
Debugging

CPSC 315 – Programming Studio

Bugs

 Term has been around a long time
− Edison
− Mark I – moth in machine

 Mistake made by programmers
 Also (and maybe better) called:

− Errors
− Defects
− Faults

Sources of Bugs

 Bad Design
− Wrong/incorrect solution to problem
− From system-level to statement-level

 Insufficient Isolation
− Changes in one area affect another

 Typos
− Entered wrong text, chose wrong variable

 Later changes/fixes that aren’t complete
− A change in one area affects another

Debugging in Software 
Engineering

 Programmer speed has high correlation 
to debugging speed

− Best debuggers can go up to 10 times 
faster

 Faster in finding bugs
 Find more bugs
 Introduce fewer new bugs



Ways NOT to Debug

 Guess at what’s causing it
 Don’t try to understand what’s causing it
 Fix the symptom instead of the cause

− Special case code
 Blame it on someone else’s code

− Only after extensive testing/proof
 Blame it on the compiler/computer

− Yes, it happens, but almost never is this the real 
cause

An Approach to Debugging

Stabilize the error
Locate the source
Fix the defect
Test the fix
Look for similar errors

Goal: Figure out why it occurs and fix 
it completely

1. Stabilize the Error

 Find a simple test case to reliably 
produce the error

− Narrow it to as simple a case as possible
 Some errors resist this

− Failure to initialize
− Pointer problems
− Timing issues

1. Stabilizing the Error

 Converge on the actual (limited) error
− Bad: “It crashes when I enter data”
− Better: “It crashes when I enter data in 

non-sorted order”
− Best: “It crashes when I enter something 

that needs to be first in sorted order”
 Create hypothesis for cause

− Then test hypothesis to see if it’s accurate



2. Locate the Source

 This is where good code design helps
 Again, hypothesize where things are 

going wrong in code itself
− Then, test to see if there are errors 

coming in there
− Simple test cases make it easier to check

When it’s Tough to Find 
Source

 Create multiple test cases that cause same 
error

− But, from different “directions”
 Refine existing test cases to simpler ones
 Try to find source that encompasses all 

errors
− Could be multiple ones, but less likely

 Brainstorm for sources, and keep list to 
check

 Talk to others
 Take a break

Finding Error Locations

 Process of elimination
− Identify cases that work/failed hypotheses
− Narrow the regions of code you need to check
− Use unit tests to verify smaller sections

 Process of expansion:
− Be suspicious of:

 areas that previously had errors
 code that changed recently

− Expand from suspicious areas of code

Alternative to Finding Specific 
Source

 Brute Force Debugging
− “Guaranteed” to find bug
− Examples:

 Rewrite code from scratch
 Automated test suite
 Full design/code review
 Fully output step-by-step status

 Don’t spend more time trying to do a “quick” 
debug than it would take to brute-force it.



3. Fix the Defect

 Make sure you understand the problem
− Don’t fix only the symptom

 Understand what’s happening in the 
program, not just the place the error 
occurred

− Understand interactions and 
dependencies

 Save the original code
− Be able to “back out” of change

Fixing the Code

 Change only code that you have a 
good reason to change

− Don’t just try things till they work
 Make one change at a time

4. Check Your Fix

 After making the change, check that it 
works on test cases that caused errors

 Then, make sure it still works on other 
cases

− Regression test
− Add the error case to the test suite

5. Look for Similar Errors

 There’s a good chance similar errors 
occurred in other parts of program

 Before moving on, think about rest of 
program

− Similar routines, functions, copied code
− Fix those areas immediately



Preventing Bugs
Or Finding Difficult Ones

 Good Design
 Self-Checking code
 Output options

− Print statements can be your friend…

Debugging Tools

 Debuggers
− Often integrated
− Can examine state in great detail

 Don’t use debuggers to do “blind probing” 
− Can be far less productive than thinking harder 

and adding output statements
− Use as “last resort” to identify sources, if you 

can’t understand another way

Non-traditional Debugging 
Tools

 Source code comparators (diff)
 Compiler warning messages
 Extended syntax/logic checkers
 Profilers
 Test frameworks


