Testing

CPSC 315 — Programming Studio

Types of Testing

Unit testing
Testing of a single class, routine, program
Usually single programmer
Testing in isolation from system
Component testing
Testing of a class, package, program
Usually small team of programmers

Integration testing

Combined test of two or more classes, packages,

components, or subsystems

Testing

Testing helps find that errors exist
Debugging finds and fixes them

Systematic attempt to break a program that
is working

Unlike all other parts of software
development, whose goal is to avoid errors

Can never prove absence of errors
Testing alone does not improve quality

Types of Testing
(continued)

Regression testing

Repetition of previously tested cases to
find new errors introduced

System testing

Executing software in final configuration,
including integration with all other systems
and hardware

Security, performance, resource loss,
timing issues

Other Testing

Usually by specialized test personnel
- User tests

- Performance tests

- Configuration tests

- Usability tests

- Etc.

We're interested in developer tests

Testing As You Write Code

Boundary Testing

Pre- and Post-conditions
Assertions

Defensive Programming
Error Returns

Waiting until later means you have to relearn
code
- Fixes will be less thorough and more fragile

Writing Test Cases First

Helps identify errors more quickly

Doesn’t take any more effort than
writing tests later

Requires thinking about requirements
and design before writing code

Shows problems with requirements
sooner (can’t write code without good
requirements)

Boundary Testing

Most bugs occur at boundaries
- If it works at and near boundaries, it likely works
elsewhere
Check loop and conditional bounds when
written

- Check that extreme cases are handled
* e.g. Full array, Empty array, One element array
° Usually should check value and +/- 1

Mental test better than none at all

Preconditions and
Postconditions

Verify that routine starts with correct

preconditions and produces correct

postconditions

Check to make sure preconditions met
- Handle failures cleanly

Assertions

Available in C/C++
- assert.h

Way of checking for pre-/postconditions
Helps identify where problem occurs

Verify that postconditions are met - Before the assertion
- No inconsistencies created - e.g. usually in calling routine, not callee
Need to define pre-/postconditions clearly * Problem: causes abort
“Provable” software relies on this approach - So, useful for testing for errors
Defensive Programming Error Returns

Add code to handle the “can’t happen” Good API and routine design includes
cases error codes

Program “protects” itself from bad data Need to be checked

Systematic Testing Test Incrementally

* Test of complete code pieces * Don’t wait until everything is finished
before test

* Test components, not just system

* Test components individually before
connecting them

* Test incrementally

* Test simple parts first

Know what output to expect

Verify conservation properties

* Compare independent implementations
Measure test coverage

Test Simple Parts First Know What Output To Expect
* Test most basic, simplest features * Design test cases that you will know
* Finds the “easy” bugs (and usually the answer to!
most important) first * Make hand-checks convenient

* Not always easy to do

- e.g. compilers, numerical programs,
graphics

Verify Conservation Properties

* Specific results may not be easily verifiable

- Have to write the program to compute the answer

to compare to

* But, often we have known output properties
related to input
- e.g. #Start + #Insert - #Delete = #Final

* Can verify these properties even without
verifying larger result

Measure Test Coverage

* What portion of code base is actually
tested?

* Techniques to work toward this
- Following slides

* Tend to work well on only
small/moderate code pieces

* For large software, tools help judge
coverage

Compare Independent
Implementations

Multiple implementations to compute same
data should agree

Useful for testing tricky code, e.g. to increase
performance

- Write a slow, brute-force routine

- Compare the results to the new, “elegant” routine

If two routines communicate (or are
inverses), different people writing them helps
find errors

- Only errors will be from consistent
misinterpretation of description

Logic Coverage

Or, Code Coverage

Testing every branch, every path
through the code

Can grow (nearly) exponentially with
number of choices/branches

Only suitable for small to medium size
codes

Structured Basis Testing
(continued)

* Testing every line in a program * Start with base case where all Boolean
- Ensure that every statement gets tested conditions are true
- Need to test each part of a logical statement

* Far fewer cases than logic coverage
- But, also not as thorough

* Goal is to minimize total number of test

Structured Basis Testing

- Design test case for that situation

* Each branch, loop, case statement
increases minimum number of test

cases cases by 1 N
- One test case can test several statements - One more test case per variation, to test
the code for that variation
Data Flow Testing Data Flow Testing (continued)
* Examines data rather than control * First, check for any anomalous data sequences
* Data in one of three states - Defined-defined
. e s - Defined-exited
- Defined — Initialized but not used - Defined-killed
- Used — In computation or as argument - Entered-killed
- Killed — Undefined in some way - Entered-used
* Variables related to routines - Killed-killed
. . . . - Killed-used
- Entered — Routine starts just before variable is ~ Used-defined
acted upon

* Often can indicate a serious problem in code design

- Exited — Routine ends immediately after variable - After that check, write test cases

is acted upon

Data Flow Testing (continued)

Write test cases to examine all defined-
used paths
Usually requires
More cases than structured basis testing
Fewer cases than logic coverage

Example
S0 " @ Structured Basis Testing
} else {
;o Conditions: TTT
e Conditions: FF F
} else {

e ® Tests all lines of code

if (cond3) {
z = C;

} else {
z = d;

}

if

(condl) {
X = a;

} else {

}
if

x = Db;

(cond2) {
y = x+1;

} else {

}
if

y = xt2;

(cond3) {
z = C;

} else {

}

if

z = d;

(condl) {
X = a;

} else {

}
if

x = Db;

(cond2) {
y = xt1;

} else {

}
if

y = x+2;

(cond3) {
z = C;

} else {

}

z = d;

Example

® Logic Coverage / Code Coverage
Conditions: TTT
Conditions: T T F
Conditions: TF T
Conditions: TF F
Conditions: FTT
Conditions: F T F
Conditions: FF T
Conditions: F F F
® Tests all possible paths

Example

® Data Flow Testing
Conditions: TTT
Conditions: TF F
Conditions: F T ?
Conditions: F F ?

® Tests all defined-used paths

Note: cond3 is independent
of first two

Example Example

Pleend U @ Data Flow Testing ¥leend © @ Data Flow Testing
SR Conditions: TT T P Conditions: TT T
it (condz) { Conditions: T F F it (condz) { Conditions: T F F
= x+1; = x+1;
) else | Conditions: F T ?) else | Conditions: F T ?
= x+2; = x+2;
) (y o Conditions: F F ?) (y o Conditions: F F ?
LI ® Tests all defined-used paths LI ® Tests all defined-used paths
o Note: cond3 is independent Lo Note: cond3 is independent
of first two of first two
Example Test Case Design
)
(If you don’t know the code)

HE (condl) ® Data Flow Testing * Boundary analysis still applies
} else { "] * Equivalence partitioning
: ® b Conditions: T T T Don't create multiple tests to do the same thing
if (condz) { Conditions: TF F * Bad data
st Conditions: F T ? oo muchlite

y = xt2; L.
P Conditions: F F ? - Uninitialized

2 = c; ® Tests all defined-used paths * Good data
b else { L = Minimum/maximum normal configuration

2= d; Note: cond3 is independent ~ “Middle of the Road” data

} .
of first two -~ Compatibility with old data

Test Automation

Should do lots of tests, and by-hand is not usually
appropriate
Scripts can automatically run test cases, report on
errors in output

- But, we need to be able to analyze output automatically...

- Can’t always simulate good input (e.g. interactive
programs)

People cannot be expected to remain sharp over
many tests

Automation reduces workload on programmer,
remains available in the future

Test Support Tools

Test Scaffold

- Framework to provide just enough support
and interface to test

- Stub Routines and Test Harness
Test Data Generators
System Perturber

Regression Testing

Goal: Find anything that got broken by
“fixing” something else

Save test cases, and correct results

With any modifications, run new code
against all old test cases

Add new test cases as appropriate

Stub Routines

* Dummy object/routine that doesn’t provide
full functionality, but pretends to do
something when called

- Return control immediately

Burn cycles to simulate time spent

Print diagnostic messages

Return standard answer

- Get input interactively rather than computed

- Could be “working” but slow or less accurate

Test Harness Test Data Generators

* Calls the routine being tested * Can generate far more data than by hand
- Fixed set of inputs * Can test far wider range of inputs
- Interactive inputs to test * Can detect major errors/crashes easily
- Command line arguments * Need to know answer to test correctness
- File-based input - Useful for “inverse” processes — e.g.
encrypt/decrypt

- Predefined input set

_ _ _ * Should weight toward realistic cases
* Can run multiple iterations

System Perturbers Other Testing Tools

* Modify system so as to avoid problems that * Diff tools
are difficult to test otherwise - Compare output files for differences

e . * Coverage monitors
- Reinitialize memory to something other than 0

- Determine which parts of code tested
* Find problems not caught because memory is “usually” - Data recorder/loggers
null

) - Log events to files, save state information
- Rearrange memory locations .

. _ Error databases
* Find .problems where out-of-range queries go to a - Keep track of what’s been found, and rates of errors
consistent place in other tests

, * Symbolic debuggers
-~ Memory bounds checking - Will discuss debugging later, but useful for tests
- Memory/system failure simulation

