
Software Development Overview

CPSC 315 – Programming Studio

Variety of Software Development
Processes

 Traditionally covered in Software
Engineering

− We’ll only give a very brief overview of
most

 Many are not “clear cut” ideas
− Often modified to incorporate ideas from

other models; seldom used in “pure” form

Waterfall Model of
Development

 It is the “traditional” software
engineering approach

 Involves series of stages, each a
process that converts one product to
another

 The development “flows” from the top
(early processes) through to the bottom

Waterfall ModelCustomer’s
Needs

Requirement
Specification

Executable
Modules

Design
Specification

Integrated
Software

Delivered
Product

New
Requirements

Requirement
Engineering

Design

Programming

Integration

Delivery

Maintenance

Waterfall Model

 It can get more complex
− Feedback from later stages to earlier ones
− Verification and Validation testing in each

stage
− Or, a separate testing stage after

integration
− Can extend to incorporate iterative

approaches

Waterfall Model

 Good Points
− Provides clear structured process, especially

useful on large projects
− Clear requirements, design at beginning can

make things much easier and better later on
− Tend to have good documentation throughout

 Bad Points
− Can be tough to know requirements ahead of

time
− Difficult to evaluate how later parts of system will

really work in practice
− Requires more discipline by programmers to

implement

 Iterative Software
Development

 Rather than produce a single product
“all at once”, provide incremental
improvements

− Deliver pieces of the product at various
times

 Time is planned to iterate on the design
and implementation of the system

 Includes user analysis, feedback to
improve

Iterative Approach

Collect
Requirements

Test and
Evaluate

Plan and
Design

Implement

Initial
Idea Deliverable

Prototyping

 Fits into iterative approach
 Deliver early prototypes of the software

− Not fully functional, or with poor functionality
 Prototypes should allow one to get user

feedback
− Allows revision of requirements, design

 Possible problems:
− Can hide difficulties underlying the prototype
− Can set expectations too high
− Provides early design anchoring (less flexible)

Spiral Model
 Combines iterative and prototype

approaches
 Starting from center, (basic

requirements), a prototype is created in
the first iteration

 Each successive iterative cycle produces
a newer, better prototype (spiraling out)

 When good prototype is found, fix system

Cleanroom Development

 Couple iterative process with very detailed
evaluation

 Every iteration gets tested on a very large
test data set

− Provides “hard” statistical data on how reliable
the method is

 Measure whether iteration has introduced or
reduced defects

− Introducing defects indicates problem – go back
to previous stage and start over

Formal Processes

 Some of these techniques have been
collected into more formal descriptions

− The Rational Unified Process – incorporates
much of this, plus more; suite of software
products to support the process

 Standards developed for specifying many
stages, such as requirements, processes,
assessments

Agile Software Methods

 Newer trend in software development
 Meant to contrast vs. “heavyweight” methods of

software development
− Heavyweight – Highly regimented methods, typified by the

waterfall model
− Designed to respond/change quickly, but involves much

less long-term planning
 Many methods fall under the “Agile” heading

− Extreme programming
− Scrum
− Plus, it overlaps with some ideas of iterative development

Agile Methods

 Tend to involve lots of collaboration
 Seem to work best with smaller, co-

located teams
 Tend to be good for projects where

requirements will shift during
development

 Will be the focus of the next lecture

