
Portability

CPSC 315 – Programming Studio
adapted from John Keyser's 315 slides

Material from The Practice
of Programming, by Pike and Kernighan

Portability

 Ability of software to run in more than
one environment

− Run the same with differing compilers
− Run the same on different operating

systems
 “Portable” often means it is easier to

modify existing code than rewrite from
scratch

Why Focus on Portability?

 Some drawbacks to portability:
− Known requirements don’t specify it
− Less efficient than less portable code

 But, requirements change
− People will want to run successful programs in new places

and ways
 Environments change

− OS gets “upgraded” – we want the code to improve, also
 Code itself could be ported!

− Java to C/C++
 Portability tends to reflect good programming

General Principles

 Will never have “fully” portable code,
but you can improve portability

 Try to use only the intersection of
standards, interfaces, environments
that it must support

 Don’t add special code to handle new
situations, instead adjust code to fit

 Abstraction and encapsulation help

Language Issues

 Stick to Language Standards
− Many languages aren’t standardized, and no

language is fully specified
− Even such languages have very common usage

patterns
 Program in the mainstream

− Stick to language constructs that are well-
understood

− Don’t use unusual language features or new
language additions

− Requires some familiarity with what “mainstream”
is.

Trouble Spots in Languages

 Sizes of data types
− int, long, pointers can vary
− Don’t assume length, beyond very well

established standards
 e.g. 8 bits in a byte

Trouble Spots in Languages

 Expressions: Order of Evaluation
− Often not clearly specified, or

implemented differently anyway

ptr[count] = name[++count]
 count could be incremented before or after

used to increment ptr
− Avoid reliance on specific order, even

when the language specifies
 Could port code, or compiler treat differently

Trouble Spots in Languages

 “Sign” of a char
− Could run -128 to 127, or 0 to 255

 Arithmetic and logical shifts
− How is sign bit handled? shifted or not?

 Byte order
− Big vs. Little endian

Trouble Spots in Languages

 Alignment of structures and class members
− Never assume that elements of a structure

occupy contiguous memory.
− Lots of machine-specific issues

 e.g. n-byte types must start on n-byte boundaries (bus
error)

− e.g. i could be 2, 4, or 8 bytes from start:
struct X {
 char c;
 int i;
}

Dealing with Language Issues

 General Rules of Thumb:
− Don’t use side effects
− Compute, don’t assume sizes of

types/objects
− Don’t (right) shift signed values
− Make sure data type is big enough for the

range of values you will store
 Try several compilers

Headers and Libraries

 Use standard libraries when available
− Realize that these are not necessarily universal, though
− Different implementations may have different “features”

 Careful about using lots of #ifdefs to catch
language/environment changes

− Easily leads to convoluted header files that are difficult to
understand and maintain

 Choose widely-used and well-established standards
− networking interfaces
− graphics interfaces

Program Organization

 Use only features that are available in
all target systems

 Avoid conditional compilation
(#ifdefs)

− Especially bad to mix compile-time with
run-time commands

− Makes it difficult to test on different
systems, since changes actual program!

Isolation

 Localize system dependencies in different
files

− e.g. single file to capture unix vs. Windows
system calls.

− Sometimes these system files can have a
life/usefulness of their own

 Hide system dependencies behind interfaces
− Good encapsulation should be done, anyway
− Java does this fully with virtual machine

Data Exchange

 Text tends to provide good data exchange
− Much more portable than binary
− Still an issue of Carriage Return vs. Carriage

Return and Line Feed
 Byte Order matters

− Big vs. Little Endian is a real issue
− Be careful in how you rely on it

 Use a fixed byte order for data exchange
− Write in bytes rather than larger formats

Upgrading with Portability In
Mind

 If function specification changes, change the function
name

− e.g.: The sum function (for checksum to see if files were
transferred correctly) in Unix has changed implementations,
making it nearly useless sometimes

 Maintain compatibility with earlier programs and data
− Provide a write function, not just a read function for earlier

data formats
− Make sure there is a way to replicate the old function

 Consider whether “improvement” is worth it in terms
of portability cost

− Don’t “upgrade” function if it will provide only limited benefit,
but can potentially cause portability problems.

Internationalization

 International standards vary
 Don’t assume ASCII

− Some character sets require thousands of characters
− 8-bit vs. 16-bit characters
− Unicode helps

 Careful about culture/language issues
− Date and time format
− Text field lengths
− Idioms and slang
− Icons

