
Software Development Overview

CPSC 315 – Programming Studio

Variety of Software Development 
Processes

 Traditionally covered in Software 
Engineering

− We’ll only give a very brief overview of 
most

 Many are not “clear cut” ideas
− Often modified to incorporate ideas from 

other models; seldom used in “pure” form

Waterfall Model of 
Development

 It is the “traditional” software 
engineering approach

 Involves series of stages, each a 
process that converts one product to 
another

 The development “flows” from the top 
(early processes) through to the bottom
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Waterfall Model

 It can get more complex
− Feedback from later stages to earlier ones
− Verification and Validation testing in each 

stage
− Or, a separate testing stage after 

integration
− Can extend to incorporate iterative 

approaches

Waterfall Model

 Good Points
− Provides clear structured process, especially 

useful on large projects
− Clear requirements, design at beginning can 

make things much easier and better later on
− Tend to have good documentation throughout

 Bad Points
− Can be tough to know requirements ahead of 

time
− Difficult to evaluate how later parts of system will 

really work in practice
− Requires more discipline by programmers to 

implement

  Iterative Software 
Development

 Rather than produce a single product 
“all at once”, provide incremental 
improvements

− Deliver pieces of the product at various 
times

 Time is planned to iterate on the design 
and implementation of the system

 Includes user analysis, feedback to 
improve
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Prototyping

 Fits into iterative approach
 Deliver early prototypes of the software

− Not fully functional, or with poor functionality
 Prototypes should allow one to get user 

feedback
− Allows revision of requirements, design

 Possible problems:
− Can hide difficulties underlying the prototype
− Can set expectations too high
− Provides early design anchoring (less flexible)

Spiral Model
 Combines iterative and prototype 

approaches
 Starting from center, (basic 

requirements), a prototype is created in 
the first iteration

 Each successive iterative cycle produces 
a newer, better prototype (spiraling out)

 When good prototype is found, fix system

Cleanroom Development

 Couple iterative process with very detailed 
evaluation

 Every iteration gets tested on a very large 
test data set

− Provides “hard” statistical data on how reliable 
the method is

 Measure whether iteration has introduced or 
reduced defects

− Introducing defects indicates problem – go back 
to previous stage and start over

Formal Processes

 Some of these techniques have been 
collected into more formal descriptions

− The Rational Unified Process – incorporates 
much of this, plus more; suite of software 
products to support the process

 Standards developed for specifying many 
stages, such as requirements, processes, 
assessments



Agile Software Methods

 Newer trend in software development
 Meant to contrast vs. “heavyweight” methods of 

software development
− Heavyweight – Highly regimented methods, typified by the 

waterfall model
− Designed to respond/change quickly, but involves much 

less long-term planning
 Many methods fall under the “Agile” heading

− Extreme programming
− Scrum 
− Plus, it overlaps with some ideas of iterative development

Agile Methods

 Tend to involve lots of collaboration
 Seem to work best with smaller, co-

located teams 
 Tend to be good for projects where 

requirements will shift during 
development

 Will be the focus of the next lecture


