Slide03

Haykin Chapter 3 (Chap 1, 3, 3rd Ed): Single-Layer Perceptrons

CPSC 636-600
Instructor: Yoonsuck Choe

Historical Overview

- McCulloch and Pitts (1943): neural networks as computing machines.
- Hebb (1949): postulated the first rule for self-organizing learning.
- Rosenblatt (1958): perceptron as a first model of supervised learning.
- Widrow and Hoff (1960): adaptive filters using least-mean-square (LMS) algorithm (delta rule).

Multiple Faces of a Single Neuron

What a single neuron does can be viewed from different perspectives:

- Adaptive filter: as in signal processing
- Classifier: as in perceptron

The two aspects will be reviewed, in the above order.

Part I: Adaptive Filter

Adaptive Filtering Problem

- Consider an unknown dynamical system, that takes m inputs and generates one output.
- Behavior of the system described as its input/output pair:

$$
\mathcal{T}:\{\mathbf{x}(i), d(i) ; i=1,2, \ldots, n, \ldots\} \text { where }
$$

$\mathbf{x}(i)=\left[x_{1}(i), x_{2}(i), \ldots, x_{m}(i)\right]^{T}$ is the input and $d(i)$ the desired response (or target signal).

- Input vector can be either a spatial snapshot or a temporal sequence uniformly spaced in time.
- There are two important processes in adaptive filtering:
- Filtering process: generation of output based on the input:

$$
y(i)=\mathbf{x}^{T}(i) \mathbf{w}(i)
$$

- Adapative process: automatic adjustment of weights to reduce error: $e(i)=d(i)-y(i)$.

5

Steepest Descent

- We want the iterative update algorithm to have the following property:

$$
\mathcal{E}(\mathbf{w}(n+1))<\mathcal{E}(\mathbf{w}(n))
$$

- Define the gradient vector $\nabla \mathcal{E}(\mathbf{w})$ as \mathbf{g}.
- The iterative weight update rule then becomes:

$$
\mathbf{w}(n+1)=\mathbf{w}(n)-\eta \mathbf{g}(n)
$$

where η is a small learning-rate parameter. So we can say,

$$
\Delta \mathbf{w}(n)=\mathbf{w}(n+1)-\mathbf{w}(n)=-\eta \mathbf{g}(n)
$$

Unconstrained Optimization Techniques

- How can we adjust $\mathbf{w}(i)$ to gradually minimize $e(i)$? Note that $e(i)=d(i)-y(i)=d(i)-\mathbf{x}^{T}(i) \mathbf{w}(i)$. Since $d(i)$ and $\mathbf{x}(i)$ are fixed, only the change in $\mathbf{w}(i)$ can change $e(i)$.
- In other words, we want to minimize the cost function $\mathcal{E}(\mathbf{w})$ with respect to the weight vector \mathbf{w} : Find the optimal solution \mathbf{w}^{*}.
- The necessary condition for optimality is

$$
\nabla \mathcal{E}\left(\mathbf{w}^{*}\right)=\mathbf{0}
$$

where the gradient operator is defined as

$$
\nabla=\left[\frac{\partial}{\partial w_{1}}, \frac{\partial}{\partial w_{2}}, \cdots \frac{\partial}{\partial w_{m}}\right]^{T}
$$

With this, we get

$$
\nabla \mathcal{E}\left(\mathbf{w}^{*}\right)=\left[\frac{\partial \mathcal{E}}{\partial w_{1}}, \frac{\partial \mathcal{E}}{\partial w_{2}}, \cdots \frac{\partial \mathcal{E}}{\partial w_{m}}\right]^{T}
$$

Steepest Descent (cont'd)

We now check if $\mathcal{E}(\mathbf{w}(n+1))<\mathcal{E}(\mathbf{w}(n))$.
Using first-order Taylor expansion ${ }^{\dagger}$ of $\mathcal{E}(\cdot)$ near $\mathbf{w}(n)$,

$$
\mathcal{E}(\mathbf{w}(n+1)) \approx \mathcal{E}(\mathbf{w}(n))+\mathbf{g}^{T}(n) \Delta \mathbf{w}(n)
$$

and $\Delta \mathbf{w}(n)=-\eta \mathbf{g}(n)$, we get

$$
\begin{aligned}
\mathcal{E}(\mathbf{w}(n+1)) & \approx \mathcal{E}(\mathbf{w}(n))-\eta \mathbf{g}^{T}(n) \mathbf{g}(n) \\
& =\mathcal{E}(\mathbf{w}(n))-\underbrace{\eta\|\mathbf{g}(n)\|^{2}}_{\text {Positive! }}
\end{aligned}
$$

So, it is indeed (for small η):

$$
\mathcal{E}(\mathbf{w}(n+1))<\mathcal{E}(\mathbf{w}(n))
$$

[^0]Steepest Descent: Example

- Convergence to optimal \mathbf{w} is very slow.
- Small η : overdamped, smooth trajectory
- Large η : underdamped, jagged trajectory
- η too large: algorithm becomes unstable

Newton's Method

- Newton's method is an extension of steepest descent, where the second-order term in the Taylor series expansion is used.
- It is generally faster and shows a less erratic meandering compared to the steepest descent method.
- There are certain conditions to be met though, such as the Hessian matrix $\nabla^{2} \mathcal{E}(\mathbf{w})$ being positive definite (for an arbitarry $\mathbf{x}, \mathbf{x}^{T} \mathbf{H} \mathbf{x}>0$).

Steepest Descent: Another Example

For $f(\mathbf{x})=f(x, y)=x^{2}+y^{2}$,
$\nabla f(x, y)=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]^{T}=[2 x, 2 y]^{T}$. Note that (1) the gradient vectors are pointing upward, away from the origin, (2) length of the vectors are shorter near the origin. If you follow $-\nabla f(x, y)$, you will end up at the origin. We can see that the gradient vectors are perpendicular to the level curves.

* The vector lengths were scaled down by a factor of 10 to avoid clutter.

Gauss-Newton Method

- Applicable for cost-functions expressed as sum of error squares:

$$
\mathcal{E}(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{n} e_{i}(\mathbf{w})^{2}
$$

where $e_{i}(\mathbf{w})$ is the error in the i-th trial, with the weight \mathbf{w}.

- Recalling the Taylor series $f(x)=f(a)+f^{\prime}(a)(x-a) \ldots$, we can express $e_{i}(\mathbf{w})$ evaluated near $e_{i}\left(\mathbf{w}_{\mathbf{k}}\right)$ as

$$
e_{i}(\mathbf{w})=e_{i}\left(\mathbf{w}_{k}\right)+\left[\frac{\partial e_{i}}{\partial \mathbf{w}}\right]_{\mathbf{w}=\mathbf{w}_{k}}^{T}\left(\mathbf{w}-\mathbf{w}_{k}\right)
$$

- In matrix notation, we get:

$$
\mathbf{e}(\mathbf{w})=\mathbf{e}\left(\mathbf{w}_{k}\right)+\mathbf{J}_{\mathbf{e}}\left(\mathbf{w}_{k}\right)\left(\mathbf{w}-\mathbf{w}_{k}\right)
$$

*We will use a slightly different notation than the textbook, for clarity.

Gauss-Newton Method (cont'd)

- $\mathbf{J}_{\mathbf{e}}(\mathbf{w})$ is the Jacobian matrix, where each row is the gradient of $e_{i}(\mathbf{w})$:

$$
\left.\mathbf{J}_{\mathbf{e}}(\mathbf{w})=\begin{array}{|ccc|}
\hline \frac{\partial e_{1}}{\partial w_{1}} & \frac{\partial e_{1}}{\partial w_{2}} & \cdots \\
\hline \hline \frac{\partial e_{2}}{\partial w_{1}} & \frac{\partial e_{2}}{\partial w_{2}} & \cdots \\
\hline \hline: & : & \frac{\partial e_{1}}{\partial w_{n}} \\
\hline & : & : \\
\hline \frac{\partial e_{n}}{\partial w_{1}} \\
\hline \hline \frac{\partial e_{n}}{\partial w_{2}} & \cdots & \frac{\partial e_{n}}{\partial w_{n}} \\
\hline \hline\left(\nabla e_{2}(\mathbf{w})\right)^{T} \\
\hline \hline\left(\nabla e_{n}(\mathbf{w})\right)^{T} \\
\hline \\
\hline
\end{array} \right\rvert\,
$$

- We can then evaluate $\mathbf{J}_{\mathbf{e}}\left(\mathbf{w}_{k}\right)$ by plugging in actual values of \mathbf{w}_{k} into the Jabobian matrix above.

Gauss-Newton Method (cont'd)

- Again, starting with

$$
\mathbf{e}(\mathbf{w})=\mathbf{e}\left(\mathbf{w}_{k}\right)+\mathbf{J}_{\mathbf{e}}\left(\mathbf{w}_{k}\right)\left(\mathbf{w}-\mathbf{w}_{k}\right)
$$

what we want is to set \mathbf{w} so that the error approaches 0 .

- That is, we want to minimize the norm of $\mathbf{e}(\mathbf{w})$:

$$
\begin{aligned}
\|\mathbf{e}(\mathbf{w})\|^{2} & =\left\|\mathbf{e}\left(\mathbf{w}_{k}\right)\right\|^{2}+2 \mathbf{e}\left(\mathbf{w}_{k}\right)^{T} \mathbf{J}_{\mathbf{e}}\left(\mathbf{w}_{k}\right)\left(\mathbf{w}-\mathbf{w}_{k}\right) \\
& +\left(\mathbf{w}-\mathbf{w}_{k}\right)^{T} \mathbf{J}_{\mathbf{e}}^{T}\left(\mathbf{w}_{k}\right) \mathbf{J}_{\mathbf{e}}\left(\mathbf{w}_{k}\right)\left(\mathbf{w}-\mathbf{w}_{k}\right) .
\end{aligned}
$$

- Differentiating the above wrt \mathbf{w} and setting the result to 0 , we get
$\mathbf{J}_{\mathbf{e}}^{T}\left(\mathbf{w}_{k}\right) \mathbf{e}\left(\mathbf{w}_{k}\right)+\mathbf{J}_{\mathbf{e}}^{T}\left(\mathbf{w}_{k}\right) \mathbf{J}_{\mathbf{e}}\left(\mathbf{w}_{k}\right)\left(\mathbf{w}-\mathbf{w}_{k}\right)=\mathbf{0}$, from which we get

$$
\mathbf{w}=\mathbf{w}_{k}-\left(\mathbf{J}_{\mathbf{e}}^{T}\left(\mathbf{w}_{k}\right) \mathbf{J}_{\mathbf{e}}\left(\mathbf{w}_{k}\right)\right)^{-1} \mathbf{J}_{\mathbf{e}}^{T}\left(\mathbf{w}_{k}\right) \mathbf{e}\left(\mathbf{w}_{k}\right) .
$$

${ }^{*} \mathbf{J}_{\mathbf{e}}^{T}\left(\mathbf{w}_{k}\right) \mathbf{J}_{\mathbf{e}}\left(\mathbf{w}_{k}\right)$ needs to be nonsingular (inverse is needed).

Quick Example: Jacobian Matrix

- Given

$$
\mathbf{e}(x, y)=\left[\begin{array}{l}
e_{1}(x, y) \\
e_{2}(x, y)
\end{array}\right]=\left[\begin{array}{c}
x^{2}+y^{2} \\
\cos (x)+\sin (y)
\end{array}\right]
$$

- The Jacobian of $\mathbf{e}(x, y)$ becomes

$$
\mathbf{J}_{\mathbf{e}}(x, y)=\left[\begin{array}{ll}
\frac{\partial e_{1}(x, y)}{\partial x} & \frac{\partial e_{1}(x, y)}{\partial y} \\
\frac{\partial e_{2}(x, y)}{\partial x} & \frac{\partial e_{2}(x, y)}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
2 x & 2 y \\
-\sin (x) & \cos (y)
\end{array}\right]
$$

- For $(x, y)=(0.5 \pi, \pi)$, we get

$$
\mathbf{J}_{\mathbf{e}}(0.5 \pi, \pi)=\left[\begin{array}{cc}
\pi & 2 \pi \\
-\sin (0.5 \pi) & \cos (\pi)
\end{array}\right]=\left[\begin{array}{cc}
\pi & 2 \pi \\
-1 & -1
\end{array}\right]
$$

Linear Least-Square Filter

- Given m input and 1 output function $y(i)=\phi\left(\mathbf{x}_{i}^{T} \mathbf{w}_{i}\right)$ where $\phi(x)=x$, i.e., it is linear, and a set of training samples $\left\{\mathbf{x}_{i}, d_{i}\right\}_{i=1}^{n}$, we can define the error vector for an arbitrary weight \mathbf{w} as

$$
\mathbf{e}(\mathbf{w})=\mathbf{d}-\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right]^{T} \mathbf{w}
$$

where $\mathbf{d}=\left[d_{1}, d_{2}, \ldots, d_{n}\right]^{T}$. Setting $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right]^{T}$, we get: $\mathbf{e}(\mathbf{w})=\mathbf{d}-\mathbf{X w}$.

- Differentiating the above wrt \mathbf{w}, we get $\nabla \mathbf{e}(\mathbf{w})=-\mathbf{X}^{T}$. So, the Jacobian becomes $\mathbf{J}_{\mathbf{e}}(\mathbf{w})=(\nabla \mathbf{e}(\mathbf{w}))^{T}=-\mathbf{X}$.
- Plugging this in to the Gauss-Newton equation, we finally get:

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}_{k}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\left(\mathbf{d}-\mathbf{X} \mathbf{w}_{k}\right) \\
& =\mathbf{w}_{k}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{d}-\underbrace{\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{X} \mathbf{w}_{k}}_{\text {This is } \mathbf{I} \mathbf{w}_{k}=\mathbf{w}_{k}}
\end{aligned}
$$

$$
=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{d}
$$

Linear Least-Square Filter (cont'd)

Points worth noting:

- \mathbf{X} does not need to be a square matrix!
- We get $\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{d}$ off the bat partly because the output is linear (otherwise, the formula would be more complex).
- The Jacobian of the error function only depends on the input, and is invariant wrt the weight \mathbf{w}.
- The factor $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$ (let's call it \mathbf{X}^{+}) is like an inverse. Multiply \mathbf{X}^{+}to both sides of

$$
\mathbf{d}=\mathbf{X} \mathbf{w}
$$

then we get:

$$
\mathbf{w}=\mathbf{X}^{+} \mathbf{d}=\underbrace{\mathbf{X}^{+} \mathbf{X}}_{=\mathbf{I}} \mathbf{w} .
$$

17

Least-Mean-Square Algorithm

- Cost function is based on instantaneous values.

$$
\mathcal{E}(\mathbf{w})=\frac{1}{2} e^{2}(\mathbf{w})
$$

- Differentiating the above wrt \mathbf{w}, we get

$$
\frac{\partial \mathcal{E}(\mathbf{w})}{\partial \mathbf{w}}=e(\mathbf{w}) \frac{\partial e(\mathbf{w})}{\partial \mathbf{w}}
$$

- Pluggin in $e(\mathbf{w})=d-\mathbf{x}^{T} \mathbf{w}$,

$$
\frac{\partial e(\mathbf{w})}{\partial \mathbf{w}}=-\mathbf{x}, \text { and hence } \frac{\partial \mathcal{E}(\mathbf{w})}{\partial \mathbf{w}}=-\mathbf{x} e(\mathbf{w})
$$

- Using this in the steepest descent rule, we get the LMS algorithm:

$$
\hat{\mathbf{w}}_{n+1}=\hat{\mathbf{w}}_{n}+\eta \mathbf{x}_{n} e_{n}
$$

- Note that this weight update is done with only one $\left(\mathbf{x}_{i}, d_{i}\right)$ pair!

Linear Least-Square Filter: Example

```
See src/pseudoinv.m.
```

```
X = ceil(rand (4,2)*10), wtrue = rand (2,1)*10, d=X*wtrue, w = inv ( (X'*X)* *'*d
X =
    107
    3 7
    3 6
```

wtrue =
0.56644
4.99120
$d=$
40.603
36.638
31.647
22.797
0.56644
4.99120

Least-Mean-Square Algorithm: Evaluation

- LMS algorithm behaves like a low-pass filter.
- LMS algorithm is simple, model-independent, and thus robust.
- LMS does not follow the direction of steepest descent: Instead, it follows it stochastically (stochastic gradient descent).
- Slow convergence is an issue.
- LMS is sensitive to the input correlation matrix's condition number (ratio between largest vs. smallest eigenvalue of the correl. matrix).
- LMS can be shown to converge if the learning rate has the following property:

$$
0<\eta<\frac{2}{\lambda_{\max }}
$$

where $\lambda_{\text {max }}$ is the largest eigenvalue of the correl. matrix.

Improving Convergence in LMS

- The main problem arises because of the fixed η.
- One solution: Use a time-varying learning rate: $\eta(n)=c / n$, as in stochastic optimization theory.
- A better alternative: use a hybrid method called search-then-converge.

$$
\eta(n)=\frac{\eta_{0}}{1+(n / \tau)}
$$

When $n<\tau$, performance is similar to standard LMS. When $n>\tau$, it behaves like stochastic optimization.

Part II: Perceptron

Search-Then-Converge in LMS

$$
\eta(n)=\frac{\eta_{0}}{n} \text { vs. } \eta(n)=\frac{\eta_{0}}{1+(n / \tau)}
$$

22

The Perceptron Model

- Perceptron uses a non-linear neuron model (McCulloch-Pitts model).

$$
v=\sum_{i=1}^{m} w_{i} x_{i}+b, \quad y=\phi(v)= \begin{cases}1 & \text { if } v>0 \\ 0 & \text { if } v \leq 0\end{cases}
$$

- Goal: classify input vectors into two classes.

Boolean Logic Gates with Perceptron Units

Russel \& Norvig

- Perceptrons can represent basic boolean functions.
- Thus, a network of perceptron units can compute any Boolean function.

What about XOR or EQUIV?

Geometric Interpretation

- Rearranging

$$
W_{0} \times I_{0}+W_{1} \times I_{1}-t>0, \text { then output is } 1,
$$

we get (if $W_{1}>0$)

$$
I_{1}>\frac{-W_{0}}{W_{1}} \times I_{0}+\frac{t}{W_{1}}
$$

where points above the line, the output is 1 , and 0 for those below the line. Compare with

$$
y=\frac{-W_{0}}{W 4^{7}} \times x+\frac{t}{W_{1}} .
$$

Limitation of Perceptrons

- Only functions where the 0 points and 1 points are clearly linearly separable can be represented by perceptrons.
- The geometric interpretation is generalizable to functions of n arguments, i.e. perceptron with n inputs plus one threshold (or bias) unit.

Linear Separability

Linearly-separable

Not Linearly-separable

Not Linearly-separable

- For functions that take integer or real values as arguments and output either 0 or 1.
- Left: linearly separable (i.e., can draw a straight line between the classes).
- Right: not linearly separable (i.e., perceptrons cannot represent such a function)

http://mathworld.wolfram.com/Plane.html
- $\vec{n}=(a, b, c), \vec{x}=(x, y, z), \overrightarrow{x_{0}}=\left(x_{0}, y_{0}, z_{0}\right)$.
- Equation of a plane: $\vec{n} \cdot\left(\vec{x}-\overrightarrow{x_{0}}\right)=0$
- In short, $a x+b y+c z+d=0$, where a, b, c can serve as the weight, and $d=-\vec{n} \cdot \overrightarrow{x_{0}}$ as the bias.
- For n-D input space, the decision boundary becomes a $(n-1)$-D hyperplane (1-D $\underset{30}{\text { less }}$ than the input space).

Linear Separability (cont'd)

- Perceptrons cannot represent XOR!
- Minsky and Papert (1969)

XOR in Detail

$W_{0} \times I_{0}+W_{1} \times I_{1}-t>0$,	then output is $1:$		
1	$-t \leq 0$	\rightarrow	$t \geq 0$
2		$W_{1}-t>0$	\rightarrow
3	$W_{0}-t>0$	\rightarrow	$W_{0}>t$
4	$W_{0}+W_{1}-t \leq 0$	\rightarrow	$W_{0}+W_{1} \leq t$

$2 t<W_{0}+W_{1}<t$ (from 2, 3, and 4), but $t \geq 0$ (from 1), a contradiction.

Perceptron Learning Rule

- Given a linearly separable set of inputs that can belong to class \mathcal{C}_{1} or \mathcal{C}_{2},
- The goal of perceptron learning is to have

$$
\begin{aligned}
& \mathbf{w}^{T} \mathbf{x}>0 \text { for all input in class } \mathcal{C}_{1} \\
& \mathbf{w}^{T} \mathbf{x} \leq 0 \text { for all input in class } \mathcal{C}_{2}
\end{aligned}
$$

- If all inputs are correctly classified with the current weights $\mathbf{w}(n)$,

$$
\begin{gathered}
\mathbf{w}(n)^{T} \mathbf{x}>0, \text { for all input in class } \mathcal{C}_{1}, \text { and } \\
\mathbf{w}(n)^{T} \mathbf{x} \leq 0, \text { for all input in class } \mathcal{C}_{2},
\end{gathered}
$$

then $\mathbf{w}(n+1)=\mathbf{w}(n)$ (no change).

- Otherwise, adjust the weights.

Perceptrons: A Different Perspective

$$
\begin{aligned}
\mathbf{w}^{T} \mathbf{x} & >b \text { then, output is } 1 \\
\mathbf{w}^{T} \mathbf{x}=\|\mathbf{w}\|\|\mathbf{x}\| \cos \theta & >b \text { then, output is } 1 \\
\|\mathbf{x}\| \cos \theta & >\frac{b}{\|\mathbf{w}\|} \text { then, output is } 1
\end{aligned}
$$

So, if $d=\|\mathbf{x}\| \cos \theta$ in the figure above is greater than $\frac{b}{\|\mathbf{w}\|}$, then output $=1$. Adjusting \mathbf{w} changes the tilt of the decision boundary, and adjusting the bias b (and $\|\mathbf{w}\|$) moves the decision boundary closer or away from the origin.

34

Perceptron Learning Rule (cont'd)

For misclassified inputs $(\eta(n)$ is the learning rate):

- $\mathbf{w}(n+1)=\mathbf{w}(n)-\eta(n) \mathbf{x}(n)$ if $\mathbf{w}^{T} \mathbf{x}>0$ and $\mathbf{x} \in \mathcal{C}_{2}$.
- $\mathbf{w}(n+1)=\mathbf{w}(n)+\eta(n) \mathbf{x}(n)$ if $\mathbf{w}^{T} \mathbf{x} \leq 0$ and $\mathbf{x} \in \mathcal{C}_{1}$.

Or, simply $\mathbf{x}(n+1)=\mathbf{w}(n)+\eta(n) e(n) \mathbf{x}(n)$, where $e(n)=d(n)-y(n)$ (the error).

Learning in Perceptron: Another Look

- When a positive example $\left(\mathcal{C}_{1}\right)$ is misclassified, $\mathbf{w}(n+1)=\mathbf{w}(n)+\eta(n) \mathbf{x}(n)$.
- When a negative example $\left(\mathcal{C}_{2}\right)$ is misclassified,

$$
\mathbf{w}(n+1)=\mathbf{w}(n)-\eta(n) \mathbf{x}(n)
$$

- Note the tilt in the weight vector, and observe how it would change the decision boundary.

Perceptron Convergence Theorem (cont'd)

- Using Cauchy-Schwartz inequality

$$
\left\|\mathbf{w}_{0}\right\|^{2}\|\mathbf{w}(n+1)\|^{2} \geq\left[\mathbf{w}_{0}^{T} \mathbf{w}(n+1)\right]^{2}
$$

- From the above and $\mathbf{w}_{0}^{T} \mathbf{w}(n+1)>n \alpha$,

$$
\left\|\mathbf{w}_{0}\right\|^{2}\|\mathbf{w}(n+1)\|^{2} \geq n^{2} \alpha^{2}
$$

So, finally, we get

$$
\begin{equation*}
\underbrace{\|\mathbf{w}(n+1)\|^{2} \geq \frac{n^{2} \alpha^{2}}{\left\|\mathbf{w}_{0}\right\|^{2}}} \tag{4}
\end{equation*}
$$

First main result

Perceptron Convergence Theorem

- Given a set of linearly separable inputs, Without loss of generality, assume $\eta=1, \mathbf{w}(0)=\mathbf{0}$.
- Assume the first n examples $\in \mathcal{C}_{1}$ are all misclassified.
- Then, using $\mathbf{w}(n+1)=\mathbf{w}(n)+\mathbf{x}(n)$, we get

$$
\begin{equation*}
\mathbf{w}(n+1)=\mathbf{x}(1)+\mathbf{x}(2)+\ldots+\mathbf{x}(n) \tag{1}
\end{equation*}
$$

- Since the input set is linearly separable, there is at least on solution \mathbf{w}_{0} such that $\mathbf{w}_{0}^{T} \mathbf{x}(n)>0$ for all inputs in \mathcal{C}_{1}.
- Define $\alpha=\min _{\mathbf{x}(n) \in \mathcal{C}_{1}} \mathbf{w}_{0}^{T} \mathbf{x}(n)>0$.
- Multiply both sides in eq. 1 with \mathbf{w}_{0}, we get:

$$
\begin{equation*}
\mathbf{w}_{0}^{T} \mathbf{w}(n+1)=\mathbf{w}_{0}^{T} \mathbf{x}(1)+\mathbf{w}_{0}^{T} \mathbf{x}(2)+\ldots+\mathbf{w}_{0}^{T} \mathbf{x}(n) \tag{2}
\end{equation*}
$$

- From the two steps above, we get:

$$
\begin{equation*}
\mathbf{w}_{0}^{T} \mathbf{w}(n+1)>n \alpha \tag{3}
\end{equation*}
$$

38

Perceptron Convergence Theorem (cont'd)

- Taking the Euclidean norm of $\mathbf{w}(k+1)=\mathbf{w}(k)+\mathbf{x}(k)$,

$$
\|\mathbf{w}(k+1)\|^{2}=\|\mathbf{w}(k)\|^{2}+2 \mathbf{w}^{T}(k) \mathbf{x}(k)+\|\mathbf{x}(k)\|^{2}
$$

- Since all n inputs in \mathcal{C}_{1} are misclassified, $\mathbf{w}^{T}(k) \mathbf{x}(k) \leq 0$ for $k=1,2, \ldots, n$,

$$
\begin{gathered}
\|\mathbf{w}(k+1)\|^{2}-\|\mathbf{w}(k)\|^{2}-\|\mathbf{x}(k)\|^{2}=2 \mathbf{w}^{T}(k) \mathbf{x}(k) \leq 0 \\
\|\mathbf{w}(k+1)\|^{2} \leq\|\mathbf{w}(k)\|^{2}+\|\mathbf{x}(k)\|^{2} \\
\|\mathbf{w}(k+1)\|^{2}-\|\mathbf{w}(k)\|^{2} \leq\|\mathbf{x}(k)\|^{2}
\end{gathered}
$$

- Summing up the inequalities for all $k=1,2, \ldots, n$, and $\mathbf{w}(0)=\mathbf{0}$, we get

$$
\begin{equation*}
\|\mathbf{w}(k+1)\|^{2} \leq \sum_{k=1}^{n}\|\mathbf{x}(k)\|^{2} \leq n \beta \tag{5}
\end{equation*}
$$

Perceptron Convergence Theorem (cont'd)

- From eq. 4 and eq. 5

$$
\frac{n^{2} \alpha^{2}}{\left\|\mathbf{w}_{0}\right\|^{2}} \leq\|\mathbf{w}(n+1)\|^{2} \leq n \beta
$$

- Here, α is a constant, depending on the fixed input set and the fixed solution \mathbf{w}_{0} (so, $\left\|\mathbf{w}_{0}\right\|$ is also a constant), and β is also a constant since it depends only on the fixed input set.
- In this case, if n grows to a large value, the above inequality will becomes invalid (n is a positive integer).
- Thus, n cannot grow beyond a certain $n_{\text {max }}$, where

$$
\begin{aligned}
& \frac{n_{\max }^{2} \alpha^{2}}{\left\|\mathbf{w}_{0}\right\|^{2}}=n_{\max } \beta \\
& n_{\max }=\frac{\beta\left\|\mathbf{w}_{0}\right\|^{2}}{\alpha^{2}}
\end{aligned}
$$

and when $n=n_{\text {max }}$, all inputs will be correctly classified

TABLE 3.2 Summary of the Perceptron Convergence Algorithm
Variables and Parameters:
$\mathbf{x}(n)=(m+1)$-by-1 input vector
$=\left[+1, x_{1}(n), x_{2}(n), \ldots, x_{m}(n)\right]^{r}$
$\mathbf{w}(n)=(m+1)$-by- 1 weight vector
$=\left[b(n), w_{1}(n), w_{2}(n), \ldots, w_{m}(n)\right]^{T}$
$b(n)=$ bias
$y(n)=$ actual response (quantized)
$d(n)=$ desired response
$\eta=$ learning-rate parameter, a positive constant less than unity

1. Initialization. Set $\mathbf{w}(0)=\mathbf{0}$. Then perform the following computations for time step $n=1,2$
2. Activation. At time step n, activate the perceptron by applying continuous valued input vector $\mathbf{x}(n)$ and desiried response $d(n)$
3. Computation of Actual Response. Compute the actual response of the per-
ceptron: ceptron:

$y(n)=\operatorname{sgn}\left[\mathbf{w}^{T}(n) \mathbf{x}(n)\right]$

where sgn (\cdot) is the signum function.
4. Adaptation of Weight Vector. Update the weight vector of the perceptron:

$$
\mathbf{w}(n+1)=\mathbf{w}(n)+\eta[d(n)-y(n)] \mathbf{x}(n)
$$

where

$$
d(n)=\left\{\begin{array}{cl}
+1 & \text { if } \mathbf{x}(n) \text { belongs to class } \varphi_{1}, \\
-1 & \text { if } \mathbf{x}(n) \text { belongs to class } \mathscr{C}_{2}
\end{array}\right.
$$

5. Continuation. Increment time step n by one and go back to step 2 .

Fixed-Increment Convergence Theorem

Let the subsets of training vectors \mathcal{C}_{1} and \mathcal{C}_{2} be linearly separable. Let the inputs presented to perceptron originate from these two subsets. The perceptron converges after some n_{0} iterations, in the sense that

$$
\mathbf{w}\left(n_{0}\right)=\mathbf{w}\left(n_{0}+1\right)=\mathbf{w}\left(n_{0}+2\right)=\ldots
$$

is a solution vector for $n_{0} \leq n_{\max }$.

Summary

- Adaptive filter using the LMS algorithm and perceptrons are closely related (the learning rule is almost identical).
- LMS and perceptrons are different, however, since one uses linear activation and the other hard limiters.
- LMS is used in continuous learning, while perceptrons are trained for only a finite number of steps.
- Single-neuron or single-layer has severe limits: How can multiple layers help?

XOR with Multilayer Perceptrons

Note: the bias units are not shown in the network on the right, but they are needed

- Only three perceptron units are needed to implement XOR.
- However, you need two layers to achieve this.

[^0]: ${ }^{\dagger}$ Taylor series: $f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\ldots$.

