Design Patterns in General

* When designing in some field, often the same
general type of problems are encountered

DeSign Patterns « Usually, there are a set of ways that are “good” for

handling such design problems

* Rather than reinventing these good solutions, it
would be helpful to have a way to recognize the
design problem, and know what good solutions to it

CSCE 315 — Programming Studio would tend to be (or already exist!).

* In architecture, a 1977 book, A Pattern Language,

Christopher Alexander et al. introduced the idea of a

adpted from John Keyser's 315 slides way of describing design solutions

Design Patterns in
Computer Science

* The idea developed over time, but became popular

with Design Patterns: Elements of Reusable Object-
) Oriented Software by Erich Gamma, Richard Helm,
* Key aspects of a pattern language include: Ralph Johnson, John Vlissides, published in 1995.

- ldentifying common, general (somewhat abstract) - Authors often called the “Gang of Four’, and the

Pattern Language

* The idea is to describe how good design is achieved
for a field
Ideas that are “settled” and well understood are good

problems. .

- Finding common “good” ways of addressing these book sometimes called the GOF book
problems

- Giving names to these solutions (patterns) * Closely tied to Object-Oriented Programming,

* Identification, understanding, communication
- Giving description of the patterns:

* When and how to apply it

* What the effects of applying it are

° How it interacts with other patterns

although the principles are not limited to OOP



Design Pattern
Elements

* Pattern name

- Name to describe it concisely
* Problem

- When to apply the pattern
* Solution

- What is involved in the pattern

* Consequences
- Results and tradeoffs

Organizing Patterns

* Several Classification Schemes
- Purpose
- Scope (objects vs. classes)
- Relationships
- Functional (grouping similar ones)
- efc.

Design Pattern
Descriptions (GOF)

° Intent

* Also Known As

* Motivation (scenario)

* Applicability (when to use)

* Structure (diagram of how it works)

* Participants (other things it uses)

* Collaborations (how it interacts with other stuff)
* Consequences (results and tradeoffs)

* Implementation (Pitfalls/hints/techniques)

* Sample Code

* Known Uses (examples in real systems)

* Related Patterns (closely related design patterns)

Purposes of Design Patterns

Creational

- Deal with object creation
Structural

- Deal with how objects/classes are composed
Behavioral

- Deal with how classes/objects interact
Others for specific domains

- e.g. Concurrency
- e.g. User interface



Example Creational:
Factory Method

Intent: Define an interface for creating an object, but
let subclasses decide which class to instantiate.
Defers instantiation to subclasses.

Allows code to work with an interface, not the
underlying concrete product

Can be abstract (no default), or provide a default that
is overridden by subclasses

Allows subclasses to specialize and replace the
default implementation

Example

Use:

Book* Publisher::CreateBook() {
Book* aBook = makeBook();
Chapter* c1 = makeChapter(1);
Chapter* c2 = makeChapter(2);

aBook->addChapter(c1);
aBook->addChapter(c2);

Example

Instead of:

Book* Publisher::CreateBook() {
Book* aBook = new Book();
Chapter* ¢c1 = new Chapter(1);
Chapter* c2 = new Chapter(2);

aBook->addChapter(c1);
aBook->addChapter(c2);

Example Structural:
Adapter

aka Wrapper

Intent: Convert the interface of a class
into another interface clients expect.
Adapter lets classes work together that
couldn’t otherwise because of
incompatible interfaces.

Example: Interface to game Al program



Example Structural:
Composite

Intent: Compose objects into tree structures to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of
objects uniformly.

Composite could be a “leaf” (basic object), in which
case, it behaves just like that object

Composite could be a combination of other objects
in a hierarchy. Performs some general operations,
then usually calls children

Example: translating an object (or group of objects)
in computer graphics

Example Behavioral:
Observer

Intent: Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.

Example: multiple graph view of same data set (as
bar chart, pie chart, etc.); graphs update when base
data changes

Usually attach/detach observers from a subject

- Observers get called whenever subject changes

- Subject does not have to worry about how the observers
work, it just calls a “notify” to each of them.

Example Behavioral:
lterator

* Intent: Provide a way to access the

elements of an aggregate object
sequentially without exposing its
underlying representation

* Note: does not assume that there is a

“true” sequential ordering

* Examples: tree traversal in preorder,

postorder, inorder; records returned by
DB query.

Patterns (GOF book)

* Creational:

- Abstract Factory
- Builder

- Factory Method
- Prototype

- Singleton



Patterns (GOF book) Patterns (GOF book)

* Structural: * Behavioral:
- Chain of Responsibility
Adapter - Command
- Bridge - Interpreter
- Composite - lterator
- Mediator
- Decorator - Memento
- Fagade ) gtt::rver
- Flyweight _ Strategy
-~ Proxy - Template Method
- Visitor

Summary

* Many patterns out there
- But, a key to usefulness is being
commonly recognized
* Takes experience and practice to get
used to identifying/using them



