
Communicating in Code:
Naming

Programming Studio

Fall 2010

What’s the Purpose of 
Coding?

What’s the Purpose of 
Coding?

● To give the computer instructions?

What’s the Purpose of 
Coding?

• To give the computer instructions



What’s the Purpose of 
Coding?

• To give the computer instructions
● To demonstrate your skill?

What’s the Purpose of 
Coding?

• To give the computer instructions
• To demonstrate your skill

What’s the Purpose of 
Coding?

• To give the computer instructions
• To demonstrate your skill
• An effective way to express ideas of 

what you want the computer to do

What’s the Purpose of 
Coding?

• An effective way to express ideas of 
what you want the computer to do

● Communication!
– To the computer
– To yourself (later on)
– To others



What about Documentation?
● External documentation is very useful, 

but has its own problems
– Can be out of date/inconsistent with 

program
– Maintained separately (multiple files)
– Often for a different audience 

● developer vs. user

● Clearly written code can be more 
important than well-written 
documentation of that code

Communicating in Code

● Choosing good names
● Including appropriate comments
● Following good layout and style

● These are all critical to documentation, 
and with good naming, commenting, 
and layout, other documentation may 
be unnecessary!

Names

● We assign names throughout a 
program

● Give identity
● Imply behavior/purpose
● Provide recognition

What gets named?

● Variables
● Functions
● Types/classes
● Namespaces
● Macros
● Source Files



Choosing Names

● Sometimes there are naming 
conventions
– If you work at a company that has an 

agreed convention, follow it!
● But, there are several “wise” ideas to 

consider when choosing names.

Naming Considerations

Be sure it’s not a reserved name (Duh!)

Sometimes it’s easy to forget…

1. Make it informative

2. Keep it concise

3. Make it memorable

4. Make it pronounceable

Informative Names

● The amount of information a name needs 
depends on its scope – understand it when 
seen

● Use descriptive names for globals, short 
names for locals

● Large routines/loops need more descriptive 
names

s = 0;
for (WhichGroup=0; WhichGroup<num; WhichGroup++) 

{
s += G[WhichGroup].n();

}

Informative Names

● The amount of information a name needs 
depends on its scope – understand it when 
seen

● Use descriptive names for globals, short 
names for locals

● Large routines/loops need more descriptive 
names

nAnimals = 0;
for (i=0; i<NumAnimalGroups; i++) {

nAnimals += AnimalGroup[i].NumberInGroup();
}
 



Descriptive Names

● Names should convey what it 
represents or does, unless obvious 
from context

● Describe everything a routine does
– Print() vs. PrintAndCloseFile()

● Avoid meaningless or vague names
– HandleData(), PerformAction(), etc.

Descriptive Names

● Procedures: Active names
– Verb followed by noun
– AnotherStudent(s) vs. AddStudent(s)

● Functions different: give return value
– GetNumStudents() vs. numStudents()

● Booleans: Be clear what is returned
– checkEOF vs. isEOF

Consistent Names
● Key: Be Consistent! 

– nKids, numKids, num_kids, NumKids, nkids, 
Number_Kids, numberofkids

– Write1stObject(), WriteSecondObject(), 
write_third_object()

– averageSalary vs. salaryMinimum
● Use related names for related operations

– OpenFile(): CloseFile() vs. fclose()
– open/close, first/last, old/new, min/max, etc.

Name Length

● Tradeoff between description and 
visual space

● Moderate-length names tend to be best
– 8-20 characters

● If a glance at the code seems like it has 
lots of short or lots of long names, use 
caution!

● Scope plays a role
● Rarely-used functions might be longer



Other Random Naming 
Considerations

● Beware of “temp” variables
● Be careful of reusing variable names
● Be careful of overloading names
● Avoid intentional misspellings
● Consider pronunciation

Conventions

● Lots of conventions out there
● Conventions help convey information 

away from its definition
● Very useful for larger groups/programs
● Examples:

– Globals have initial capital letters
– Constants are in ALL CAPS
– Etc.

Common Naming 
Conventions

● Beginning/ending with a p if a pointer
● Starting with n for a number
● i, j are integer indices
● s is a string, c or ch are characters

Example:
Hungarian Naming 

Convention
● Base types:

– wn Window
– scr Screen Region
– fon Font
– ch Character
– pa Paragraph

● Eg: wnMain, scrUserWorkspace



Example:
Hungarian Naming 

Convention
● Prefixes

– a array
– c count
– d difference between two variables
– e element of array
– g global variable
– h handle
– i index into array

● e.g. iwnUserView = index into array of 
windows giving user views


