, one output

• Another example: XOR

5

Error Gradient for a Sigmoid Unit

From the previous page:

$$\frac{\partial E}{\partial w_i} = -\sum_k (d_k - y_k) \frac{\partial y_k}{\partial v_k} \frac{\partial v_k}{\partial w_i}$$

But we know:

$$\frac{\partial y_k}{\partial v_k} = \frac{\partial \phi(v_k)}{\partial v_k} = y_k (1 - y_k)$$

$$\frac{\partial v_k}{\partial w_i} = \frac{\partial (\mathbf{x}_k^T \mathbf{w})}{\partial w_i} = x_{i,k}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_k (d_k - y_k) y_k (1 - y_k) x_{i,k}$$

Error Gradient for a Single Sigmoid Unit

For n input-output pairs $\{(\mathbf{x}_k, d_k)\}_{k=1}^n$:

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_k (d_k - y_k)^2 \\ &= \frac{1}{2} \sum_k \frac{\partial}{\partial w_i} (d_k - y_k)^2 \\ &= \frac{1}{2} \sum_k 2(d_k - y_k) \frac{\partial}{\partial w_i} (d_k - y_k) \\ &= \sum_k (d_k - y_k) \left(-\frac{\partial y_k}{\partial w_i} \right) \\ &= -\sum_k (d_k - y_k) \underbrace{\frac{\partial y_k}{\partial w_i}}_{\text{Chain rule}} \frac{\partial v_k}{\partial w_i} \end{split}$$

6

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do
 - Input the training example to the network and compute the network outputs
 - 2. For each output unit j

$$\delta_j \leftarrow y_j (1 - y_j) (d_j - y_j)$$

3. For each hidden unit h

$$\delta_h \leftarrow y_h(1-y_h) \sum_{j \in outputs} w_{jh} \delta_j$$

4. Update each network weight $w_{i,j}$

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$
 where $\Delta w_{ji} = \eta \delta_j x_i$.

Note: w_{ji} is the weight from i to j (i.e., $w_{j \leftarrow i}$).

The δ Term

• For output unit:

$$\delta_j \leftarrow \underbrace{y_j(1-y_j)}_{\phi'(v_j)} \underbrace{(d_j-y_j)}_{\text{Error}}$$

• For hidden unit:

$$\delta_h \leftarrow \underbrace{y_h(1-y_h)}_{\phi'(v_h)} \underbrace{\sum_{j \in outputs} w_{jh} \delta_j}_{\text{Backpropagated error}}$$

- ullet In sum, δ is the derivative times the error.
- Derivation to be presented later.

9

Derivation of Δw : Output Unit Weights

From the previous page, $\frac{\partial E}{\partial w_{ii}} = \frac{\partial E}{\partial v_i} \frac{\partial v_j}{\partial w_{ii}}$

• First, calculate $\frac{\partial E}{\partial v_j}$:

$$\frac{\partial E}{\partial v_j} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial v_j}$$

$$\frac{\partial E}{\partial y_j} = \frac{\partial}{\partial y_j} \frac{1}{2} \sum_{j \in outputs} (d_j - y_j)^2$$

$$= \frac{\partial}{\partial y_j} \frac{1}{2} (d_j - y_j)^2$$

$$= 2\frac{1}{2} (d_j - y_j) \frac{\partial (d_j - y_j)}{\partial y_j}$$

$$= -(d_j - y_j)$$

Derivation of Δw

Want to update weight as:

$$\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}},$$

where error is defined as

$$E(\mathbf{w}) \equiv \frac{1}{2} \sum_{j \in outputs} (d_j - y_j)^2$$

• Given $v_j = \sum_j w_{ji} x_i$,

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial v_j} \frac{\partial v_j}{\partial w_{ji}}$$

Different formula for output and hidden.

10

Derivation of Δw : Output Unit Weights

From the previous page, $\frac{\partial E}{\partial v_j} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial v_j} = -(d_j - y_j) \frac{\partial y_j}{\partial v_j}$:

• Next, calculate $\frac{\partial y_j}{\partial v_j}$: Since $y_j=\phi(v_j)$, and $\phi'(v_j)=y_j(1-y_j)$,

$$\frac{\partial y_j}{\partial v_j} = y_j (1 - y_j).$$

Putting everything together,

$$\frac{\partial E}{\partial v_j} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial v_j} = -(d_j - y_j)y_j(1 - y_j).$$

Derivation of Δw : Output Unit Weights

From the previous page:

$$\frac{\partial E}{\partial v_j} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial v_j} = -(d_j - y_j)y_j(1 - y_j).$$

Since
$$\frac{\partial v_j}{\partial w_{ji}} = \frac{\partial \sum_{i'} w_{ji'} x_{i'}}{\partial w_{ji}} = x_i$$
,

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial v_{j}} \frac{\partial v_{j}}{\partial w_{ji}}$$

$$= -\underbrace{(d_{j} - y_{j})y_{j}(1 - y_{j})}_{\delta_{j} = error \times \phi'(net)} \underbrace{x_{i}}_{input}$$

13

Derivation of Δw : Hidden Unit Weights

Finally, given

$$\frac{\partial E}{\partial w_{ii}} = \frac{\partial E}{\partial v_i} \frac{\partial v_j}{\partial w_{ii}} = \frac{\partial E}{\partial v_i} x_i,$$

and

$$\frac{\partial E}{\partial v_j} = \sum_{k \in Downstream(j)} -\delta_k w_{kj} \underbrace{y_j(1 - y_j)}_{\phi'(net)},$$

$$\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} = \eta \underbrace{\left[\underbrace{y_j(1 - y_j)}_{\phi'(net)} \underbrace{\sum_{k \in Downstream(j)} \delta_k w_k j}_{error} \right] x_i}_{\delta_j}$$

Derivation of Δw : Hidden Unit Weights

Start with
$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial v_{j}} \frac{\partial v_{j}}{\partial w_{ji}} = \frac{\partial E}{\partial v_{j}} x_{i}$$
:
$$\frac{\partial E}{\partial v_{j}} = \sum_{k \in Downstream(j)} \frac{\partial E}{\partial v_{k}} \frac{\partial v_{k}}{\partial v_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} \frac{\partial v_{k}}{\partial v_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} \frac{\partial v_{k}}{\partial y_{j}} \frac{\partial y_{j}}{\partial v_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} w_{kj} \frac{\partial y_{j}}{\partial v_{j}}$$

$$= \sum_{k \in Downstream(j)} -\delta_{k} w_{kj} \underbrace{y_{j}(1-y_{j})}_{\phi'(net)}$$
(1)

14

Summary

$$\underbrace{\Delta w_{ji}(n)}_{\text{weight correction}} = \underbrace{\eta}_{\text{learning rate local gradient input signal}} \cdot \underbrace{y_i(n)}_{\text{local gradient input signal}}$$

Extension to Different Network Topologies

• Arbitrary number of layers: for neurons in layer *m*:

$$\delta_r = y_r(1 - y_r) \sum_{s \in layer \ m+1} w_{sr} \delta s.$$

Arbitrary acyclic graph:

$$\delta_r = y_r (1 - y_r) \sum_{s \in Downstream(r)} w_{sr} \delta s.$$

17

Learning Rate and Momentum

- Tradeoffs regarding learning rate:
 - Smaller learning rate: smoother trajectory but slower convergence
 - Larger learning rate: fast convergence, but can become unstable.
- Momentum can help overcome the issues above.

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_i(n) + \alpha \Delta w_{ji}(n-1).$$

The update rule can be written as:

$$\Delta w_{ji}(n) = \eta \sum_{t=0}^{n} \alpha^{n-t} \delta_j(t) y_i(t) = -\eta \sum_{t=0}^{n} \alpha^{n-t} \frac{\partial E(t)}{\partial w_{ji}(t)}.$$

Backpropagation: Properties

- Gradient descent over entire network weight vector.
- Easily generalized to arbitrary directed graphs.
- Will find a local, not necessarily global error minimum:
 - In practice, often works well (can run multiple times with different initial weights).
- Minimizes error over training examples:
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using the network after training is very fast.

18

Momentum (cont'd)

$$\Delta w_{ji}(n) = \sum_{t=0}^{n} \alpha^{n-t} \frac{\partial E(t)}{\partial w_{ji}(t)}$$

- The weight vector is the sum of an exponentially weighted time series.
- Behavior:
 - When successive $\frac{\partial E(t)}{\partial w_{ji}(t)}$ take the same sign: Weight update is accelerated (speed up downhill).
 - When successive $\frac{\partial E(t)}{\partial w_{ji}(t)}$ have different signs: Weight update is damped (stabilize oscillation).

Sequential (online) vs. Batch Training

- Sequential mode:
 - Update rule applied after each input-target presentation.
 - Order of presentation should be randomized.
 - Benefits: less storage, stochastic search through weight space helps avoid local minima.
 - Disadvantages: hard to establish theoretical convergence conditions.
- Batch mode:
 - Update rule applied after all input-target pairs are seen.
 - Benefits: accurate estimate of the gradient, convergence to local minimum is guaranteed under simpler conditions.

21

What the Hidden Layer Does

- A smooth ramped output, monotonically increasing.
- Ramp can be oriented in different angles.
- This kind of visualization is only possible with low-dimensional input.

Representational Power of Feedforward Networks

- Boolean functions: every boolean function representable with two layers (hidden unit size can grow exponentially in the worst case: one hidden unit per input example, and "OR" them).
- Continuous functions: Every bounded continuous function can be approximated with an arbitrarily small error (output units are linear).
- Arbitrary functions: with three layers (output units are linear).

22

What the Hidden Layer Does (cont'd)

Fleming and Cottrell (1990)

- We can also look at the hidden layer weight as a pattern or feature.
- Or, we can activate one hidden unit and see what output pattern it produces (example above).

Learning Hidden Layer Representations

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

25

Learned Hidden Layer Representations

- Learned encoding is similar to standard 3-bit binary code.
- Automatic discovery of useful hidden layer representations is a key feature of ANN.
- Note: The hidden layer representation is **compressed**.

Learned Hidden Layer Representations

<u> </u>	Input			Hidden			Output
				Values			
	10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
,	01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000
	00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
	00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
	00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
	00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100
	00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
	0000001	\rightarrow	.60	.94	.01	\rightarrow	0000001

26

Overfitting

- Error in two different robot perception tasks.
- Training set and validation set error.
- Early stopping ensures good performance on unobserved samples, but must be careful.
- Weight decay, use of validation sets, use of k-fold cross-validation, etc. to overcome the problem.

Recurrent Networks

- Sequence recognition.
- Store tree structure (next slide).
- Can be trained with plain backpropagation.
- Generalization may not be perfect.

- - que mon a congression

input stack A B C (A, B)

input, stack (A, B)

input stack A B C (A, B)

Recurrent Networks (Cont'd)

- Autoassociation (intput = output)
- Represent a stack using the hidden layer representation.
- Accuracy depends on numerical precision.

29

Some Applications: NETtalk

- NETtalk: Sejnowski and Rosenberg (1987).
- Learn to pronounce English text.
- Demo
- Data available in UCI ML repository

30

NETtalk data

aardvark a-rdvark 1<<<>2<<0
aback xb@k-0>1<<0
abacus @bxkxs 1<0>0<0
abaft xb@ft 0>1<<0
abalone @bxloni 2<0>1>0 0
abandon xb@ndxn 0>1<>0<0
abase xbes-0>1<<0
abash xb@S-0>1<<0
abate xbet-0>1<<0
abatis @bxti-1<0>2<2</pre>

- Word Pronunciation Stress/Syllable
- about 20,000 words

More Applications: Data Compression

- Construct an autoassociative memory where Input = Output.
- Train with small hidden layer.
- Encode using input-tohidden weights.
- Send or store hidden layer activation.
- Decode received or stored hidden layer activation with the hidden-to-output weights.

33

Backpropagation: Example Results

- Epoch: one full cycle of training through all training input patterns.
- OR was easiest, AND the next, and XOR was the most difficult to learn.
- Network had 2 input, 2 hidden and 1 output unit. Learning rate was 0.001.

Backpropagation Exercise

- URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz
- Untar and read the README file:

- Run make to build (on departmental unix machines).
- Run ./bp conf/xor.conf etc.

34

Backpropagation: Example Results (cont'd)

Output to (0,0), (0,1), (1,0), and (1,1) form each row.

Backpropagation: Things to Try

- How does increasing the number of hidden layer units affect the
 (1) time and the (2) number of epochs of training?
- How does increasing or decreasing the learning rate affect the rate of convergence?
- How does changing the slope of the sigmoid affect the rate of convergence?
- Different problem domains: handwriting recognition, etc.

37

MLP as a General Function Approximator (cont'd)

- The universal approximation theorem is an existence theorem, and it merely generalizes approximations by finite Fourier series.
- The universal approximation theorem is directly applicable to neural networks (MLP), and it implies that one hidden layer is sufficient.
- The theorem does not say that a single hidden layer is optimum in terms of learning time, generalization, etc.

MLP as a General Function Approximator

- MLP can be seen as performing **nonlinear input-output mapping**.
- Universal approximation theorem: Let $\phi(\cdot)$ be a nonconstant, bounded, monotone-increasing continuous function. Let I_{m_0} denote the m_0 -dimensional unit hypercube $[0,1]^{m_0}$. The space of continuous functions on I_{m_0} is denoted by $C(I_{m_0})$. Then given any function $f \in C(I_{m_0})$ and $\epsilon > 0$, there exists an integer m_1 and a set of real constants α_i, b_i , and w_{ij} , where $i=1,\ldots,m_1$ and $j=1,\ldots,m_0$, such that we may define

$$F(x_1, ..., x_{m_0}) = \sum_{i=1}^{m_1} \alpha_i \phi \left(\sum_{j=1}^{m_0} w_{ij} x_j + b_i \right)$$

as an approximate realization of the function $f(\cdot)$; that is

$$|F(x_1, ..., x_{m_0}) - f(x_1, ..., x_{m_0})| < \epsilon$$

for all $x_1, ..., x_{m_0}$ that lie in the input space.

-38

Generalization

- A network is said to generalize well when the input-output mapping computed by the network is correct (or nearly so) for test data never used during training.
- This view is apt when we take the *curve-fitting* view.
- Issues: overfitting or overtraining, due to memorization.
 Smoothness in the mapping is desired, and this is related to criteria like Occam's razor.

Generalization and Training Set Size

- Generalization is influenced by three factors:
 - Size of the training set, and how representative they are.
 - The architecture of the network.
 - Physical complexity of the problem.
- Sample complexity and VC dimension are related. In practice,

$$N = O\left(\frac{W}{\epsilon}\right),\,$$

where W is the total number of free parameters, and ϵ is the error tolerance.

41

Use of **validation set** (not used during training, used for measuring generalizability).

- Model selection
- Early stopping
- Hold-out method: multiple cross-validation, leave-one-out method, etc.

Training Set Size and Curse of Dimensionality

- As the dimensionality of the input grows, exponentially more inputs are needed to maintain the same density in unit space.
- In other words, the **sampling density** of N inputs in m-dimensional space is proportional to $N^{1/m}$.
- One way to overcome this is to use prior knowledge about the function.

42

Virtues and Limitations of Backprop

- Connectionism: biological metaphor, local computation, graceful degradation, paralellism. (Some limitations exist regarding the biological plausibility of backprop.)
- Feature detection: hidden neurons perform feature detection.
- Function approximation: a form of nested sigmoid.
- Computational complexity: computation is polynomial in the number of adjustable parameters, thus it can be said to be efficient.
- Sensitivity analysis: sensitivity $S^F_\omega=\frac{\partial F/F}{\partial \omega/\omega}$ can be estimated efficiently.
- Robustness: disturbances can only cause small estimation errors.
- Convergence: stochastic approximation, and it can be slow.
- Local minima and scaling issues

Heuristic for Accelerating Convergence

Learning rate adaptation

- Separate learning rate for each tunable weight.
- Each learning rate is allowed to adjust after each iteration.
- If the derivative of the cost function has the same sign for several iterations, increase the learning rate.
- If the derivative of the cost function alternates the sign over several iterations, decrease the learning rate.

Summary

- Backprop for MLP is local and efficient (in calculating the partial derivative).
- Backprop can handle **nonlinear** mappings.

45

46