
Code Tuning Techniques

CPSC 315 – Programming Studio
adapted from John Keyser's 315 slides

Most examples from
Code Complete 2

Tuning Code

 Tuning can be at several “levels” of code
− Routine level to system level

 No “do this and improve code” technique
− Same technique can increase or decrease

performance, depending on situation
− Must measure to see what effect is

 Remember:

Tuning code can make it harder to
understand and maintain!

Tuning Code

 We’ll describe several categories of
tuning, and several specific cases

− Logical Approaches
− Tuning Loops
− Transforming Data
− Tuning Expressions
− Others

Logical Approaches:
Stop Testing Once You Know the

Answer
 Short-Circuit Evaluation

if ((a > 1) and (a < 4))

if (a > 1)

 if (a < 4)
− Note: Some languages (C++/Java) do this

automatically

Logical Approaches:
Stop Testing Once You Know the Answer

 Breaking out of “Test Loops”
flag = False;
for (i=0; i<10000; i++) {
 if (a[i] < 0) flag = True;
}
 Several options:

− Use a break command (or goto!)
− Change condition to check for Flag
− Sentinel approach

Logical Approaches:
Stop Testing Once You Know the

Answer
 Break Command
flag = False;
for (i=0; i<10000; i++) {
 if (a[i] < 0) {
 flag = True;
 break();
 }
}

Logical Approaches:
Stop Testing Once You Know the

Answer
 Change Condition to Check for Flag
flag = False;
for (i=0; (i<10000) && !flag; i++) {
 if (a[i] < 0) {
 flag = True;
 }
}

Logical Approaches:
Stop Testing Once You Know the

Answer
 Sentinel Approach
flag = False;
for (i=0; i<10000; i++) {
 if (a[i] < 0) {
 flag = True;
 i=10000;
 }
}

Logical Approaches:
Order Tests by Frequency

 Test the most common case first
− Especially in switch/case statements
− Remember, compiler may reorder, or not short-

circuit
 Note: it’s worthwhile to compare performance

of logical structures
− Sometimes switch is faster, sometimes if-then

 Generally a useful approach, but can
potentially make tougher-to-read code

− Organization for performance, not understanding

Logical Approaches:
Use Lookup Tables

 Table lookups can be much faster than
following a logical computation

 Example: diagram of logical values:

1 1 BA

1

C

2

2

3

2

0

Logical Approaches:
Use Lookup Tables

if ((a && !c) || (a && b && c)) {

 val = 1;

} else if ((b && !a) || (a && c && !b)) {

 val = 2;

} else if (c && !a && !b) {

 val = 3;

} else {

 val = 0;

}

1 1 BA

1

C

2

2

3

2

0

Logical Approaches:
Use Lookup Tables

static int valtable[2][2][2] = {

 // !b!c !bc b!c bc

 0, 3, 2, 2, // !a

 1, 2, 1, 1, // a

};

val = valtable[a][b][c] 1 1 BA

1

C

2

2

3

2

0

Logical Approaches:
Lazy Evaluation

 Idea: wait to compute until you’re sure
you need the value

− Often, you never actually use the value!
 Tradeoff overhead to maintain lazy

representations vs. time saved on
computing unnecessary stuff

Logical Approaches:
Lazy Evaluation

Class listofnumbers {

private int howmany;

private float* list;

private float median;

float getMedian() {

return median;

}

void addNumber(float num) {

//Add number to list

//Compute Median

}

Logical Approaches:
Lazy Evaluation

Class listofnumbers {

private int howmany;

private float* list;

private float median;

float getMedian() {

//Compute Median

return median;

}

void addNumber(float num) {

//Add number to list

}

Tuning Loops:
Unswitching

 Remove an if statement unrelated to index from inside loop to
outside

for (i=0; i<n; i++)
 if (type == 1)
 sum1 += a[i];
 else
 sum2 += a[i];

if (type == 1)
 for (i=0; i<n; i++)
 sum1 += a[i];
else
 for (i=0; i<n; i++)
 sum2 += a[i];

Tuning Loops:
Jamming

 Combine two loops
for (i=0; i<n; i++)

 sum[i] = 0.0;
 for (i=0; i<n; i++)
 rate[i] = 0.03;

 for (i=0; i<n; i++) {
 sum [i] = 0.0;
 rate[i] = 0.03;
 }

Tuning Loops:
Unrolling

 Do more work inside loop for fewer iterations
− Complete unroll: no more loop…
− Occasionally done by compilers (if recognizable)

for (i=0; i<n; i++) {
 a[i] = i;
}

for (i=0; i<(n-1); i+=2) {
 a[i] = i;
 a[i+1] = i+1;
}
if (i == n-1)
 a[n-1] = n-1;

Tuning Loops:
Minimizing Interior Work

 Move pointer/memory references and repeated
computation outside

for (i=0; i<n; i++) {
 balance[i] += purchase->allocator->indiv-

>borrower;
 amounttopay[i] = balance[i]*(prime+card)*pcentpay;
}

newamt = purchase->allocator->indiv->borrower;
payrate = (prime+card)*pcentpay;
for (i=0; i<n; i++) {
 balance[i] += newamt;
 amounttopay[i] = balance[i]*payrate;
}

Tuning Loops:
Sentinel Values

 Test value placed after the end of the array to guarantee
termination

i=0;
found = FALSE;
while ((!found) && (i<n)) {
 if (a[i] == testval)
 found = TRUE;
 else
 i++;
}
if (found) … //Value found

savevalue = a[n];
a[n] = testval;
i=0;
while (a[i] != testval)
 i++;
if (i<n) … // Value found (loop terminated before reaching end)

Tuning Loops:
Busiest Loop on Inside

 Reduce overhead by calling fewer loops
for (i=0; i<100; i++) // 100
 for (j=0; j<10; j++) // 100x10=1000
 dosomething(i,j);
Total of 1100 loop iterations

for (j=0; j<10; j++) // 10
 for (i=0; i<100; i++) // 10x100=1000
 dosomething(i,j);
Total of 1010 loop iterations

Tuning Loops:
Strength Reduction

 Replace multiplication involving loop
index by addition

for (i=0; i<n; i++)

 a[i] = i*conversion;

sum = 0; // or: a[0] = 0;

for (i=0; i<n; i++) { // or: for (i=1; i<n; i++)

 a[i] = sum; // or: a[i] =

 sum += conversion; // a[i-1]+conversion;

}

Transforming Data:
Integers Instead of Floats

 Integer math tends to be faster than
floating point

 Use ints instead of floats where
appropriate

 Likewise, use floats instead of doubles
 Need to test on system…

Transforming Data:
Fewer Array Dimensions

 Express as 1D arrays instead of 2D/3D as
appropriate

− Beware of assumptions on memory organization

for (i=0; i<rows; i++)
 for (j=0; j<cols; j++)
 a[i][j] = 0.0;

for (i=0; i<rows*cols; i++)
 a[i] = 0.0;

Transforming Data:
Minimize Array Refs

 Avoid repeated array references
− Like minimizing interior work

for (i=0; i<r; i++)
 for (j=0; j<c; j++)
 a[j] = b[j] + c[i];

for (i=0; i<r; i++) {
 temp = c[i];
 for (j=0; j<c; j++)
 a[j] = b[j] + temp;
}

Transforming Data:
Use Supplementary Indexes

 Sort indices in array rather than
elements themselves

− Tradeoff extra dereference in place of
copies

Transforming Data:
Use Caching

 Store data instead of (re-)computing
− e.g. store length of an array (ended by

sentinel) once computed
− e.g. repeated computation in loop

 Overhead in storing data is offset by
− More accesses to same computation
− Expense of initial computation

Tuning Expressions:
Algebraic Identities and Strength

Reduction
 Avoid excessive computation

− sqrt(x) < sqrt(y) equivalent to x < y
 Combine logical expressions

− !a || !b equivalent to !(a && b) -- 3 vs. 2 ops
 Use trigonometric/other identities
 Right/Left shift to multiply/divide by 2
 e.g. Efficient polynomial evaluation

− A*x*x*x + B*x*x + C*x + D =
 (((A*x)+B)*x)+C)*x+D

Tuning Expressions:
Compile-Time Initialization

 Known constant passed to function can
be replaced by value.

log2val = log(val) / log(2);

const double LOG2 =
0.69314718;

log2val = log(val) / LOG2;

Tuning Expressions:
Avoid System Calls

 Avoid calls that provide more
computation than needed

− e.g. if you need an integer log, don’t
compute floating point logarithm

 Could count # of shifts needed
 Could program an if-then statement to identify

the log (only a few cases)

Tuning Expressions:
Use Correct Types

 Avoid unnecessary type conversions
 Use floating-point constants for floats,

integer constants for ints

Tuning Expressions:
Precompute Results

 Storing data in tables/constants instead
of computing at run-time

 Even large precomputation can be
tolerated for good run-time

 Examples
− Store table in file
− Constants in code
− Caching
− Function look-up tables

Tuning Expressions:
Eliminate Common Subexpressions

 Anything repeated several times can be
computed once (“factored” out) instead

− Compilers pretty good at recognizing, now

a = b + (c/d) - e*(c/d) +
f*(d/c);

t = c/d;
a = b + t - e*t + f/t;

Other Tuning:
Inlining Routines

 Avoiding function call overhead by
putting function code in place of
function call

− Also called Macros
 Some languages support directly

(C++: inline)
 Compilers tend to minimize overhead

already, anyway

Other Tuning:
Recoding in Low-Level Language

 Rewrite sections of code in lower-level (and
probably much more efficient) language

 Lower-level language depends on starting
level

− Python -> C++
− C++ -> assembler

 Should only be done at bottlenecks
 Increase can vary greatly, can easily be

worse

Other Tuning:
Buffer I/O

 Buffer input and output
− Allows more data to be processed at once
− Usually there is overhead in sending

output, getting input

Other Tuning:
Handle Special Cases Separately
 After writing general purpose code,

identify hot spots
− Write special-case code to handle those

cases more efficiently
 Avoid overly complicated code to

handle all cases
− Classify into cases/groups, and separate

code for each

Other Tuning:
Use Approximate Values

 Sometimes can get away with
approximate values

 Use simpler computation if it is “close
enough”

− e.g. integer sin/cos, truncate small values
to 0.

Other Tuning:
Recompute to Save Space

 Opposite of Caching!
 If memory access is an issue, try not to

store extra data
 Recompute values to avoid additional

memory accesses, even if already
stored somewhere

Code Tuning Summary

 Tuning is a “last” step, and should only be
applied when it is needed

 Always test your changes
− Often will not improve or even make worse
− If there is no improvement, go back to earlier

version
 Usually, code readability is more important

than performance benefit gained by tuning

