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How to Generate Realistic Behavior,
for Games?

Call of Duty R© Heider and Simmel [ 2]

• Which one looks more realistic?

• Which one will show more realistic behavior?
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Outline

• Introduction to neuroevolution

• Evolving complex behavior through complexification

and co-evolution (Stanley, Miikkulainen)

• Composite Agents (Yeh et al.) – if time permits

• Discussion
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I. Intro to Neuroevolution
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Neuroevolution of Complex Behavior

• Neuroevolution: Evolving artificial neural networks to control

behavior of robots and agents.

• Main idea: Mimic the natural process of evolution that gave

rise to the brain, the source of intelligence.

– Population

– Competition

– Selection

– Reproduction and mutation
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Why Neuroevolution?

• Neural networks are effective but with limitations.

• Can solve tough, complex problems: fin-less rockets, robotic agents.
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Neuroevolution Basics
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• A single chromosome encodes a full neural network.

– Inputs hooked up to sensors, and outputs to actuators.

• Each gene, a single bit (or a real number), maps to a

connection weight in the neural network.
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Neuroevolution Basics: Operators

cross−over point
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• Cross-over: Combine traits from both parents.

• Mutation: Introduce randomness (innovation).
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Neuroevolution Basics: Cross-Over in Detail

cross−over point

PARENTS OFFSPRINGS

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w1 w6

w7 w12

w1 w6

w7 w12

w1 w6

w7 w12

w1 w6

w7 w12

CROSS−OVER

• Cross-over of two individuals produces two offsprings with

a mixed heritage.
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Conventional Neuroevolution (2)

1. Fitness Evaluation: Construct NN with chromosome, put in the

environment, observe outcome.

2. Selection: Choose best ones.

3. Reproduction: Mate the best ones and put back in the population.
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Problems with CNE

• Evolution tends to converge to a small homogeneous population
– Diversity is lost; progress stagnates

• Competing conventions
– Different, incompatible encodings for the same solution

• Too many parameters to be optimized simultaneously
– Thousands of weight values at once11

Advanced Neuroevol.: Evolving Neurons

• Evolving individual neurons: Chromosome = neuron. 1,3,4

• Construct network with neurons, evaluate, reproduce, and repeat.

– Network has fixed topology.

• Fitness of network determines that of participating neurons.

• Shown to improve diversity.
12



II. Evolving Complex Behavior:
Co-Evolution & Topology Evolution5,6
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Evolving Topologies

• Fixed topology has limitations.

• Idea: Evolve network topology, as well as connection weight.

• Neuroevolution of Augmenting Topologies (NEAT 5,6)

• Based on Complexification:

– Network topology

– Behavior
14

How Can We Complexify?

• Can optimize not just weights but also topologies

vs.

• Solution: Start with minimal structure and complexify 8

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

• Can search a very large space of configurations!
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How Can Crossover be Implemented?

• Problem: Structures do not match

• Solution: Utilize historical markings
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How can Innovation Survive?

• Problem: Innovations have initially low fitness

vs.

• Solution: Speciate the population

– Innovations have time to optimize

– Mitigates competing conventions

– Promotes diversity
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Competitive Coevolution

• Progress in evolution is based on competition.

• Better solutions emerge when given tougher opponents.

• Tough opponents do not exist from the beginning.

• Co-evolution solves this problem.

– Start out with naive populations.

– Make populations compete with each other.

– Coevolutionary arms race (poison toxicity vs.

tolerance).
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Competitive Coevolution with NEAT

• Complexification elaborates on the solution

– Adding more complexity to existing behaviors

• Can establish a coevolutionary arms race

– Two populations continually outdo each other

– Absolute progress, not just tricks
19

Coevolution Demo (by Ken Stanley)

• Two robots pitted against each other 7

– Food sensor, Enemy sensor, Energy difference

sensor, Wall sensor

– Eat food to incr. Energy, Moving around decr. energy.
20



Early Poor Strategy

• Generation 1 and 3 champs.

• Very goal-directed: eat food, attack opponent
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Later Poor Strategy

• Champs from two different population in gen 40.

• No food consumption (poor strategy).

• Waste energy while idly moving (teasing?).
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First Successful Strategy

• Gen 80 champ vs. Gen 95 descendant

• Switching behavior between foraging, caution,

predation; Final standoff.
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Old West-Style Standoff

• Gen 95 vs. gen 90 champ.

• Extended standoff
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Later Dominant vs. Early Good Str.

• Gen 221 champ (later dominant strategy) vs. gen

130 champ (first good strategy).

• Caution when seeking food. Switching of strategy

observed. 25

Highest- vs. Prior-Dominant Str.

• Gen 313 champ vs. gen 210 champ.

• Waiting until the moment is just right.

• Food nearby, enemy wasting energy, etc. all

considered. 26

Highest Dominant vs. First Good Str.

• Gen 313 champ vs. gen 95 champ.

• Highest dominant is dominant over all past

dominant.
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Other Applications of NEAT

• NERO (NeuroEvolution of Robotic Operatives): Interactive neuroevolution

for realtime strategy game-like environment

(http://nerogame.org)

• Dancing, driving, generation of art, etc.

• See Ken Stanley’s web page.
28



NERO Details

1. Approach Enemy

2. Hit Target

3. Avoid Fire

4. Approach Flag

5. Stick Together

6. Stand Guard

[NERO Demo]
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Summary (NEAT)

• Evolving neural network topologies helps evolve complex

emergent behavior.

• Co-evolution ensures continuous progress.

• Diverse applications possible.
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III. Composite Agents9
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Crowd Modeling with Composite Agents

Yeh et al. 9

A simple idea of “proxy” can:

• Help simplify task specification.

• Lead to emergent, realistic behavior.
32



The Concept of “Proxy”

Yeh et al. 9

• Proxies are like ghosts attached to the main agent.

• Attaching or dynamically generating “proxies” can greatly

simplify behavioral modeling.
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Types of Proxies

• Aggression proxy

• Priority proxy

• Trailing proxy

Use default planner with these proxies.
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Proxy: Intangible Factors

• Social and psychological factors can be translated into

proxies.
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Proxy: Aggression Proxy

• Red: aggressor (with black proxy), Green: normal.
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Proxy: Office Evacuation Example

• Agents with aggression proxy faster to evacuate building.
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Proxy: Priority Proxy

• Priority proxy implements social protocol.
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Proxy: Trail Proxy

• Trail proxy enforces authority.
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Proxy: Embassy Evacuation Example

• Trail proxy helps maintain police line.
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DEMO
Crowd modeling with composite agents

http://gamma.cs.unc.edu/CompAgent/CompAgent.avi
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IV. Wrap Up
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Discussion and Conclusion

• Neuroevolution evolution is an effective strategy for

constructing complex and realistic behavior.

• Composite agents, using various proxies, can also lead to

realistic behavior.

• Analyzing the evolved networks is a challenge.
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