Outline

Challenges in Design
Design Concepts

* Heuristics
* Practices
CPSC 315 — Programming Studio
Challenges in Design Challenges in Design
* A problem that can only be defined by * Process is Sloppy
solving it - Mistakes
- Only after “solving” it do you understand - Wrong, dead-end paths

what the needs actually are
- e.g. Tacoma Narrows bridge design
- “Plan to throw one away”

- Stop when “good enough”

* Tradeoffs and Priorities
- Determine whether design is good
- Priorities can change



Challenges in Design Levels of Design

Restrictions are necessary * Software system as a whole

- Constraints improve the result * Division into subsystems/packages
Nondeterministic process * Classes within packages

- Not one “right” solution * Data and routines within classes
A Heuristic process * Internal routine design

- Rules of thumb vs. fixed process * Work at one level can affect those below and
Emergent above.

- Evolve and improve during design, coding * Design can be iterated at each level

Key Design Concepts Good Design Characteristics
Most Important: Manage Complexity ® ® Faltvor “simple” over
“clever”

- Software already involves conceptual
hierarchies, abstraction

- Goal: minimize how much of a program
you have to think about at once

- Should completely understand the impact
of code changes in one area on other
areas



Good Design Characteristics Good Design Characteristics

* Minimal complexity @® |magine what * Minimal complexity @ Keep connections
@ maintainer of code - Ease of maintenance between parts of
will want to know ® programs minimized
® Be self-explanatory Avoid n? interactions!
@ Abstraction,
encapsulation,
information hiding

Good Design Characteristics Good Design Characteristics
* Minimal complexity ® Should be able to * Minimal complexity ® Design so code
* Ease of maintenance add to one part of * Ease of maintenance could be “lifted” into

- Loose couplin system without - Loose couolin a different system

; P affecting others . ”p g ® Good design, even if
@ * Extensibility never reused

&



Good Design Characteristics

Minimal complexity @® For a given class,

Ease of maintenance have it used by
: many others
Loose coupling .
.. @ Indicates good
Extensibility capture of
Reusability underlying functions

Good Design Characteristics

Minimal complexity
Ease of maintenance
Loose coupling
Extensibility
Reusability

High fan-in
Low-to-medium fan-out

@ Consider what will
happen if moved to
another environment

Good Design Characteristics

Minimal complexity @® Don't use too many

Ease of maintenance other classes

Loose coupling ® Complexity
. management

Extensibility

Reusability

High fan-in

Good Design Characteristics

Minimal complexity @ Don't add extra parts

Ease of maintenance @ Extra code will need
to be tested,

Loose coupling , :

. reviewed in future
Extensibility changes
Reusability
High fan-in

Low-to-medium fan-out
Portability



Good Design Characteristics

Minimal complexity @® Design so that you

Ease of maintenance don't have to
. consider beyond the
Loose coupling

current layer
Extensibility
Reusability
High fan-in
Low-to-medium fan-out
Portability
Leanness

Design Heuristics

Rules-of-thumb
- “Trials in Trial-and-Error”

Understand the Problem
Devise a Plan

Carry Out the Plan

Look Back and Iterate

Good Design Characteristics

Minimal complexity
Ease of maintenance
Loose coupling

@ Use of common
approaches make it
easier to follow code

later
Extensibility @ Avoid unneeded
Reusability exotic approaches
High fan-in
Low-to-medium fan-out
Portability
Leanness

Stratification

Find Real-World Objects

Standard Object-Oriented approach
|dentify objects and their attributes
Determine what can be done to each object

Determine what each object is allowed to do
to other objects

Determine the parts of each object that will
be visible to other objects (public/private)

Define each object’s public interface



Form Consistent Abstractions

* View concepts in the aggregate
- “Car” rather than “engine, body, wheels, etc.”

* ldentify common attributes
- Form base class

* Focus on interface rather than
implementation

* Form abstractions at all levels
- Car, Engine, Piston

Information Hiding

* Interface should reveal little about inner
workings
- Example: Assign ID numbers

* Assignment algorithm could be hidden
* 1D number could be typed

- Encapsulate Implementation Details
* Don't set interface based on what's easiest
to use
- Tends to expose too much of interior

* Think about “What needs to be hidden”

Inheritance

* Inherit when helpful
- When there are common features

More on Information Hiding

* Two main advantages
- Easier to comprehend complexity
- Localized effects allow local changes

° Issues:
- Circular dependencies
© A->B->A
- Global data (or too-large classes)

- Performance penalties
* Valid, but less important, at least at first



|dentify Areas Likely to
Change

* Anticipate Change
- ldentify items that seem likely to change
- Separate these items into their own class
- Limit connections to that class, or create
interface that’s unlikely to change
* Examples of main potential problems:

Business Rules, Hardware Dependencies,
Input/Output, Nonstandard language features, status
variables, difficult design/coding areas

Kinds of Coupling

Data-parameter (good)

- Data passed through parameter lists

- Primitive data types
Simple-object (good)

- Module instantiates that object
Object-parameter (so0-so)

- Object 1 requires Object 2 to pass an Object 3
Semantic (bad)

- One object makes use of semantic information
about the inner workings of another

Keep Coupling Loose

Relations to other classes/routines

Small Size

- Fewer parameters, methods
Visible

- Avoid interactions via global variables
Flexible

- Don’'t add unnecessary dependencies

- e.g. using method that’s not unique to the class it
belongs to

Examples of Semantic
Coupling

Module 1 passes control flag to Module 2
- Can be OK if control flag is typed

Module 2 uses global data that Module 1 modifies

Module 2 relies on knowledge that Module 1 calls
initialize internally, so it doesn’t call it

Module 1 passes Object to Module 2, but only

initializes the parts of Object it knows Module 2
needs

Module 1 passes a Base Object, but Module 2

knows it is actually a Derived Object, so it typecasts
and calls methods unique to the derived object



Design Patterns

Design Patterns, by “Gang of Four”
(Gamma, Helm, Johnson, Vlissides)

Common software problems and
solutions that fall into patterns
Provide ready-made abstractions
Provide design alternatives

Streamline communication among
designers

Other Heuristics

Strong Cohesion

- All routines support the main purpose

Build Hierarchies

- Manage complexity by pushing details away
Formalize Class Contracts

- Clearly specify what is needed/provided
Assign Responsibilities

- Ask what each object should be responsible for

More on Design Patterns

* Given common names

- e.g. “Bridge” — builds an interface and an
implementation in such a way that either
can vary without the other varying

* Could go into much more on this

More Heuristics

Design for Test

- Consider how you will test it from the start
Avoid Failure

- Think of ways it could fail
Choose Binding Time Consciously

- When should you set values to variables
Make Central Points of Control

- Fewer places to look -> easier changes



More Heuristics

* Consider Using Brute Force

- Especially for early iteration

- Working is better than non-working
* Draw Diagrams
* Keep Design Modular

- Black Boxes

Design Practices
(we may return to these)

Iterate — Select the best of several attempts
Decompose in several different ways

Top Down vs. Bottom Up

Prototype

Collaborate: Have others review your design
either formally or informally

Design until implementation seems obvious
- Balance between “Too Much” and “Not Enough”
Capture Design Work

- Design documents



