
Testing

CPSC 315 – Programming Studio

Testing

 Testing helps find that errors exist
− Debugging finds and fixes them

 Systematic attempt to break a program that
is working

 Unlike all other parts of software
development, whose goal is to avoid errors

 Can never prove absence of errors
 Testing alone does not improve quality

Types of Testing

 Unit testing
− Testing of a single class, routine, program
− Usually single programmer
− Testing in isolation from system

 Component testing
− Testing of a class, package, program
− Usually small team of programmers

 Integration testing
− Combined test of two or more classes, packages,

components, or subsystems

Types of Testing
(continued)

 Regression testing
− Repetition of previously tested cases to

find new errors introduced
 System testing

− Executing software in final configuration,
including integration with all other systems
and hardware

− Security, performance, resource loss,
timing issues

Other Testing

 Usually by specialized test personnel
− User tests
− Performance tests
− Configuration tests
− Usability tests
− Etc.

 We’re interested in developer tests

Writing Test Cases First

 Helps identify errors more quickly
 Doesn’t take any more effort than

writing tests later
 Requires thinking about requirements

and design before writing code
 Shows problems with requirements

sooner (can’t write code without good
requirements)

Testing As You Write Code

 Boundary Testing
 Pre- and Post-conditions
 Assertions
 Defensive Programming
 Error Returns

 Waiting until later means you have to relearn
code

− Fixes will be less thorough and more fragile

Boundary Testing

 Most bugs occur at boundaries
− If it works at and near boundaries, it likely works

elsewhere
 Check loop and conditional bounds when

written
− Check that extreme cases are handled

 e.g. Full array, Empty array, One element array
 Usually should check value and +/- 1

 Mental test better than none at all

Preconditions and
Postconditions

 Verify that routine starts with correct
preconditions and produces correct
postconditions

 Check to make sure preconditions met
− Handle failures cleanly

 Verify that postconditions are met
− No inconsistencies created

 Need to define pre-/postconditions clearly
 “Provable” software relies on this approach

Assertions

 Available in C/C++
− assert.h

 Way of checking for pre-/postconditions
 Helps identify where problem occurs

− Before the assertion
− e.g. usually in calling routine, not callee

 Problem: causes abort
− So, useful for testing for errors

Defensive Programming

 Add code to handle the “can’t happen”
cases

 Program “protects” itself from bad data

Error Returns

 Good API and routine design includes
error codes

 Need to be checked

Systematic Testing

 Test of complete code pieces

 Test incrementally
 Test simple parts first
 Know what output to expect
 Verify conservation properties
 Compare independent implementations
 Measure test coverage

Test Incrementally

 Don’t wait until everything is finished
before test

 Test components, not just system
 Test components individually before

connecting them

Test Simple Parts First

 Test most basic, simplest features
 Finds the “easy” bugs (and usually

most important) first

Know What Output To Expect

 Design test cases that you will know
the answer to!

 Make hand-checks convenient
 Not always easy to do

− e.g. compilers, numerical programs,
graphics

Verify Conservation Properties

 Specific results may not be easily verifiable
− Have to write the program to compute the answer

to compare to
 But, often we have known output properties

related to input
− e.g. #Start + #Insert - #Delete = #Final

 Can verify these properties even without
verifying larger result

Compare Independent
Implementations

 Multiple implementations to compute same
data should agree

 Useful for testing tricky code, e.g. to increase
performance

− Write a slow, brute-force routine
− Compare the results to the new, “elegant” routine

 If two routines communicate (or are
inverses), different people writing them helps
find errors

− Only errors will be from consistent
misinterpretation of description

Measure Test Coverage

 What portion of code base is actually
tested?

 Techniques to work toward this
− Following slides

 Tend to work well on only
small/moderate code pieces

 For large software, tools help judge
coverage

Logic Coverage

 Or, Code Coverage
 Testing every branch, every path

through the code
 Can grow (nearly) exponentially with

number of choices/branches
 Only suitable for small to medium size

codes

Structured Basis Testing

 Testing every line in a program
− Ensure that every statement gets tested
− Need to test each part of a logical statement

 Far fewer cases than logic coverage
− But, also not as thorough

 Goal is to minimize total number of test
cases

− One test case can test several statements

Structured Basis Testing
(continued)

 Start with base case where all Boolean
conditions are true

− Design test case for that situation
 Each branch, loop, case statement

increases minimum number of test
cases by 1

− One more test case per variation, to test
the code for that variation

Data Flow Testing

 Examines data rather than control
 Data in one of three states

− Defined – Initialized but not used
− Used – In computation or as argument
− Killed – Undefined in some way

 Variables related to routines
− Entered – Routine starts just before variable is

acted upon
− Exited – Routine ends immediately after variable

is acted upon

Data Flow Testing (continued)

 First, check for any anomalous data sequences
− Defined-defined
− Defined-exited
− Defined-killed
− Entered-killed
− Entered-used
− Killed-killed
− Killed-used
− Used-defined

 Often can indicate a serious problem in code design
 After that check, write test cases

Data Flow Testing (continued)

 Write test cases to examine all defined-
used paths

 Usually requires
− More cases than structured basis testing
− Fewer cases than logic coverage

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Logic Coverage / Code Coverage

1. Conditions: T T T

2. Conditions: T T F

3. Conditions: T F T

4. Conditions: T F F

5. Conditions: F T T

6. Conditions: F T F

7. Conditions: F F T

8. Conditions: F F F

Tests all possible paths

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Structured Basis Testing

1. Conditions: T T T

2. Conditions: F F F

Tests all lines of code

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Data Flow Testing

1. Conditions: T T T

2. Conditions: T F F

3. Conditions: F T ?

4. Conditions: F F ?

Tests all defined-used paths
 Note: cond3 is independent

of first two

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Data Flow Testing

1. Conditions: T T T

2. Conditions: T F F

3. Conditions: F T ?

4. Conditions: F F ?

Tests all defined-used paths
 Note: cond3 is independent

of first two

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Data Flow Testing

1. Conditions: T T T

2. Conditions: T F F

3. Conditions: F T ?

4. Conditions: F F ?

Tests all defined-used paths
 Note: cond3 is independent

of first two

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Data Flow Testing

1. Conditions: T T T

2. Conditions: T F F

3. Conditions: F T ?

4. Conditions: F F ?

Tests all defined-used paths
 Note: cond3 is independent

of first two

Test Case Design
(If you don’t know the code)

 Boundary analysis still applies
 Equivalence partitioning

− Don’t create multiple tests to do the same thing
 Bad data

− Too much/little
− Wrong kind/size
− Uninitialized

 Good data
− Minimum/maximum normal configuration
− “Middle of the Road” data
− Compatibility with old data

Test Automation

 Should do lots of tests, and by-hand is not usually
appropriate

 Scripts can automatically run test cases, report on
errors in output

− But, we need to be able to analyze output automatically…
− Can’t always simulate good input (e.g. interactive

programs)
 People cannot be expected to remain sharp over

many tests
 Automation reduces workload on programmer,

remains available in the future

Regression Testing

 Goal: Find anything that got broken by
“fixing” something else

 Save test cases, and correct results
 With any modifications, run new code

against all old test cases
 Add new test cases as appropriate

Test Support Tools

 Test Scaffold
− Framework to provide just enough support

and interface to test
− Stub Routines and Test Harness

 Test Data Generators
 System Perturber

Stub Routines

 Dummy object/routine that doesn’t provide
full functionality, but pretends to do
something when called

− Return control immediately
− Burn cycles to simulate time spent
− Print diagnostic messages
− Return standard answer
− Get input interactively rather than computed
− Could be “working” but slow or less accurate

Test Harness

 Calls the routine being tested
− Fixed set of inputs
− Interactive inputs to test
− Command line arguments
− File-based input
− Predefined input set

 Can run multiple iterations

Test Data Generators

 Can generate far more data than by hand
 Can test far wider range of inputs
 Can detect major errors/crashes easily
 Need to know answer to test correctness

− Useful for “inverse” processes – e.g.
encrypt/decrypt

 Should weight toward realistic cases

System Perturbers

 Modify system so as to avoid problems that
are difficult to test otherwise

− Reinitialize memory to something other than 0
 Find problems not caught because memory is “usually”

null

− Rearrange memory locations
 Find problems where out-of-range queries go to a

consistent place in other tests

− Memory bounds checking
− Memory/system failure simulation

Other Testing Tools

 Diff tools
− Compare output files for differences

 Coverage monitors
− Determine which parts of code tested

 Data recorder/loggers
− Log events to files, save state information

 Error databases
− Keep track of what’s been found, and rates of errors

 Symbolic debuggers
− Will discuss debugging later, but useful for tests

