Portability

CPSC 315 — Programming Studio

adapted from John Keyser's 315 slides

Material from The Practice
of Programming, by Pike and Kernighan

Why Focus on Portability?

Some drawbacks to portability:
Known requirements don't specify it
Less efficient than less portable code

But, requirements change

People will want to run successful programs in new places
and ways

Environments change

OS gets “upgraded” — we want the code to improve, also
Code itself could be ported!

Java to C/C++
Portability tends to reflect good programming

Portability

Ability of software to run in more than
one environment
Run the same with differing compilers
Run the same on different operating
systems
“Portable” often means it is easier to
modify existing code than rewrite from
scratch

General Principles

Will never have “fully” portable code,
but you can improve portability

Try to use only the intersection of
standards, interfaces, environments
that it must support

Don’t add special code to handle new
situations, instead adjust code to fit

Abstraction and encapsulation help



Language Issues Trouble Spots in Languages

* Stick to Language Standards - Sizes of data types
- Many languages aren’t standardized, and no . .
language is fully specified - int, long, pointers can vary
- Even such languages have very common usage - Don’t assume length, beyond very well
patterns established standards

* Program in the mainstream

- Stick to language constructs that are well-
understood

- Don’t use unusual language features or new
language additions

- Requires some familiarity with what “mainstream”
is.

* e.g. 8 bits in a byte

Trouble Spots in Languages Trouble Spots in Languages
* Expressions: Order of Evaluation * “Sign” of a char
- Often not clearly specified, or - Could run -128 to 127, or 0 to 255

implemented differently anywa : : , :
g - y anyway * Arithmetic and logical shifts
ptr[count] = name[++count] o _ _
* count could be incremented before or after - How is sign bit handled? shifted or not?

used to increment ptr . Byte order

- Avoid reliance on specific order, even ~ Big vs. Little endian
when the language specifies g vs.

* Could port code, or compiler treat differently



Trouble Spots in Languages

* Alignment of structures and class members
- Never assume that elements of a structure
occupy contiguous memory.
- Lots of machine-specific issues

° e.g. n-byte types must start on n-byte boundaries (bus
error)

- e.g.icould be 2, 4, or 8 bytes from start:
struct X {
char c;
int 1i;

Headers and Libraries

* Use standard libraries when available
- Realize that these are not necessarily universal, though
- Different implementations may have different “features”
* Careful about using lots of #1i fdefs to catch
language/environment changes

- Easily leads to convoluted header files that are difficult to
understand and maintain

* Choose widely-used and well-established standards
- networking interfaces
- graphics interfaces

Dealing with Language Issues

* General Rules of Thumb:
- Don’t use side effects

- Compute, don’t assume sizes of
types/objects

- Don’t (right) shift signed values
- Make sure data type is big enough for the
range of values you will store

* Try several compilers

Program Organization

* Use only features that are available in
all target systems

* Avoid conditional compilation
(#ifdefs)

- Especially bad to mix compile-time with
run-time commands

- Makes it difficult to test on different
systems, since changes actual program!



Isolation

* Localize system dependencies in different
files
- e.g. single file to capture unix vs. Windows
system calls.

- Sometimes these system files can have a
life/usefulness of their own

* Hide system dependencies behind interfaces
- Good encapsulation should be done, anyway
- Java does this fully with virtual machine

Upgrading with Portability In
Mind

* If function specification changes, change the function
name
- e.g.: The sum function (for checksum to see if files were
transferred correctly) in Unix has changed implementations,
making it nearly useless sometimes
* Maintain compatibility with earlier programs and data
- Provide a write function, not just a read function for earlier
data formats
- Make sure there is a way to replicate the old function
* Consider whether “improvement” is worth it in terms
of portability cost

- Don’t “upgrade” function if it will provide only limited benefit,
but can potentially cause portability problems.

Data Exchange

* Text tends to provide good data exchange
- Much more portable than binary

- Still an issue of Carriage Return vs. Carriage
Return and Line Feed

* Byte Order matters
- Big vs. Little Endian is a real issue
- Be careful in how you rely on it

* Use a fixed byte order for data exchange
- Write in bytes rather than larger formats

Internationalization

* International standards vary
* Don’t assume ASCII
- Some character sets require thousands of characters
- 8-bit vs. 16-bit characters
- Unicode helps
* Careful about culture/language issues
- Date and time format
- Text field lengths
- Idioms and slang
- lcons



