
Design Patterns

CSCE 315 – Programming Studio

adpted from John Keyser's 315 slides

Design Patterns in General

 When designing in some field, often the same
general type of problems are encountered

 Usually, there are a set of ways that are “good” for
handling such design problems

 Rather than reinventing these good solutions, it
would be helpful to have a way to recognize the
design problem, and know what good solutions to it
would tend to be (or already exist!).

 In architecture, a 1977 book, A Pattern Language,
Christopher Alexander et al. introduced the idea of a
way of describing design solutions

Pattern Language
 The idea is to describe how good design is achieved

for a field
− Ideas that are “settled” and well understood are good

 Key aspects of a pattern language include:
− Identifying common, general (somewhat abstract)

problems.
− Finding common “good” ways of addressing these

problems
− Giving names to these solutions (patterns)

 Identification, understanding, communication

− Giving description of the patterns:
 When and how to apply it
 What the effects of applying it are
 How it interacts with other patterns

Design Patterns in
Computer Science

 The idea developed over time, but became popular
with Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides, published in 1995.

 Authors often called the “Gang of Four”, and the
book sometimes called the GOF book

 Closely tied to Object-Oriented Programming,
although the principles are not limited to OOP

Design Pattern
Elements

 Pattern name
− Name to describe it concisely

 Problem
− When to apply the pattern

 Solution
− What is involved in the pattern

 Consequences
− Results and tradeoffs

Design Pattern
Descriptions (GOF)

 Intent
 Also Known As
 Motivation (scenario)
 Applicability (when to use)
 Structure (diagram of how it works)
 Participants (other things it uses)
 Collaborations (how it interacts with other stuff)
 Consequences (results and tradeoffs)
 Implementation (Pitfalls/hints/techniques)
 Sample Code
 Known Uses (examples in real systems)
 Related Patterns (closely related design patterns)

Organizing Patterns

 Several Classification Schemes
− Purpose
− Scope (objects vs. classes)
− Relationships
− Functional (grouping similar ones)
− etc.

Purposes of Design Patterns

 Creational
− Deal with object creation

 Structural
− Deal with how objects/classes are composed

 Behavioral
− Deal with how classes/objects interact

 Others for specific domains
− e.g. Concurrency
− e.g. User interface

Example Creational:
Factory Method

 Intent: Define an interface for creating an object, but
let subclasses decide which class to instantiate.
Defers instantiation to subclasses.

 Allows code to work with an interface, not the
underlying concrete product

 Can be abstract (no default), or provide a default that
is overridden by subclasses

 Allows subclasses to specialize and replace the
default implementation

Example

 Instead of:
Book* Publisher::CreateBook() {

Book* aBook = new Book();

Chapter* c1 = new Chapter(1);

Chapter* c2 = new Chapter(2);

aBook->addChapter(c1);

aBook->addChapter(c2);

}

Example

 Use:
Book* Publisher::CreateBook() {

Book* aBook = makeBook();

Chapter* c1 = makeChapter(1);

Chapter* c2 = makeChapter(2);

aBook->addChapter(c1);

aBook->addChapter(c2);

}

Example Structural:
Adapter

 aka Wrapper
 Intent: Convert the interface of a class

into another interface clients expect.
Adapter lets classes work together that
couldn’t otherwise because of
incompatible interfaces.

 Example: Interface to game AI program

Example Structural:
Composite

 Intent: Compose objects into tree structures to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of
objects uniformly.

 Composite could be a “leaf” (basic object), in which
case, it behaves just like that object

 Composite could be a combination of other objects
in a hierarchy. Performs some general operations,
then usually calls children

 Example: translating an object (or group of objects)
in computer graphics

Example Behavioral:
Iterator

 Intent: Provide a way to access the
elements of an aggregate object
sequentially without exposing its
underlying representation

 Note: does not assume that there is a
“true” sequential ordering

 Examples: tree traversal in preorder,
postorder, inorder; records returned by
DB query.

Example Behavioral:
Observer

 Intent: Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.

 Example: multiple graph view of same data set (as
bar chart, pie chart, etc.); graphs update when base
data changes

 Usually attach/detach observers from a subject
− Observers get called whenever subject changes
− Subject does not have to worry about how the observers

work, it just calls a “notify” to each of them.

Patterns (GOF book)

 Creational:
− Abstract Factory
− Builder
− Factory Method
− Prototype
− Singleton

Patterns (GOF book)

 Structural:
− Adapter
− Bridge
− Composite
− Decorator
− Façade
− Flyweight
− Proxy

Patterns (GOF book)

 Behavioral:
− Chain of Responsibility
− Command
− Interpreter
− Iterator
− Mediator
− Memento
− Observer
− State
− Strategy
− Template Method
− Visitor

Summary

 Many patterns out there
− But, a key to usefulness is being

commonly recognized
 Takes experience and practice to get

used to identifying/using them

